PPT模板(高中数学)
合集下载
人教版高中数学必修第一册5.4.1正弦函数、余弦函数的图象 (课件)

1. 通过做正弦、余弦函
数、余弦函数图象的步骤,掌握“五点法”画 数的图象,培养直观想象
出正弦函数、余弦函数的图象的方法.(重点) 素养.
2.正、余弦函数图象的简单应用.(难点)
2.借助图象的综合应用,
3.正、余弦函数图象的区别与联系.(易混点) 提升数学运算素养.
栏目导航
自
主PPT模板:/moban/ PPT背景:/beijing/ PPT下载:/xiazai/ 资料下载:/ziliao/ 试卷下载:/shiti/ PPT论坛:
化学课件:/kejian/huaxue/ 生物课件:/kejian/she ngwu/
地理课件:/kejian/dili/
历史课件:/kejian/lish i/
y=sin
x(x∈R)的图象平移得到的原
因是什么?
语文课件:/kejian/yuw en/ 数学课件:/kejian/shuxue/
英语课件:/kejian/ying yu/ 美术课件:/kejian/me ishu/
科学课件:/kejian/kexue/ 物理课件:/kejian/wul i/
PPT教程: /powerpoint/ 范文下载:/fanwen/ 教案下载:/jiaoan/ PPT课件:/kejian/ 数学课件:/kejian/shu xue/ 美术课件:/kejian/me ishu/ 物理课件:/kejian/wul i/ 生物课件:/kejian/she ngwu/ 历史课件:/kejian/lish i/
1.了解由单位圆和正、余弦函数定义画正弦函 PPT下载:/xiazai/ 资料下载:/ziliao/ 试卷下载:/shiti/ PPT论坛: 语文课件:/kejian/yuw en/ 英语课件:/kejian/ying yu/ 科学课件:/kejian/kexu e/ 化学课件:/kejian/huaxue/ 地理课件:/kejian/dili/
高中数学ppt课件全套

多面体
多面体由多个平面多 边形围成,具有顶点 对称的特点,常见的 多面体有四面体、六 面体等。
空间几何体的表面积和体积
总结词
掌握各类空间几何体的表 面积和体积计算公式,能 够进行相关计算。
球体的表面积公式
$4pi r^{2}$,其中$r$为 球半径。
球体的体积公式
$frac{4}{3}pi r^{3}$,其 中$r$为球半径。
掌握集合的基本运算规则
详细描述
介绍集合的运算,包括并集、交集、差集等,以及这些运算的性质和规则。
逻辑关系与推理
总结词
理解逻辑关系和推理的基本概念
详细描述
介绍逻辑关系和推理的概念,包括命题、条件语句、推理规则等,以及如何运用逻辑关系和推理解决实际问题。
02
函数与极限
函数的基本性质
函数的定义域和值域
高中数学PPT课件全套
• 集合与逻辑 • 函数与极限 • 三角函数与三角恒等变换 • 数列与数学归纳法 • 解析几何初步 • 立体几何初步
01
集合与逻辑
集合的基本概念
总结词
理解集合的基本定义和性质
详细描述
介绍集合的基本概念,包括元素、子集、并集、交集等,以及集合的表示方法 。
集合的运算
总结词
01
02
03
数列的定义
数列是一种按照一定顺序 排列的数集。它可以是无 限的,也可以是有限的。
数列的项
数列中的每一个数被称为 一项。
数列的项数
数列中的数的个数称为项 数。
等差数列与等比数列
1 2
等差数列的定义
如果一个数列从第二项起,后一项与前一项的差 等于同一个常数,则这个数列被称为等差数列。
人教版高中数学必修二直线的两点式方程ppt模板

(2)若 a=3b=0,则所求直线过原点,可设方程为 y=kx. 1 ∵该直线过点 P(2,-1),∴-1=2k,k=-2. 1 故所求直线方程为 y=-2x. 1 综上所述,所求直线的方程为 x+3y+1=0 或 y=-2x.
方法指导
应用截距式求直线方程,一定要注意讨论截距是否为零.
已知直线 l 经过点 E(1,2), 且与两坐标轴 的正半轴围成的三角形的面积是 4,求直线 l 的方程.
已知△ABC 的顶点是 A(-1, -1), B(3,1), C(1,6), E,F 分别为 AC,BC 中点. (1)求点 E,F 的坐标; (2)求直线 EF 的方程. 【思路启迪】 利用中点坐标公式求点 E,F 的坐标,利用 两点式求直线 EF 的方程.
【解】 (1)设点 E(x1,y1),F(x2,y2),∵E,F 分别为 AC, - 1+ 1 -1+6 5 3+1 BC 的中点,∴x1= 2 =0,y1= 2 =2,x2= 2 =2, 1+6 7 5 7 y2= = ,∴E(0, ),F(2, ). 2 2 2 2 5 7 (2)因为点 E(0, ),F(2, ),由两点式方程,可得直线 EF 2 2 5 y-2 x-0 的方程为7 5= ,即 x-2y+5=0. 2-0 2- 2
1.直线的两点式方程 经过两点 P1(x1,y1),P2(x2,y2)(x1≠x2,y1≠y2)的直线方程
为
y-y1 x-x1 = y2-y1 x2-x1
,我们把它叫做直线的两点式方程 ,简称两
点式. 问题探究 1:如果直线 l 经过两点 P1(x1,y1),P2(x2,y2),则 y-y1 x-x1 直线 l 的方程一定可以写成 = 这种形式吗?=1 a b ,我们把它叫做直线的
人教版高中数学必修二3.2.1直线的两点式方程ppt模板

1.已知直线l过点A(2,1)且与直线y-1=4x-3垂直,求直线l的方程.
解:方程 y-1=4x-3 可化为
3 y-1=4x-4,
由点斜式方程知其斜率 k=4. 又∵l 与直线 y-1=4x-3 垂直, 1 ∴直线 l 的斜率为-4.又由 l 过点 A(2,1), 1 ∴直线 l 的方程为 y-1=- (x-2), 4 即 x+4y-6=0.
利用平行与垂直求参数的取值范围 已知直线l1:y=k1x+b1与直线l2:y=k2x+b2 (1)若l1∥l2,则k1=k2,此时两直线与y轴的交点不同,即b1≠b2;反之k1=k2且b1≠b2 时,l1∥l2.所以有l1∥l2⇔k1=k2且b1≠b2.
(2) 若 l1⊥l2 ,则 k1·k2 =- 1 ;反之 k1·k2 =- 1 时, l1⊥l2 .所以有 l1⊥l2⇔k1·k2 =-
1.
ቤተ መጻሕፍቲ ባይዱ
特别提醒:若已知含参数的两条直线平行或垂直,求参数的值时,要注意讨论斜
若l与直线y=-2x+5垂直,求其方程.
位置关系 【思路点拨】 已知直线的斜率 ――→ 待定系 直线l的斜率 → 点斜式方程 或 已知直线的斜率 ――→ 数法 纵截距 → 斜截式方程
解:(1)(方法一)∵l与y=-2x+5平行,
∴kl=-2,由直线的点斜式方程知y+3=-2(x-2),即2x+y-1=0. (方法二)已知直线方程为y=-2x+5, 而l与其平行,∴l的方程设为y=-2x+b, 又过点(2,-3),∴b=1,
+b中,常数k是直线的斜率,常数b是直线在y轴上的截距,一次函数表示直线,但直 线的方程不一定能写成一次函数形式.
2.直线l的截距
(1)直线在y轴上的截距:直线与y轴的交点(0,b)的____________. 纵坐标 b (2)直线在 x轴上的截距:直线与x轴的交点(a,0)的 . 横坐标a
高中数学第二章空间向量与立体几何1从平面向量到空间向量ppt课件

→ —→ (2)〈AB,C1A1〉; 解答 〈A→B,C—1→A1〉=π-〈A→B,A—1→C1〉=π-π4=34π.
→ —→ (3)〈AB,A1D1〉.
解答
〈A→B,A—1→D1〉=〈A→B,A→D〉=π2.
引申探求 →→
在本例中,求〈AB1,DA1〉. 解答
如图,衔接B1C,那么B1C∥A1D, →→
梳理
间向量的夹角
(1)文字表达:a,b是空间中两个非零向量,过空间恣意一点O,作
→ OA
=a,O→B=b,那么∠AOB 叫作向量a与向量b的夹角,记作〈a,b〉 .
(2)图形表示:
角度
表示
〈a,b〉=__0_
〈a,b〉是_锐__角__
〈a,b〉是_直__角__ 〈a,b〉是_钝__角__〈a,b〉 Nhomakorabea_π__
第二章 空间向量与立体几何
§1 从平面向量到空间向量
学习目的 1.了解空间向量的概念. 2.了解空间向量的表示法,了解自在向量的概 念. 3.了解空间向量的夹角. 4.了解直线的方向向量与平面的法向量的概念.
内容索引
问题导学 题型探求 当堂训练
问题导学
知识点一 空间向量的概念
思索1
类比平面向量的概念,给出空间向量的概念. 答案 在空间中,把具有大小和方向的量叫作空间向量.
答案 解析
研讨长方体的模型可知,一切顶点两两相连得到的线段中,长度为1 的线段只需4条,故模为1的向量有8个.
12345
5.在直三棱柱ABC-A1B1C1中,以下向量可以作为平面ABC法向量的 是②__③____.(填序号)答案
No Image
12345
规律与方法
在空间中,一个向量成为某直线的方向向量的条件包含两个方面:一是 该向量为非零向量;二是该向量与直线平行或重合.二者缺一不可. 给定空间中恣意一点A和非零向量a,就可以确定独一一条过点A且平行 于向量a的直线.
高中数学课件-华东交通大学概况ppt模板

学科建设
学校学科门类齐全,涵盖工、经、管、文、理、法、教育、 艺术等8大学科门类。学科建设突出了交通特色,“交通运输工程” 的整体优势,其影响力在推动行业、地区经济发展和科技进步方 面日益凸显。截至2013年,有2个一级学科博士点、6个二级学科 博士点;17个一级学科硕士点、81个二级学科硕士点;具有工程 硕士(含12个专业领域)、工商管理硕士、应用统计硕士、会计 硕士等4个专业学位研究生招生类别。有省级重点学科13个,省级 品牌专业17个,省级特色专业10个;省示范性一级学科硕士点2 个,省一级重点学科6个,省高校高水平学科2个。
三. 学术研究
科研设施
截至2013年,学校拥有教育部工程研究中心1个,教育部 重点实验室1个,国家级人才培养模式创新试验区1个,省级 2011协同创新中心1个,省级重点实验室和工程技术研究中心 5个,省级人文社会科学重点研究基地2个,省级产学研示范基 地2个,是国家级大学生实践基地和全国CAD应用工程培训基 地、中国物流学会产学研基地、江西省知识产权培训中心, “铁路环境振动与噪声工程中心”为博士后科研工作站。
天
远实全 航现天
道
。
自 己
下 的
酬
的莘 理莘
勤
想学
子
,
--
现 任 校 长 雷 晓 燕
二. 教 务 教 学
院系设置
学校共有17个学院,1个 独立设置的学院。62个本科 专业,4个国家特色专业,3 个国家级卓越工程师试点专 业。
土木建筑 学院
信息工程 学院
理学院
国防生学 院 马克思主 义学院 继续教育 学院
机电工程 学院
软件学院
外国语学 院 经济管理 学院 学国际学 院 职业技术 学院
《函数的单调性》示范公开课教学PPT课件【高中数学人教版】

(2)它在定义域I上的单调性是怎样的?证明你的结论.
答案:图象略.
(1)(-∞,0)∪(0,+∞).
(2)当k>0时,y= k 在区间(-∞,0)和(0,+∞)上单调递减; x
当k<0时,y= k 在区间(-∞,0)和(0,+∞)上单调递增. x
目标检测
44.画出反比例函数y=
k x
的图象.
(1)这个函数的定义域I是什么?
新知探究
追问5 函数f(x)=|x|,f(x)=-x2各有怎样的单调性?
f(x)=|x|在区间(-∞,0]上单调递减, 在区间[0,+∞)上单调递增; f(x)=-x2在区间(-∞,0]上单调递增, 在区间[0,+∞)上是单调递减.
新知探究
问题4 如何用符号语言准确刻画函数值随自变量的增大而增大 (减小)呢?
证明:由x1,x2∈(1,+∞),得x1>1,x2>1,
所以x1x2>1,x1x2-1>0.
由x1<x2,得x1-x2<0,
于是(x1-x2)(
x1x2 1 x1 x2
)<0,即y1<y2.
所以,函数y=x+ 1 在区间(1,+∞)上的单调递增. x
新知探究
追问 你能用单调性定义探究y=x+ 1 在整个定义域内的单调性吗? x
图1
图2
图3
图1的特点是:从左至右始终保持上升;
图2与图3的特点是:从左至右有升也有降.
新知探究
★资源名称: 【数学探究】函数值的变化情况 ★使用说明:本资源通过操作展示动画,使学生观察函数值随着自变量值的变化而变化的情 况.通过交互式动画的方式,运用了本资源,可以吸引学生的学习兴趣,增加教学效果,提高教 学效率. 注:此图片为动画缩略图,如需使用资源,请于资源库调用
1.3 三角函数的诱导公式 课件(共19张PPT)高中数学人教A版必修四

2k (k Z)、 、 的三角函数值,等于
的同名函数值,前面加上一个把 看成锐角时原函
数值的符号。
14
理论迁移
例1 求下列各三角函数的值:
(1)cos225
(2)sin 11
3
(3)sin(-16 )
3
(4)cos(-2040 )
15
利用诱导公式一~四,可以把任意角的三角函数转化为锐角三角函数,一般可按下面 步骤进行:
任意负角的 用公式一 任意正角的 三角函数 或公式三 三角函数
用公式一
锐角的三角 用公式二 0~2π的角
函数
或公式四 的三角函数
这是一种化归与转化的数学思想.
16
课堂小结: 1.小结使用诱导公式化简任意角的三 角函数为锐角的步骤.
2.体会数形结合、对称、化归的思想. 3.“学会”学习的习惯.
17
作业布置:
公式二:
sin( ) sin cos( ) cos tan( ) tan
10
问题4:公式中的角 仅是锐角 吗?
11
知识探究(二)
对于任意给定的一个角α,-α的终边与α的终边
有什么关系?
那么它们之间的三角函
数值有什么关系?
y
α的终边
P(x,y)
公式三:
o
Q(x,-y)
x
sin( ) sin
1
(一)回顾旧知
问题1: (1)我们是怎样利用单位圆定义任意角的三角函数? (2) 终边相同的角的三角函数之间有什么关系?
2
温故而知新
1、任意角的三角函数的定义
sin y
y
α的终边
cos x tan y (x 0)
x