移动平均法

合集下载

移动平均法简单应用

移动平均法简单应用

.移动平均法移动平均法是一种简单平滑预测技术,它的基本思想是:根据时间序列资料、逐项推移,依次计算包含一定项数的序时平均值,以反映长期趋势的方法。

因此,当时间序列的数值由于受周期变动和随机波动的影响,起伏较大,不易显示出事件的发展趋势时,使用移动平均法可以消除这些因素的影响,显示出事件的发展方向与趋势(即趋势线),然后依趋势线分析预测序列的长期趋势。

1. 移动平均法的基本理论①简单移动平均法设有一时间序列,则按数据点的顺序逐点推移求出N个数的平均数,即可得到一次移动平均数:为第t周期的一次移动平均数;为第式中t周期的观测值;N为移动平均的项数,即求每一移动平均数使用的观察值的个数。

这个公式表明当t向前移动一个时期,就增加一个新近数据,去掉一个远期数据,得到一个新的平均数。

由于它不断地“吐故纳新”,逐期向前移动,所以称为移动平均法。

由于移动平均可以平滑数据,消除周期变动和不规则变动的影响,使得长期趋势显示出来,因而可以用于预测。

其预测公式为:即以第t周期的一次移动平均数作为第t+1周期的预测值。

②趋势移动平均法当时间序列没有明显的趋势变动时,使用一次移动平均就能够准确地反映实际情况,直接用第t周期的一次移动平均数就可预测第t+1周期之值。

但当时间序列出现线性变动趋势时,用一次移动平均数来预测就会出现滞后偏差。

因此,需要进行修正,修正的方法是在一次移动平均的基础上再做二次移动平均,利用移动平均滞后偏差的规律找出曲线的发展方向和发展趋势,然后才建立直线趋势的预测模型。

故称为趋势移动平均法。

设一次移动平均数为,则二次移动平均数的计算公式为:从某时期开始具有直线趋势,且认为未来时期亦按此直再设时间序列线趋势变化,则可设此直线趋势预测模型为:式中t为当前时期数;T为由当前0时期数t到预测期的时期数,即t以后模型外推的时间;为第t+T期的预测值;为截距;为斜率。

,又称为平滑系数。

文档资料Word.的计算公式为:根据移动平均值可得截距和斜率的选择十分关键,它取决于预测目标和实际在实际应用移动平均法时,移动平均项数N数据的变化规律。

管理预测5.2 移动平均法

管理预测5.2 移动平均法

如本例,要确定N=3,还是N=5合适。可通过计算这两 个预测公式的均方误差MSE,选取使MSE较小的那个N

当N=3时
MSE 1 9
12 4
yt yˆt 2
28836 9
3204
计算当结N=果5时表M明SE:N71 =162 5y时t ,yˆt 2MS11E174较3 小 15,92故选取 N=5。
利用加权移动平均数来作预测的公式为 yˆt1 M tw
即以第t期加权移动平均数作为第 t+1期的预测值。
例5-2 我国1979~1988年原煤产量如表5-2所示,试用加权移动平均
法预测1989年的产量(取 w1 3, w2 2, , w3 1)。
表5-2 我国原煤产量统计数据及加权移动平均预测值表(单位:亿吨)
设时间序列为 y , y , y 加权移动平均公式为:
1
2
t

M tw w1 yt
式中:
w2 yt1 w1 w2

wN wN
ytN 1
,t≥N
(5-4)
Mtw为 t 期加权移动平均数;
w i 为yti1的权数,它体现了相应的y在加权平均数中的重要性
6.66 6.24 6.31% 6.66
将相对误差列于表5-3中,再计算总的平均相对误差:
1

yˆt yt

100%

1
52.89 58.44
100%

9.50%
由于总预测值的平均值比实际值低9.50%,所以可将1989 年
的预测值修正为
9.48 10.48 亿吨
数据,得到一个新的平均数。

用友U8 计价方法-移动平均法

用友U8 计价方法-移动平均法

移动平均:计算出库成本时要根据该仓库的同种存货按最新结存金额和结存数量计算的单价计算出库成本。

移动加权平均单位成本= (原有存货成本+本批入库存货成本)/(原有存货数量+本批入库存货数量)
优点:采用移动平均法,能够随时反映发出存货和库存存货的成本,有利于存货的日常管理,而且计算的发出和结存的存货成本比较客观。

缺点:由于每收进一次都要计算一次平均单价,因而计算工作量较大,对收发货频繁的企业不适用。

简单应用流程
1、购入100吨10106存货,单价为3100元,填写采购入库单
2、出库存货10106存货20吨,填写材料出库单
3、再次购入10106存货200吨,单价3500元
4、出库,10106货物出库50吨
5、单据记账后,出库单的单价就会自动生成
上面那种存货比较杂乱,新增加了个存货来测试数据是否正确
计算:第一次出库成本=(50*490+100*470)/(100+50)*50=23833.33333约等于23833.5。

移动平均法

移动平均法
结果列入下表:
由上表可见:
α=0.3,α=0.5,α=0.7时,均方误差分别
为:
MSE=287.1 MSE=297.43 MSE=233.36 最小 因此可选α=0.7作为预测时的平滑常数
。 1981年1月的平板玻璃月产量的预测值为:
0 .7 2.5 5 0 .3 9 2.1 4 20 .6 5
一次指数平滑法比较简单,但也有问题。问
题之一便是力图找到最佳的α值,以使均方差最
小,这需要通过反复试验确定
例2 利用下表数据运用一次指数平滑法对1981年1月
我国平板玻璃月产量进行预测(取α=0.3,0.5 , 0.7)。并计算均方误差选择使其最小的α进行预测

拟选用α=0.3,α=0.5,α=0.7试预测。
3.一次移动平均方法的应用公式
设时间序列为
,移动平均法可以表示为:
式中: 为第t周期的一次移动平均数; 为第t周期的观测值;N为移动平均的项数,即求 每一移动平均数使用的观察值的个数.
由移动平均法计算公式可以看出,每一新预测 值是对前一移动平均预测值的修正,N越大平滑效 果愈好。
这个公式表明当t向前移动一个时期,就增加一 个新近数据,去掉一个远期数据,得到一个新的平 均数。由于它不断地“吐故纳新”,逐期向前移动, 所以称为移动平均法。
• 某公司2003年—2010年某种产品产量如下表所示:
分别以时距长度N=3和N=5计算的各期预测值如下表所示:
一次指数平滑法
一次指数平滑法是利用前一期的预测值 F t 代替
x t n 得到预测的通式,即 :
F t1xt (1)F t
由一次指数平滑法的通式可见:
一次指数平滑法是一种加权预测,权数为α

简述移动平均法的基本原理和特点。

简述移动平均法的基本原理和特点。

简述移动平均法的基本原理和特点。

移动平均法是一种常用的时间序列分析方法,用于平滑数据并识别趋势。

其基本原理是通过计算一定期间内数据的平均值来消除短期波动,从而揭示出长期趋势。

具体来说,移动平均法通过对一段连续时间内的数据进行平均处理,可以减少随机波动的影响,使得数据变化的趋势更加明显。

移动平均法的特点包括:
1. 平滑数据,移动平均法可以平滑原始数据,使得数据变化的趋势更加清晰,有助于分析长期趋势。

2. 消除季节性和周期性影响,通过选择合适的期数,移动平均法可以消除季节性和周期性的影响,使得数据更具代表性。

3. 预测未来趋势,移动平均法可以用于预测未来一段时间内的数据趋势,对于一些稳定的时间序列具有一定的预测能力。

4. 受滞后效应影响,移动平均法的主要缺点是受滞后效应的影响,即对于突然发生的变化反应较慢,不适用于快速变化的数据。

总的来说,移动平均法是一种简单而有效的时间序列分析方法,可以帮助我们理解数据的长期趋势,平滑数据并进行简单的预测。

然而,需要根据具体情况选择合适的期数和方法,以充分发挥其作用。

移动平均法简单应用

移动平均法简单应用

移动平均法移动平均法就是一种简单平滑预测技术,它得基本思想就是:根据时间序列资料、逐项推移,依次计算包含一定项数得序时平均值,以反映长期趋势得方法。

因此,当时间序列得数值由于受周期变动与随机波动得影响,起伏较大,不易显示出事件得发展趋势时,使用移动平均法可以消除这些因素得影响,显示出事件得发展方向与趋势(即趋势线),然后依趋势线分析预测序列得长期趋势。

1、移动平均法得基本理论①简单移动平均法设有一时间序列,则按数据点得顺序逐点推移求出N个数得平均数,即可得到一次移动平均数:式中为第t周期得一次移动平均数;为第t周期得观测值;N为移动平均得项数,即求每一移动平均数使用得观察值得个数。

这个公式表明当t向前移动一个时期,就增加一个新近数据,去掉一个远期数据,得到一个新得平均数。

由于它不断地“吐故纳新”,逐期向前移动,所以称为移动平均法。

由于移动平均可以平滑数据,消除周期变动与不规则变动得影响,使得长期趋势显示出来,因而可以用于预测。

其预测公式为:即以第t周期得一次移动平均数作为第t+1周期得预测值。

②趋势移动平均法当时间序列没有明显得趋势变动时,使用一次移动平均就能够准确地反映实际情况,直接用第t周期得一次移动平均数就可预测第t+1周期之值。

但当时间序列出现线性变动趋势时,用一次移动平均数来预测就会出现滞后偏差。

因此,需要进行修正,修正得方法就是在一次移动平均得基础上再做二次移动平均,利用移动平均滞后偏差得规律找出曲线得发展方向与发展趋势,然后才建立直线趋势得预测模型。

故称为趋势移动平均法。

设一次移动平均数为,则二次移动平均数得计算公式为:再设时间序列从某时期开始具有直线趋势,且认为未来时期亦按此直线趋势变化,则可设此直线趋势预测模型为:式中t为当前时期数;T为由当前0时期数t到预测期得时期数,即t以后模型外推得时间;为第t+T期得预测值;为截距;为斜率。

,又称为平滑系数。

根据移动平均值可得截距与斜率得计算公式为:在实际应用移动平均法时,移动平均项数N得选择十分关键,它取决于预测目标与实际数据得变化规律。

移动平均法计算成本公式

移动平均法计算成本公式

移动平均法计算成本公式
一、移动平均法的概念。

移动平均法是一种存货成本核算方法。

它是指每次进货的成本加上原有库存存货的成本,除以每次进货数量与原有库存存货的数量之和,据以计算加权平均单位成本,作为在下次进货前计算各次发出存货成本依据的一种方法。

1. 移动加权平均单价。

- 设存货的原有库存数量为Q_1,原有库存存货成本为C_1,本次进货数量为Q_2,本次进货成本为C_2。

- 移动加权平均单价P=(C_1 + C_2)/(Q_1+Q_2)
2. 发出存货成本。

- 设发出存货数量为Q,发出存货成本C = P× Q
3. 期末存货成本。

- 期末存货数量为Q_末=Q_1 + Q_2-Q(这里Q为本期发出存货数量)
- 期末存货成本C_末=P× Q_末。

移动平均法-教学PPT课件

移动平均法-教学PPT课件
• N越小,越能够反映序列的波动,但无法有效呈现长期 的变化趋势
N为奇数
• 需要一次移动平均,就可以作为中间一期的趋势代表值
• N=2k+1时,移动平均后的序列值就能够对齐时期K。所以,在大多数应 用中,我们都选取N为奇数进行移动平均。
N为偶数
移正平均
• 序列存在季节性变化,而且季节周期为偶数(比如一 年4个季度和12个月份的周期),此时在移动平均时需 要移正平均
简单移动平均(预测值等于前N期数据的平均值)
适用
• 呈水平趋势 • 序列的变化不大(即方差比较小) • 没有明显的升降趋势和循环变动
Tips:预测下一期的序列值,更多期的预测将会产生更大的误 差
期数的选择
使用移动平均后,序列就变得更加平滑, 期数N越大,平滑效果就越好
期数大小的影响
• N越大,则平滑效果越好,但会对序列的变动不敏感;
移动平C 均法
目的
• 消除时间序列中的周期变动和不规则波动的影响 • 以便呈现出时间序列的总体发展趋势(即趋势线) • 然后根据趋势线分析序列的长期趋势
• 应用:当产品的需求既不快速增长也不快速下降,且不存在季节性因素时,移动平均法 能够有效地消除预测中的随机波动,非常有用。
•简单的移动平均(一次移动平均和二次移动平均) 就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
谢谢大家
荣幸这一路,与你同行
It'S An Honor To Walk With You All The Way
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性二次移动平均法的通式为:
St
St
xt xt 1 xt 2 ... xt N 1 N
St St1 St 2 ... St N 1 N
(5.1)
(5.2)
at 2St St
2 bt St St N 1
时间 1980.1 1980.2 1980.3 1980.4 1980.5 1980.6 1980.7 1980.8 1980.9 1980.10 1980.11 1980.12 序号 1 2 3 4 5 6 7 8 9 10 11 12 实际观测值 203.8 214.1 229.9 223.7 220.7 198.4 207.8 228.5 206.5 226.8 247.8 259.5 三个月移动平均值 215.9 222.6 224.8 214.6 209.0 211.6 214.3 220.6 227.0 五个月移动平均值 218.4 217.4 216.1 215.8 212.4 213.6 223.5
回总目录 回本章目录
温特法的基础方程式:
St xt It L 1 St 1 bt 1
0 1
bt St St 1 1 bt 1
xt It 1 It L St
0 1 0 1
就必须存储大量数据;
回总目录 回本章目录
限制二:N个过去观察值中每一个权数
都相等,而早于(t-N+1)期的观察值的 权数等于0,而实际上往往是最新观察值 包含更多信息,应具有更大权重。
回总目录 回本章目录
例题分析
•例 1
分析预测我国平板玻璃月产量。 下表是我国1980-1981年平板玻璃月产量,试选用N=3 和N=5用一次移动平均法进行预测。计算结果列入表中。
指数平滑法 α=0.3 — 203.8 206.9 213.8 216.8 218.0 212.1 210.8 216.1 213.2 217.3 226.5 α=0.5 — 203.8 209.0 230.0 226.9 223.8 211.1 209.5 219.0 212.8 219.8 233.8 α=0.7 — 203.8 211.0 224.2 223.9 221.7 205.4 207.1 222.1 211.2 222.1 240.1
回总目录 回本章目录
• 在移动平均值的计算中包括的过去观察值 的实际个数,必须一开始就明确规定。每 出现一个新观察值,就要从移动平均中减
去一个最早观察值,再加上一个最新观察
值,计算移动平均值,这一新的移动平均
值就作为下一期的预测值。
回总目录 回本章目录
(1)移动平均法有两种极端情况
• 在移动平均值的计算中包括的过去观察值 的实际个数N=1,这时利用最新的观察值 作为下一期的预测值; • N=n,这时利用全部n个观察值的算术平 均值作为预测值。
指数平滑法作为预测方法。
回总目录 回本章目录
一、布朗单一参数线性指数平滑法 • 其本原理与线性二次移动平均法相 似 ,因为当趋势存在时,一次和二次
平滑值都滞后于实际值,将一次和二
次平滑值之差加在一次平滑值上,则
可对趋势进行修正。
回总目录 回本章目录
计算公式:
St axt 1 a St1
回总目录 回本章目录
时间 1980.01 1980.02 1980.03 1980.04 1980.05 1980.06 1980.07 1980.08 1980.09 1980.10 1980.11 1980.12 1981.01
序号 1 2 3 4 5 6 7 8 9 10 11 12
实际观测值 203.8 214.1 229.9 223.7 220.7 198.4 207.8 228.5 206.5 226.8 247.8 259.5
回总目录 回本章目录
一次指数平滑法的初值的确定有几种方法: 取第一期的实际值为初值; 取最初几期的平均值为初值。 一次指数平滑法比较简单,但也有问题。
问题之一便是力图找到最佳的α 值,以使均
方差最小,这需要通过反复试验确定。
回总目录 回本章目录
• 例 2 利用下表数据运用一次指数平滑法对1981年1 月我国平板玻璃月产量进行预测(取α =0.3,0.5 , 0.7)。并计算均方误差选择使其最小的α 进行预 测。 拟选用α =0.3,α =0.5,α =0.7试预测。 结果列入下表:
式中:
xt 为最新观察值;
Ft 1为下一期预测值;
由移动平均法计算公式可以看出,每 一新预测值是对前一移动平均预测值的修 正,N越大平滑效果愈好。
回总目录 回本章目录
(2)移动平均法的优点 计算量少; 移动平均线能较好地反映时间序列 的趋势及其变化。
回总目录 回本章目录
(3)移动平均法的两个主要限制 限制一:计算移动平均必须具有N个过 去观察值,当需要预测大量的数值时,
5 时间序列平滑预测法
5.1 一次移动平均法和一次指数平滑法 5.2 线性二次移动平均法 5.3 线性二次指数平滑法 5.4 布朗二次多项式(三次)指数平滑法 5.5 温特线性和季节性指数平滑法
回总目录
5.1 一次移动平均法和一次指数平滑法
一、一次移动平均法 • 一次移动平均方法是收集一组观察值, 计算这组观察值的均值,利用这一均值 作为下一期的预测值。
回总目录 回本章目录
计算公式:
St xt 1 St1 St St 1 St 1 St St 1 St1
at 3S 3St St
回总目录 回本章目录
t bt 6 5 St 10 8 St 4 3 St 2 2 1
回总目录 回本章目录
当数据的随机因素较大时,宜选用较大
的N,这样有利于较大限度地平滑由随机性
所带来的严重偏差;反之,当数据的随机因 素较小时,宜选用较小的N,这有利于跟踪 数据的变化,并且预测值滞后的期数也少。
回总目录 回本章目录
设时间序列为 x1, x2 ,..., 移动平均法可以表示为:
1 t Ft 1 xt xt 1 ... xt N 1 / N 1 xi N tN
其中,L为季节的长度;I为季节修正系数。
Ft m St bt m It Lm
回总目录 回本章目录
使用此方法时一个重要问题是如何确
定α 、β 和γ 的值,以使均方差达到最小。 通常确定α 、β 和γ 的最佳方法是反复试 验法。
回总目录 回本章目录
势直接进行平滑。
回总目录 回本章目录
计算公式:
St xt 1 St 1 bt 1
(5.5)
(5.6)
bt St St 1 1 bt 1
Ft m St bt m
(5.5)式是利用前一期的趋势值 bt 1 直接修正 St (5.6)式用来修正趋势项 bt ,趋势值用相邻两次平 滑值之差来表示。
回总目录 回本章目录
二、一次指数平滑法 一次指数平滑法是利用前一期的预测值 Ft 代替
x t n 得到预测的通式,即 :
Ft 1 xt (1 ) Ft
回总目录 回本章目录
由一次指数平滑法的通式可见:
一次指数平滑法是一种加权预测,权数为
α 。它既不需要存储全部历史数据,也不需要 存储一组数据,从而可以大大减少数据存储问 题,甚至有时只需一个最新观察值、最新预测 值和α 值,就可以进行预测。它提供的预测值 是前一期预测值加上前期预测值中产生的误差 的修正值。
N 1 2
,这是因为
移动平均值是对N个点求平均值,这一平 均值应落在N个点的中点。
回总目录 回本章目录
5.3 线性二次指数平滑法
• 一次移动平均法的两个限制因素在线性二 次移动平均法中也才存在,线性二次指数 平滑法只利用三个数据和一个α 值就可进 行计算;
• 在大多数情况下,一般更喜欢用线性二次
St aSt 1 a St 1
St 为一次指数平滑值; t 为二次指数平滑值; S
at 2St St
bt St St 1
Ft m at bt m
m为预测超前期数
回总目录 回本章目录
二、霍尔特双参数线性指数平滑法 其基本原理与布朗线性指数平滑法相 似,只是它不用二次指数平滑,而是对趋
回总目录 回本章目录
由上表可见: α =0.3,α =0.5,α =0.7时,均方误差分别为:
MSE=287.1 MSE=297.43 MSE=233.36
1981年1月的平板玻璃月产量的预测值为:
最小
因此可选α =0.7作为预测时的平滑常数。
0.7 259 .5 0.3 240 .1 253 .68
回总目录 回本章目录
5.4 布朗二次多项式(三次)指数平滑

基本原理: 当数据的基本模型具有二次、三次或高次 幂时,则需要用高次平滑形式。从线性平滑过 渡到二次多项式平滑,基本途径是再进行一次 平滑(即三次平滑),并对二次多项式的参数 作出估计。类似,也可以由二次多项式平滑过 渡为三次或高次多项式平滑。
(5.3)
(5.4)
Ft m at bt m
m为预测超前期数
回总目录 回本章目录
其中:
(5.1)式用于计算一次移动平均值;
(5.2)式用于计算二次移动平均值;
(5.3)式用于对预测(最新值)的初始点进
行基本修正,使得预测值与实际值 之间不存
在滞后现象;
(5.4)式中用 St St 除以
回总目录 回本章目录
5.2 线性二次移动平均法
一、线性二次移动平均法 (1)基本原理 为了避免利用移动平均法预测有趋势 的数据时产生系统误差,发展了线性二次 移动平均法。这种方法的基础是计算二次 移动平均,即在对实际值进行一次移动平 均的基础上,再进行一次移动平均。
相关文档
最新文档