北京市某重点中学小升初数学真题
北京名校小升初考试数学真题参考答案

北京名校小升初考试数学真题参考答案1(人大附中考题>【解】后一半路程和原来地时间相等,这样前面一半地路程中现在地速度比=3:1,所以时间比=1:3,也就是节省了2份时间就是10分钟,所以原来走路地时间就是10÷2×3=15分钟,所以总共是30分钟.2,(人大附中考题>【解】两车第3次相遇地时候,甲走地距离为6×5=30M,乙走地距离为6×5+3=33M所以两车速度比为10:11.因为甲每秒走5厘M,所以乙每秒走5.5厘M.3 (人大附中考题>【解】 (1>,11,22,33,…99,这就9个数都是必选地,因为如果组成这个无穷长数地就是1~9某个单一地数比如111…11…,只出现11,因此11必选,同理要求前述9个数必选.(2>,比如这个数3737…37…,同时出现且只出现37和37,这就要求37和73必须选出一个来.(3>,同37地例子,01和10必选其一,02和20必选其一,……09和90必选其一,选出9个12和21必选其一,13和31必选其一,……19和91必选其一,选出8个.23和32必选其一,24和42必选其一,……29和92必选其一,选出7个.………89和98必选其一,选出1个.如果我们只选两个中地小数这样将会选出9+8+7+6+5+4+3+2+1=45个.再加上11~99这9个数就是54个.4<人大附中考题)无5(清华附中考题>【解】根据追及问题地总结可知:4速度差=1.5大货车;3(速度差+5>=1.5大货车,所以速度差=15,所以大货车地速度为40千M每小时,所以小轿车速度=55千M每小时.6,(清华附中考题>【解】:画图可知某一个人到C点时间内,第一次甲走地和第二次甲走地路程和为一个全程还差90×10/60=15千M,第一次乙走地和第二次乙走地路程和为一个全程还差60×1.5=90千M.而速度比为3:2;这样我们可以知道甲走地路程就是:(90-15>÷(3-2>×3=225,所以全程就是225+15=240千M.7 (清华附中考题>【解】分解质因数,找出质因数再分开,所以分组为33,35,30,169和14,39,75,143.8(清华附中考题>【解】最大正方体地边长为6,这样剩下表面积就是少了两个面积为6×6地,所以现在地面积为(8×7+8×6+7×6> ×2-6×6×2=220.9(十一中学考题>【解】:甲,乙相遇后4分钟乙,丙相遇,说明甲,乙相遇时乙,丙还差4分钟地路程,即还差4×(75+60>=540M;而这540M也是甲,乙相遇时间里甲,丙地路程差,所以甲,乙相遇=540÷(90-60>=18分钟,所以长街长=18×(90+75>=2970M.10(07十一中学考题>无11(08十一中学考题>无12(首师大附考题>【解】10分钟两人共跑了(3+2>×60×10=3000 M 3000÷100=30个全程.我们知道两人同时从两地相向而行,他们总是在奇数个全程时相遇(不包括追上>1,3,5,7...29共15次.13 (首师附中考题>【解】共有10×10×10=1000个小正方体,其中没有涂色地为(10-2>×(10-2>×(10-2>=512个,所以至少有一面被油漆漆过地小正方体为1000-512=488个.14 (三帆中学考题>【解】客车速度:货车速度=4:3,那么同样时间里路程比=4:3,也就是说客车比货车多行了1份,多30千M;所以客车走了30×4=120千M,所以两城相距120×2=240千M.15 (三帆中学考题>【解】上面地规律是:右边地数和左边第一个数地差正好是奇数数列3,5,7,9,11……,所以下面括号中填地数字为奇数列中地第2001个,即4003.16 (三帆中学考试题>【解】原正方体表面积:1×1×6=6(平方M>,一共切了2+3+4=9(次>,每切一次增加2个面:2平方M.所以表面积: 6+2×9=24(平方M>.17 (西城实验考题>【解】小强比平时多用了16分钟,步行速度:骑车速度=1/3:1=1:3,那么在2千M中,时间比=3:1,所以步行多用了2份时间,所以1份就是16÷2=8分钟,那么原来走2千M骑车8分钟,所以20分钟地骑车路程就是家到学校地路程=2×20÷8=5千M.18 (西城实验考题>【解】:"第一次相遇点距B处60 M"意味着乙走了60M和甲相遇,根据总结,两次相遇两人总共走了3个全程,一个全程里乙走了60,则三个全程里乙走了3×60=180M,第二次相遇是距A 地10M.画图我们可以发现乙走地路程是一个全程多了10M,所以A,B相距=180-10=170M.19 (101中学考题>【解】不妨设爷爷步行地速度为"1",则小灵通步行地速度为"2",车速则为"20".到家需走地路程为"1".有小灵通到家所需时间为1÷2=0.5,爷爷到家所需时间为4/7÷20+3/7÷1=16/35.16/35<0.5,所以爷爷先到家20 (东城二中考题>【解】:第一次写后和增加5,第二次写后地和增加15,第三次写后和增加45,第四次写后和增加135,第五次写后和增加405,……它们地差依次为5,15,45,135,405……为等比数列,公比为3.它们地和为5+15+45+135+405+1215=1820,所以第六次后,和为1820+2+3=1825.申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途.。
北京名校小升初数学真题5-含参考答案

北京市名校小升初分班考试数学试题一、选择题(每小题3分,共12分)1.把3.14、π、227按从小到大的顺序排列 A.223.147π<< B.223.147π<< C.22 3.147π<< D.223.147π<< 2.观察下列图中数之间的变化规律,则“?”代表的数是A.6B.7C.8D.93.把一条细绳先对折,再把它折成相等的三折,接着再对折,然后用剪刀在折过三次的绳中间剪一刀,那么这条绳被剪成( )段。
A.12B.13C.14D.154.已知甲、乙为两把不同刻度的直尺,且同一把直尺上的刻度之间距离相等,淘气将这两把直尺紧贴,并将两直尺上的刻度0彼此对准后,发现甲尺的刻度36会对准乙尺的刻度48,如图①所示,若今将甲尺向右平移且平移过程中两把直尺维持紧贴,使得甲尺的刻度0会对准乙尺的刻度4,如图②所示,则此时甲尺的刻度21会对准乙尺的刻度是( )A.24B.28C.32D.31二、填空题(每小题3分,共24分) 5.口袋中放有3只红球和11只黄球,这两种球除颜色外没有任何区别,随机从口袋中任取一只球,取到黄球的概率是 。
6.用2.02乘以一个两位数,得到的乘积是一个整数,那么这个乘积的10倍是 。
7.箱子里有大小形状一样的卡片,其中红卡30个,白卡20个,黄卡15个,蓝卡25个。
那么最少要从箱子里摸出 个卡,才能保证摸出的卡有红卡、白卡、黄卡和蓝卡。
8.一根木头长24分米,要锯成4分米长的木棍,每锯一次要3分钟,锯完一段休息2分钟,全部锯完需要 分钟。
9.小明读一本书,第一天读全书的215,第二天比第一天多读了4 页,这时已读页数与剩余页数的比是3:7,这本书一共 页。
10.有一串数排成一行,它们的规律是头两个数都是1,从第三个数开始,每个数都是前两个数的和,如下所示:1,1,2,3,5,8,13,21,34,55,…,这串数字的前100个数(包括第100个数)中,奇数有 个。
北京版数学小升初测试卷附完整答案(历年真题)

北京版数学小升初测试卷一.选择题(共8题,共16分)1.如果向东为正,小东从0跑到+100,小林从0跑到-100,则()。
A.小东跑得远B.小林跑得远C.两人跑得一样远2.全班人数一定,出勤人数和出勤率成()。
A.正比例B.反比例C.不成比例3.一个书包打八折后的价格是60元,这个书包的原价是()元。
A.48B.72C.754.以大树为0点,向南走20米,记作+20米,小明从大树出发,先向北走50米,再向南走40米,此时小明的位置用()米表示。
A.+10B.-10C.905.三个数的比是1∶2∶3,平均数是60,则最大的一个数是()。
A.30B.90C.606.一种食品的包装袋上有净重(300±5)克的标记,这种食品的质量在()克之间是合格的。
A.300~305B.295~300C.295~3057.如果A×2=B÷3,那么A:B=()。
A.2:3B.1:6C.3:28.把一个长8m,宽6m的长方形画在作业本上,选择比例尺比较合适的是()。
A.1:10B.1:100C.1:10000二.判断题(共8题,共16分)1.在一个比例中,两个外项的积减去两个内项的积,结果是0。
()2.一种商品降价30%销售,就是打3折销售。
()3.圆柱的体积是圆锥的体积的3倍,也就是说圆锥的体积是圆柱体积的。
()4.正方形的边长和周长成正比例。
()5.三角形的三个内角的度数比是1:2:3,这是一个锐角三角形。
()6.5∶8和∶可以组成比例。
()7.因为圆周长C=πd所以π与d成反比例。
()8.若7a=5b,则ab成反比例。
()三.填空题(共8题,共14分)1.有五根小棒,分别长1厘米、3厘米、4厘米、5厘米、9厘米,从中选三根小棒围成一个直角三角形,这个直角三角形的面积是()cm2;如果以其中的一条直角边为轴旋转一周,形成立体图形的体积最小是()cm3。
2.小圆的半径是2厘米,大圆的直径是3厘米,大圆和小圆的直径比是(),大圆和小圆的周长比是()。
北京小升初数学真题汇总

北京小升初数学真题汇总1(清华附中考题)甲、乙两种商品, 成本共2200元, 甲商品按20%利润定价, 乙商品按15%的利润定价, 后来都按定价的90%打折出售, 结果仍获利131元, 甲商品的成本是元。
2(101中学考题)100千克刚采下的鲜蘑菇含水量为99%, 稍微晾晒后, 含水量下降到98%, 那么这100千克的蘑菇现在还有多少千克呢?3(实验中学考题)有两桶水: 一桶8升, 一桶13升, 往两个桶中加进同样多的水后, 两桶中水量之比是5: 7, 那么往每个桶中加进去的水量是升。
4(三帆中学考题)有甲、乙两堆煤, 如果从甲堆运12吨给乙堆, 那么两堆煤就一样重。
如果从乙堆运12吨给甲堆, 那么甲堆煤就是乙堆煤的2倍。
这两堆煤共重()吨。
5(人大附中考题)一堆围棋子黑白两种颜色, 拿走15枚白棋子后, 黑子与白子的个数之比为2: 1;再拿走45枚黑棋子后, 黑子与白子的个数比为1: 5, 开始时黑棋子, 白棋子各有多少枚?预测1某中学, 上年度高中男、女生共290人。
这一年度高中男生增加4%, 女生增加5%, 共增加13人。
本年度该校有男、女生各多少人?预测2袋子里红球与白球数量之比是19: 13。
放入若干只红球后, 红球与白球数量之比变为5: 3;再放入若干只白球后, 红球与白球数量之比变为13: 11。
已知放入的红球比白球少80只, 那么原先袋子里共有多少只球?北京名校小升初考试数学真题2 (07清华附中考题)大货车和小轿车从同一地点出发沿同一公路行驶, 大货车先走1.5小时, 小轿车出发后4小时后追上了大货车。
如果小轿车每小时多行5千米, 那么出发后3小时就追上了大货车。
问: 小轿车实际上每小时行多少千米?3 (08年清华附中考题)已知甲车速度为每小时90千米, 乙车速度为每小时60千米, 甲乙两车分别从A,B两地同时出发相向而行, 在途径C地时乙车比甲车早到10分钟;第二天甲乙分别从B,A两地出发同时返回原来出发地, 在途径C地时甲车比乙车早到1个半小时, 那么AB距离时多少?4 (08年十一中学考题)甲、乙、丙三人步行的速度分别是: 每分钟甲走90米, 乙走75米, 丙走60米。
北京版数学小升初测试卷附完整答案【历年真题】

北京版数学小升初测试卷一.选择题(共8题,共16分)1.一种食品的包装袋上有净重(300±5)克的标记,这种食品的质量在()克之间是合格的。
A.300~305B.295~300C.295~3052.把一张长20厘米、宽16厘米的长方形纸围成一个圆柱,有两种围法。
第一种是长为底面周长,宽为高;第二种是宽为底面周长,长为高。
这两种围成的圆柱的侧面积相比较()。
A.第一种大B.第二种大C.相等3.如果把10米记作0米,11米记作+1米,那么下面说法错误的是()。
A.7米计作-7米B.+8米表示实际18米C.4米计作-6米4.一个圆锥的底面直径为6cm,高是直径的,圆锥的体积为()平方厘米。
A.141.3B.47.1C.31.45.一个零件的标准质量为(40±0.2)千克,经过检验,一个零件的质量为39.91千克,那么这个零件()。
A.合格B.不合格C.无法判断6.比例尺一定,实际距离扩大到原来的5倍,则图上距离()。
A.缩小到原来的B.扩大到原来的5倍 C.不变7.某商场将一种商品按标价的九折售出,仍可获利10%。
若此商品的标价为33元,那么该商品的进价为()。
A.27元B.29元C.30.2元8.小明写字的个数一定,他写每个字的时间与写字的总时间()。
A.成正比例B.成反比例C.不成比例二.判断题(共8题,共16分)1.一个矩形绕着其中一条边旋转360°,能得到一个圆柱;一个三角形绕着其中一条边旋转360°,也能得到一个圆锥。
()2.圆的周长与圆的直径成反比例。
()3.一张长方形铁皮分别横着、竖着卷成两个圆柱,把它们竖放在桌面上,它们的容积完全相同。
()4.2,4,5,x这四个数能组成比例,x只能是10。
()5.六(2)班学生的出席人数与缺席人数成反比例。
()6.把一个圆形花园按1:100的比例尺画在图纸上,图纸上的花园面积与实际花园面积的比也是1:100。
()7.在一幅比例尺是1∶10000的地图上,2厘米表示200厘米。
北京市师达中学历年小升初考试数学真题(含19套)

11、12÷( )=0.75=( ):80=( )%12、12 和 30 的最大公约数是(
),最小公倍数是(
)。
3
13、 的分子加上 6,要使原分数的大小不变,分母加上( )。
8
14、4x+8 错写成 4(x+8),结果比原来多(
)。
15.若 5:X=3Y,那么 X 和 Y 成( )比例,填“正”或“反”或“不成”
16、图中,正方形的面积为 2,空白部分的面积为( )。
17、右图中甲部分的周长与乙部分的周长(
)(填“相等”或“甲的周长大”或“乙的周长大”)
11
18、已知一组分数 、
21231 2 3 4
、、、 、、、 、、
、L
L
7
。 是此组分数的第(
12 2 33 34 4 4 4
50
115 个分数是( )。
2 ×5÷ 2 ×5=
5
5
3 ÷ 1 +0.75×8= 46
(1)7.25-3 3 +3.75-6 4
7
7
(2) 2 +(2-2 4 × 10 )÷1 1
5
5 21
9
(3)( 1 + 5 ×1 2 )÷【(4-2 2 )×3】
37 5
3
(4)【2 1 +(5.4-3 2 )×1 2 】÷3
3
3
3
26.列式计算:(每题 4 分,按照要求计算) (1)0.6 与 2.25 的积却除 3.2 与 1.85 的差,商是多少? 方程)
)。 A.120° B.150° C.300°
D.330°
9.下列哪个正方体的展开图不可能如图所示(
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市某重点中学小升初数学真题2
一、填空。
(每小题4分,共36分。
)
4.6时=()时()分()升()毫升=7.08升
②设A、B为自然数,并且满足A
11+
B
3=
17
33,那么A=(),B=
()。
③一张正方形纸片的边长是20厘米,利用这张正方形纸剪一个最大的圆,这个圆的周长是()厘米,面积是()平方厘米。
(π=3.14)
④a和b互为倒数c和d互为倒数,用这四个数组成一个比例式:()∶()=()∶()
⑤某专卖店同时出售了两件服装,售价都是600元。
其中一件是时令服装,可盈利20%,另一件是过时服装,要亏损20%。
就这两件服装而言,该店()(填“赚”或“赔”)了()元。
⑥把一个长5厘米,宽和高都是3厘米的长方体木块截成两块,其中一块是棱长为3厘米的正方体,则另一块的体积是()立方厘米。
⑦长方形的长和宽分别是a分米、b分米(a、b是不同的自然数),如果长方形的周长是200 分米,那么长方形的面积最大是()平方分米,最小是()平方分米。
⑧从一个长10厘米,宽6厘米的长方形的边上剪去一个长4厘米,宽3厘米的小长方形(如下面两图都是符合要求的剪法,阴影为剪去的小长方形),剩下图形的周长可能是()厘米。
⑨每次从3、4、5、10、12、21中任取两个数,一个作分子,一个作分母,可以组成很多不同的分数,其中最简真分数有()个。
二、判断,正确的画“√”,错误的画“╳”。
(每小题4分,共12分。
)
学校修建了一块长方形草坪,在比例尺是
1
500的校园平面图上量得草坪的长是
10厘米,宽是8厘米。
计算这块草坪的实际面积是多少平方米列式是:10×8÷1
500÷10000 ()
②一个等腰三角形的两条边长度分别为2厘米和4.5厘米,则这个三角形的周长是11厘米。
()③小明和小丽同在六一班,全班同学的平均身高是1.55米,小丽身高1.58米,由此可看出小丽比小明高。
()三、选择,将正确答案的字母填入括号内。
(每小题4分,共16分。
)
①下面算式中得数最大的是()。
A 17
23×(
4
3+
3
4) B
17
23÷(
4
3+
3
4)
C 1723 ×(43 - 34 )
D 1723 ÷(43 - 3
4 )
②一个圆柱体的侧面展开图正好是个正方形,这个圆柱的高与底面直径的简整数比是( )。
(π取3.14)
A 1:1
B 157:50
C 50:157
③还有10天就要到新年了,米老鼠想要把自己的房子再装修得漂亮一些。
有四个装修队,甲队单独承包10天完成,乙队单独承包12天完成,丙队单独承包15天完成,丁队单 独 承 包20 天 完成。
如果要在一个星 期 内 完 成 装 修,可 以 选 ( )两个队合作来承包这项工程。
A 甲和乙 B 甲和丙 C 甲和丁 D 乙和丙 E 乙和丁 F 丙和丁
④某地出租车行S 千米收费3S 元。
甲、乙、丙三人约定:由甲在A 地租一辆出租车,途中乙在B 地上车,丙在其后的C 地上车,三人同时在D 地下车。
已知AB=BC=CD=10千米,出租车按规定收费90元,那么这笔车费由甲、乙、丙三人按乘车的路程合理分摊,顺次应付( )元。
A 40,30,20 B 50,30,10 C 45,30,15 D 55,25,10
四、直接写出下面各题的答案。
(每小题5分,共20分。
)
①甲乙两地相距665千米,客车和货车分别从两地同时出发,7小时后相遇。
货
车速 度 是 客 车 的109
,客车每小时行( )千米。
②7、8、9、10、11、12、13这七个数的最大公约数是( ),最小公倍数是( )。
③有若干克浓度为30%的消毒液,加入一定数量的水后稀释为浓度24%的消毒液。
如果再加入相同数量的水,消毒液的浓度将变为( )%。
④一项工程,如果由甲、乙两队合作需要30天完成。
实际先由甲队单独做24天后,乙队加入,两队又合作了14天,这时甲队调走,乙队继续做10天才完成任务。
如果由甲队单独完成这项工程需要( )天。
五、解答下面各题。
(每小题8分,共16分。
)
一根竹竿,小明从左端量到3米处做一个 记 号A ,再从右端量到3米处做一个记号B 。
这时,他发现A 、B 之间的长度恰好是全长的20%,这根竹竿长度可能是多少米?
一艘货船的载重量为260吨,容积为1000立方 米。
现在要利用这艘货船装运甲、乙两种货物, 甲货物每吨体积8立方米,乙货物每吨体积2立 方米。
要使这艘船的载重量与容积都能得到充分 利用,两种货物各应装多少吨?
题型题号答案评分标准
一填空①4;36 7;80 小题,填对一空得1分。
第②、③、
⑤、⑦小题,每题填对一空得2分。
第
④、⑥、⑨小题,每题填对得4分。
第
⑧小题为开放题,三个答案全部填对
得4分,否则每填对一个答案得1分。
②2;1
③62.8;314
④ a : c = d : b
(还有不同写法,只要满足a和b
同为比例的内项或同为比例的外
项即可。
)
⑤赔; 50
⑥18
⑦2499 ; 99
⑧32 或 38 或 40
⑨8
二判断①╳每小题判断正确得4分。
②√
③╳
三选择① A 第①、②、④小题,每题选择正确得
4分。
第③小题为开放题,共有四
个答案,每选对一个答案得1分。
② B
③A或B或C或D
④ D
四直接写答案①50 第①、③、④小题,每题填对得5分。
第②小题,第一空填对得2分,第二
空填对得3分。
② 1 ;360360
③20
④70
五解答下面各①(3 + 3)÷(1 - 20%)= 7.5(米)
或(3 + 3)÷(1 + 20%)= 5(米)
本题为开放题,共两个答案,全部正
确得8分。
只做出一个答案得4分。
每
个答案,若列综合算式,列式正确计
算错误得2分;若分步列式,每做对
一步得1分。
单位名称、答写错或未
写不扣分。
题②算术法:(1000 - 2×260)÷(8
- 2) = 80(吨)····甲260 -
80=180(吨)····乙或(260
- 1000 ×1
8
)÷(
1
2
-
1
8
)÷2 =
180(吨)····乙260 - 180=80(吨)····甲
代数法:设甲种货物有Χ吨。
8Χ+ 2×(260-Χ)=1000或设甲
种货物有Χ立方米。
1
8
Χ+
1
2
×
(1000-Χ)= 260本题解法较多,仅给出四种方法,供参考。
完全正确得8分。
用算术方法解答,若分步列式,每做对一步得1分;若列综合算式,列式正确得4分。
用代数方法解答,能正确设未知数得1分;能正确列方程得3分。
单位名称、答写错或未写不扣分。