构造函数解与导数有关的题目

合集下载

构造函数法解决导数问题(原卷版)--2024新高考数学导数微专题训练

构造函数法解决导数问题(原卷版)--2024新高考数学导数微专题训练

专题26构造函数法解决导数问题一、多选题1.函数()ln 1xx kf x e x+=--在()0,∞+上有唯一零点0x ,则()A .001x x e=B .0112x <<C .1k =D .1k >2.已知函数()y f x =在R 上可导且()01f =,其导函数()f x '满足[](1)()()0x f x f x '+->,对于函数()()xf xg x e =,下列结论正确的是()A .函数()g x 在(),1-∞-上为增函数B .1x =-是函数()g x 的极小值点C .函数()g x 必有2个零点D .2()(2)e ef e e f >3.设定义在R 上的函数()f x 满足()()2f x f x x -+=,且当0x ≤时,()f x x '<.己知存在()()()220111122x x f x x f x x ⎧⎫∈-≥---⎨⎬⎩⎭,且0x 为函数()x g x e a =--(,a R e ∈为自然对数的底数)的一个零点,则实数a 的取值可能是()A .12B .2C .2e D .4.已知函数()f x 的导函数为()f x ',若()()()2f x xf x f x x '≤<-对(0,)x ∈+∞恒成立,则下列不等式中,一定成立的是()A .(2)(1)2f f >B .(2)(1)2f f <C .(2)1(1)42f f <+D .(2)1(1)42f f +<5.已知函数()f x 的定义域为()0,∞+,导函数为()'f x ,()()'ln xf x f x x x -=,且11f e e⎛⎫=⎪⎝⎭,则()A .1'0f e ⎛⎫= ⎪⎝⎭B .()f x 在1=x e处取得极大值C .()011f <<D .()f x 在()0,∞+单调递增6.若存在实常数k 和b ,使得函数()F x 和()G x 对其公共定义域上的任意实数x 都满足:()F x kx b≥+和()G x kx b ≤+恒成立,则称此直线y kx b =+为()F x 和()G x 的“隔离直线”,已知函数()()2f x x R x =∈,()()10g x x x=<,()2ln h x e x =(e 为自然对数的底数),则()A .()()()m x f x g x =-在x ⎛⎫∈ ⎪⎝⎭内单调递增;B .()f x 和()g x 之间存在“隔离直线”,且b 的最小值为4-;C .()f x 和()g x 之间存在“隔离直线”,且k 的取值范围是[]4,1-;D .()f x 和()h x 之间存在唯一的“隔离直线”y e =-.7.已知定义在0,2π⎛⎫ ⎪⎝⎭上的函数()f x ,()'f x 是()f x 的导函数,且恒有cos ()sin ()0xf x xf x '+<成立,则()A .64f ππ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭B 63f f ππ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭C .63f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭D 64f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭二、单选题8.已知数列{}n a 满足11a =,()1ln 1n n a a +=+.若11n n a a λ++≥恒成立,则实数λ的最大值是()(选项中e 为自然对数的底数,大约为2.71828)A .21e -B .2e 1-C D .e9.已知函数[](),1,2,xae f x x x=∈且[]()()12121212,1,2,1f x f x x x x x x x -∀∈≠<-,恒成立,则实数a 的取值范围是()A .24,e ⎛⎤-∞ ⎥⎝⎦B .24,e ⎡⎫+∞⎪⎢⎣⎭C .(],0-∞D .[)0+,∞10.已知()21ln (0)2f x a x x a =+>,若对任意两个不等的正实数1x ,2x ,都有()()12122f x f x x x ->-恒成立,则a 的取值范围是()A .(]0,1B .()1,+∞C .()0,1D .[)1,+∞11.已知()f x 是定义在()(),00,-∞⋃+∞上的奇函数,且0x >时()()20xf x f x '+>,又()10f -=,则()0f x <的解集为()A .()(),11,-∞-+∞UB .()()1,00,1-UC .()()1,01,-⋃+∞D .()(),10,1-∞-⋃12.已知偶函数()y f x =对于任意的[0,)2x π∈满足'()cos ()sin 0f x x f x x +>(其中'()f x 是函数()f x 的导函数),则下列不等式中成立的是()A ()()34f ππ-<B .()(34f ππ-<-C .(0)(4f π>-D .()(63f ππ<13.已知奇函数() f x 的导函数为()f x ',当0x ≠时,()()0xf x f x '+>,若()()11,,1a f b ef e c f ee ⎛⎫==--= ⎪⎝⎭,则,,a b c 的大小关系正确的是()A .a b c <<B .b c a <<C .a cb <<D .c a b<<14.设定义在R 上的函数()f x 的导函数为()'f x ,若()()'2f x f x +<,()02021f =,则不等式()22019x x e f x e >+(其中e 为自然对数的底数)的解集为()A .()0+∞,B .()2019+∞,C .()0-∞,D .()()02019-∞+∞ ,,15.若曲线21:C y x =与曲线2:(0)xe C y a a=>存在公切线,则实数a 的取值范围()A .(0,1)B .21,4e ⎛⎤ ⎥⎝⎦C .2,24e ⎡⎤⎢⎥⎣⎦D .2,4e ⎡⎫+∞⎪⎢⎣⎭16.丹麦数学家琴生(Jensen )是19世纪对数学分析做出卓越贡献的巨人,特别是在函数的凹凸性与不等式方面留下了很多宝贵的成果.设函数()f x 在(),a b 上的导函数为()f x ',()f x '在(),a b 上的导函数为()f x '',若在(),a b 上()0f x ''<恒成立,则称函数()f x 在(),a b 上为“凸函数”.已知()2ln xf x e x x px =--在()1,4上为“凸函数”,则实数p 的取值范围是()A .1,22e ⎛⎤-∞- ⎥⎝⎦B .[)1,e -+∞C .41,28e ⎡⎫-+∞⎪⎢⎣⎭D .(),e +∞17.已知函数()f x 的定义域为R ,()f x '为()f x 的导函数.若()()1f x f x '-<,且()01f =,则不等式()12xf x e +≥的解集为()A .(],0-∞B .[)1,-+∞C .[)0,+∞D .(],1-∞-18.函数()y f x =,x ∈R ,()12021f =,对任意的x ∈R ,都有()2'30f x x ->成立,则不等式()32020f x x <+的解集为()A .(),1-∞-B .()1,1-C .()1,+∞D .(),1-∞19.已知函数()(1)f x lnx a x =-+,若不等式2()1f x ax b ≤+-对于任意的非负实数a 都成立,求实数b 的取值范围为()A .(-∞,0]B .(-∞,1]C .[0,)+∞D .[1,)+∞20.定义在R 上的偶函数f (x )的导函数为f ′(x ),若∀x ∈R ,都有2f (x )+xf ′(x )<2,则使x 2f (x )-f (1)<x 2-1成立的实数x 的取值范围是()A .{x |x ≠±1}B .(-1,0)∪(0,1)C .(-1,1)D .(-∞,-1)∪(1,+∞)21.设函数()f x 在R 上存在导数()f x ',对任意的R x ∈,有()()2cos f x f x x +-=,且在[)0,+∞上有()sin f x x '>-,则不等式()cos sin 2f x f x x x π⎛⎫--≥-⎪⎝⎭的解集是()A .,4π⎛⎤-∞ ⎥⎝⎦B .,4π⎡⎫+∞⎪⎢⎣⎭C .,6π⎛⎤-∞ ⎥⎝⎦D .,6π⎡⎫+∞⎪⎢⎣⎭22.设()'f x 是函数()f x 的导函数,若对任意实数x ,都有[]()()()0x f x f x f x '-+>,且(1)2020f e =,则不等式()20200x xf x e -≥的解集为()A .[1,)+∞B .(,1]-∞C .(0,2020]D .(1,2020]23.已知()f x 是可导的函数,且()()f x f x '<,对于x ∈R 恒成立,则下列不等关系正确的是()A .()()10f ef >,()()202020200f ef <B .()()10f ef >,()()211f e f >-C .()()10f ef <,()()211f e f <-D .()()10f ef >,()()202020200f e f >24.已知函数()f x 的导函数为()'f x ,e 为自然对数的底数,对x R ∀∈均有()()()'f x xf x xf x +>成立,且()22=f e ,则不等式()2xxf x e >的解集是()A .(),e -∞B .(),e +∞C .(),2-∞D .()2,+¥25.函数()f x 是定义在区间()0,∞+上的可导函数,其导函数()f x ',且满足()()20xf x f x '+>,则不等式()()()202020202222020x f x f x ++<+的解集为()A .{}2018x x <-B .{}20202018x x -<<-C .{}2018x x >-D .{}20200x x -<<26.已知函数f (x )的定义域为R ,f (-1)=3,对任意x ∈R ,f ′(x )>3,则f (x )>3x +6的解集为()A .(-1,+∞)B .(-1,1)C .(-∞,-1)D .(-∞,+∞)27.奇函数()f x 定义域为()(),00,ππ-⋃,其导函数是()'f x .当0x π<<时,有()()'sin cos 0f x x f x x -<,则关于x 的不等式()sin 4f x x π⎛⎫< ⎪⎝⎭的解集为()A .ππ4()B .ππππ44(,,)-⋃C .ππ0044-⋃()(,)D .ππ0π44-⋃(,)(,)28.若对任意的1x ,[)22,0x ∈-,12x x <,122112x x x e x e a x x -<-恒成立,则a 的最小值为()A .23e -B .22e -C .21e -D .1e-29.函数()f x 是定义在R 上的奇函数,其导函数记为()f x ',当0x >时,()()f x f x x'<恒成立,若()20f =,则不等式()01f x x >-的解集为()A .()()2,01,2-UB .()()2,00,1-⋃C .()()1,2,2⋃-∞-D .()()2,02,-+∞ 30.已知a 、b R ∈,函数()()3210f x ax bx x a =+++<恰有两个零点,则+a b 的取值范围()A .(),0-∞B .(),1-∞-C .1,4⎛⎫-∞-⎪⎝⎭D .1,4⎛⎫-∞ ⎪⎝⎭31.定义在R 上的函数()f x 满足()()2f x f x '+<,则下列不等式一定成立的是()A .(3)2(2)2ef f e +<+B .(3)2(2)2ef f e +>+C .(3)2(2)2f e ef +<+D .(3)2(2)2f e ef +>+32.已知函数()3x f x e ax =+-,其中a R ∈,若对于任意的12,[1,)x x ∈+∞,且12x x <,都有()21x f x ()()1212x f x a x x -<-成立,则a 的取值范围是()A .[3,)+∞B .[2,)+∞C .(,3]-∞D .(,2]-∞33.设()f x 是定义在R 上的偶函数,()f x '为其导函数,()20f =,当0x >时,有()()'>xf x f x 恒成立,则不等式()0xf x <的解集为()A .()2,2-B .()(),20,2-∞-C .()()2,00,2-D .()()2,02,-+∞ 三、解答题34.已知函数()()ln af x x a R x=-∈.(1)讨论()f x 的单调性;(2)若1x ,2x 是方程()2f x =的两个不同实根,证明:1232x x e +>.35.已知函数()()()ln 1,f x a x bx a b R =+-∈在点()()1,1f 处的切线方程为212ln 20x y ++-=.(1)求实数a ,b 的值﹔(2)若函数()2()()12t g x f x x t =+≥,试讨论函数()g x 的零点个数.36.已知实数0a >,函数()22ln f x a x x x=++,()0,10x ∈.(1)讨论函数()f x 的单调性;(2)若1x =是函数()f x 的极值点,曲线()y f x =在点()()11,P x f x 、()()22,Q x f x (12x x <)处的切线分别为1l 、2l ,且1l 、2l 在y 轴上的截距分别为1b 、2b .若12//l l ,求12b b -的取值范围.37.设函数()2ln af x x x=+,()323g x x x =--.(1)讨论函数()f x 的单调性;(2)如果对于任意的12123x x ⎡⎤∈⎢⎥⎣⎦,,,都有()()112x f x g x ≥成立,试求a 的取值范围.38.已知函数()xf x e ax =-,()1lng x x x =+.(1)讨论函数()f x 的单调性;(2)若当0x >时,方程()()f x g x =有实数解,求实数a 的取值范围.39.给出如下两个命题:命题:[0,1]p x ∃∈,1426(5)0x x a a a +⋅-⋅+-=;命题:q 已知函数8()|ln |1a g x x x -=++,且对任意1x ,2(0,1]x ∈,12x x ≠,都有2121()()1g x g x x x -<--.(1)若命题p ⌝为假,求实数a 的取值范围.(2)若命题p q ∧为假,p q ∨为真,求实数a 的取值范围.40.已知函数()212ln 2f x x ax x =-+,a ∈R .(1)讨论()f x 的单调性;(2)若()f x 有两个极值点1x 、()212x x x <,求()()212f x f x -的取值范围.41.已知函数22()(, 2.718)xx a f x a R e e-+=∈= .(1)求()f x 的单调区间.(2)若()f x 在区间21,1a e -⎛⎫+ ⎪⎝⎭上不单调,证明:1111a a a +>-+.42.已知函数1()ln f x a x x x=-+,其中0a >.(1)若()f x 在(2,)+∞上存在极值点,求a 的取值范围;(2)设()10,1x ∈,2(1,)x ∈+∞,若()()21f x f x -存在最大值,记为()M a ,则当1a e e≤+时,()M a 是否存在最大值?若存在,求出其最大值;若不存在,请说明理由43.已知函数()ln 2f x x kx =++.(1)讨论函数()f x 的单调性;(2)若函数()2x e g x x ax =-+,当1k =-且202e a <≤,求证:()()g xf x >.44.已知函数()e xf x x =.(1)求函数()f x 的最小值;(2)若()0,x ∀∈+∞,()32f x x ax x >-++恒成立,求实数a 的取值范围.45.已知函数()f x 满足:①定义为R ;②2()2()9xx f x f x e e+-=+-.(1)求()f x 的解析式;(2)若12,[1,1]x x ∀∈-;均有()()21122(2)61x a x x f x -+-+-成立,求a 的取值范围;(3)设2(),(0)()21,(0)f x xg x x x x >⎧=⎨--+≤⎩,试求方程[()]10g g x -=的解.。

2024年高考数学一轮复习大题专练07导数构造函数证明不等式1

2024年高考数学一轮复习大题专练07导数构造函数证明不等式1

一轮大题专练7—导数(构造函数证明不等式1)1.已知函数()f x alnx x =+. (1)讨论()f x 的单调性;(2)当1a =时,证明:()x xf x e <. 解:(1)()f x alnx x =+,(0,)x ∈+∞. ()1af x x'=+, 0a 时,()0f x '>,函数()f x 在(0,)x ∈+∞上单调递增.0a <时,令()0f x '=,解得0x a =->,函数()f x 在(0,)x a ∈-上单调递减,在(,)a -+∞上单调递增.(2)证明:当1a =时,要证明:()xxf x e <,即证明21xlnx e x x+<, 令()1lnxg x x=+,21()lnx g x x -'=, 令()0g x '>,解得0x e <<;令()0g x '<,解得e x <. ∴函数()g x 在(0,)e 上单调递增,在(,)e +∞上单调递减.x e ∴=时,函数()g x 取得极大值即最大值,g (e )11e=+. 令2()xe h x x =,3(2)()xx e h x x -'=,令()0h x '<,解得02x <<;令()0h x '>,解得2x <. ∴函数()h x 在(0,)e 上单调递减,在(2,)+∞上单调递增.x e ∴=时,函数()h x 取得极小值即最小值,h (2)24e =.221251(1)1044 2.5e e ⋅-+>-->. ()()max min g x h x ∴<,即21xlnx e x x+<,也即()x xf x e <. 2.已知函数()f x x alnx =-.(Ⅰ)求曲线()y f x =在点(1,f (1))处的切线方程; (Ⅱ)求()f x 的单调区间;(Ⅲ)若关于x 的方程0x alnx -=有两个不相等的实数根,记较小的实数根为0x ,求证:0(1)a x a ->.(Ⅰ)解:由()f x x alnx =-,可得()1a f x x'=-, 则f '(1)1a =-,又f (1)1=,所以曲线()y f x =在点(1,f (1))处的切线方程为1(1)(1)y a x -=--, 即(1)y a x a =-+.(Ⅱ)解:()f x x alnx =-的定义域为(0,)+∞,()1a x af x x x-'=-=, 当0a 时,()0f x '>,()f x 在(0,)+∞上单调递增;当0a >时,令()0f x '>,可得x a >,令()0f x '<,可得0x a <<, 所以()f x 在(0,)a 上单调递减,在(,)a +∞上单调递增.(Ⅲ)证明:由(Ⅱ)可知,当0a >时,()0f x x alnx =-=才有两个不相等的实根,且00x >, 则要证0(1)a x a ->,即证011a a x ->,即证0111a x ->, 而000x alnx -=,则000(1x a x lnx =≠,否则方程不成立), 所以即证00011lnx x x ->,化简得0010x lnx -->, 令000()1g x x lnx =--,则000011()1x g x x x -'=-=, 当001x <<时,0()0g x '<,0()g x 单调递减, 当01x >时,0()0g x '>,0()g x 单调递增, 所以0()g x g (1)0=,而01x ≠, 所以0()0g x >,所以0(1)a x a ->,得证.3.已知函数()f x alnx x =+,函数2()x g x e bx =+,(1)记2()()h x f x x =+,试讨论函数()h x 的单调性,并求出函数()h x 的极值点;(2)若已知曲线()y f x =和曲线()y g x =在1x =处的切线都过点(0,1).求证:当0x >时,()()(1)1xf x g x e x +--.解:(1)2()h x alnx x x =++,22()(0)x x ah x x x++'=>, 记2()2(0)x x x a x ϕ=++>,当0a 时,()0h x '>,()h x 在(0,)+∞单调递增,无极值点,当0a <时,△180a =->,()x ϕ有异号的两根10)x =<,20)x =>,x ∴∈,()0x ϕ<,()0h x '<,()h x 在单调递减,x ∈,)+∞,()0x ϕ>,()0h x '>,()h x 在,)+∞单调递减,()h x ∴有极小值点x =; (2)证明:()(0)x af x x x+'=>,()2x g x e bx '=+,f ∴'(1)1a =+,()f x 在1x =处的切线方程为1(1)(1)y a x -=+-,过点(0,1)得:1a =-,g '(1)2e b =+,()g x 在1x =处的切线方程为(2)(1)y e b e b x --=+-,过点(0,1)得:1b =-, ()f x lnx x ∴=-+,2()x g x e x =-,要证:()()(1)1xf x g x e x +--,即证:(1)10x e xlnx e x ----, 即证:1(1)0x e lnx e x x---,构造函数1()(1)x e K x lnx e x x =---,则2(1)(1)()x x e K x x --'=,0x >时,10x e ->,(0,1)x ∴∈时,()0K x '<,()K x 在(0,1)单调递减, (1,)x ∴∈+∞时,()0K x '>,()K x 在(1,)+∞单调递增,()K x K ∴(1)0=,故原不等式成立.4.已知函数()()f x ax lnx a R =+∈在1x =处取得极值.(Ⅰ)若对(0,)x ∀∈+∞,()1f x bx -恒成立,求实数b 的取值范围; (Ⅱ)设()()(2)x g x f x x e =+-,记函数()y g x =在1[4,1]上的最大值为m ,证明:(4)(3)0m m ++<.(Ⅰ)解:()()f x ax lnx a R =+∈,则1()f x a x'=+, 又()f x 在1x =处取得极值,则有f '(1)10a =+=,解得1a =-, 此时1()1f x x'=-,当01x <<时,()0f x '>,则()f x 单调递增, 当1x >时,()0f x '<,则()f x 单调递减, 所以()f x 确实在1x =处取得极值, 故1a =-,设()(1)1h x lnx b x =+--,则()1f x bx -在(0,)+∞上恒成立,即()0h x 在(0,)+∞上恒成立, 因为1()1h x b x'=+-, 当10b -,即1b 时,()0h x >在(0,)+∞上恒成立,不符合题意; 当1b <时,令()0h x '=,解得11x b=-, 当101x b<<-时,()0h x '>,则()h x 单调递增, 当11x b>-时,()0h x '<,则()h x 单调递减, 所以当11x b =-时,()h x 取得最大值111()1(1)2111b h ln ln b b b b-=+-=------, 要使得()0h x 在(0,)+∞上恒成立, 则有(1)20ln b ---,解得21b e --,综上所述,实数b 的取值范围为(-∞,21]e --;(Ⅱ)证明:要证(4)(3)0m m ++<,即证明43m -<<-即可, 因为()()(2)(2)x x g x f x x e lnx x x e =+-=-+-, 则111()1(2)(1)()(1)x x x x x g x e x e e x e x x x x-'=-++-=+-=--, 因为1[4x ∈,1]时,10x -恒成立,设1()x M x e x=-,1[4x ∈,1],则()M x 为单调递增函数,又113205112035()0,()0201153M e M e =-<=->,则存在0113(,)205x ∈,使得0()0M x =,即001x e x =,则当01[,)4x x ∈时,()0M x <,(1)0x -<,则()0g x '>,故()g x 单调递增,当0[x x ∈,1]时,()0M x ,(1)0x -且不同时为0,则()0g x ',故()g x 单调递减,所以()g x 在1[4,1]上的最大值为0000000000()(2)2x x x m g x lnx x x e lnx x x e e ==-+-=-+-,又001x e x =,则00021m lnx x x =-+-,0113(,)205x ∈,设2()1k x lnx x x =-+-,113(,)205x ∈, 则212()10k x x x'=-+>对于113(,)205x ∈恒成立, 故()k x 在113(,)205x ∈上单调递增 故1111114011940()()1420202011202011k x k ln ln >=-+-=+->-, 333103()()1 2.933355535k x k ln ln <=-+-≈-<-,于是43m -<<-, 故(4)(3)0m m ++<.5.已知函数()x f x e x a =--,对于x R ∀∈,()0f x 恒成立. (1)求实数a 的取值范围;(2)证明:当[0,]4x π∈时,cos tan x x x e +.解:(1)由0x e x a --恒成立,得x a e x -对x R ∀∈恒成立, 令()x g x e x =-,()1x g x e '=-, 当0x >,()0g x '>,()g x 单调递增,当0x <,()0g x '<,()g x 单调减,()(0)1min g x g ==, 故所求实数a 的取值范围为(-∞,1]; (2)证明:由(1)得1x e x +.欲证cos tan x x x e +,只需证cos tan 1x x x ++即可, 令()cos tan 1h x x x x =+--,222221sin (sin cos )sin (sin sin 1)()sin 1cos cos cos x x x x x x h x x x x x-+-'=-+-==,令2()sin sin 1F x x x =+-,则易知()F x 在[0,]4π单调递增,且(0)0F <,()04F π>,故存在0(0,)4x π∈,使得0()0F x =;当[0x ∈,0)x 时,()0F x <,()0h x ',()h x 单调递减,当0(,]4x x π∈时,()0F x >,()0h x '>,()h x 单调递增,又(0)0h =,()044h ππ<,()(0)0max h x h ==,故当[0,]4x π∈时,cos tan x x x e +.6.已知函数()x f x e =,()1g x ax =+. (Ⅰ)已知()()f x g x 恒成立,求a 的值;(Ⅱ)若(0,1)x ∈211x x+-<. 解:(1)已知()()f x g x 恒成立,即()()0f x g x -恒成立, 令()()()1x h x f x g x e ax =-=--,则有()x h x e a '=-,当0a 时,则恒有()0h x '>,此时函数()h x 单调递增,并且当x →-∞时,()h x →-∞,不满足题意;0a ∴>,此时令()0h x x lna '=⇒=;()0h x x lna '∴>⇒>;()0h x x lna '<⇒<,即函数()h x 在(,)lna -∞上单调递减,在(,)lna +∞上单调递增,()()1min h x h lna a alna ∴==--,若要满足题意,则需使10a alna --,恒成立, 令F (a )1(0)a alna a =-->,则有F '(a )lna =,由此可得,当01a <<时,F '(a )0<;当1a >时,F '(a )0>.F ∴(a )min F =(1)0=,即得F (a )0, 1a ∴=.(2)令()1((0,1))x G x e x x =--∈,则有()10x G x e '=->恒成立,故可得()G x 在(0,1)上单调递增,即有()(0)0G x G >=恒成立,故有101x x e x e x -->⇔>+在(0,1)上恒成立; 根据题意,要证2111()lnx x f x x-+-<,即证明1111lnx x x x -+-<+,即证2111x lnx x x x x+-++-<+, 即证2110lnx x x-++>, 令21()H x lnx x x x =-++,则有22111()2(1)2H x x x x x x x'=--=--,(0,1)x ∈,10x ∴-<,20x -<,()0H x '∴<在(0,1)上恒成立,即得函数()H x 在(0,1)上单调递减, ()H x H ∴>(1)10=>,由此得证当(0,1)x ∈时,原不等式成立.7.已知函数()(1)f x x lnx =-,()f x '的反函数为()h x (其中()f x '为()f x 的导函数,20.69)ln ≈. (1)判断函数2()()32g x f x x x '=+-+在(0,)+∞上零点的个数;(2)当(0,1)x ∈31x x >--. 解:(1)由题意得22()()3232g x f x x x lnx x x ='+-+=+-+, 则(21)(1)()x x g x x--'=,由()0g x '=得12x =或1x =, 由()0g x '>,得102x <<或1x >, 由()0g x '<,得112x <<, 当x 在(0,)+∞上变化时,()g x ',()g x 变化情况如下表:根据上表知13()2024g x g ln ⎛⎫==-> ⎪⎝⎭极大值,()g x g =极小值(1)0=,121()220416g ln =-<, 根据零点的存在性定理,函数()g x 在1(0,)2上存在唯一零点,又因为g (1)0=,所以根据()g x 的单调性可知,函数2()()32g x f x x x ='+-+在(0,)+∞上零点的个数为2. (2)证明:因为()f x lnx '=,其反函数为()x h x e =, 所以不等式为33(1)1(1)(1)x xx lnx x x x lnx x x e e->--⇔->--, 当(0,1)x ∈时,()0f x '<, 所以()f x 在(0,1)上单调递减,所以()f x f >(1)1=-, 设函数3()(1)x G x x x e =--, 则32()(32)x G x x x x e '=+--,设函数32()32p x x x x =+--,则2()361p x x x '=+-, 所以()p x '在(0,1)上单调递增, 因为(0)p p '⋅'(1)80=-<, 所以存在0(0,1)x ∈,使得0()0p x '=,所以函数()p x 在0(0,)x 上单调递减,在0(x ,1)上单调递增, 当0(0,)x x ∈时,0()(0)2p x p <=-, 当0(x x ∈,1)时,0()0p x <,p (1)0>, 所以存在1(0,1)x ∈,使得1()0G x '=, 所以当1(0,)x x ∈时,()0G x '<, 当1(x x ∈,1)时,()0G x '>,所以函数()G x 在1(0,)x 上单调递减,在1(x ,1)上单调递增, 因为(0)1G =-,G (1)e =-, 所以当(0,1)x ∈时,()(0)1G x G <=-, 所以3(1)(1)x x lnx x x e ->--, 所以3()1()f x x xg x >--.。

构造函数法证明导数不等式的八种方法

构造函数法证明导数不等式的八种方法

构造函数法证明不等式的八种方法一、移项法构造函数【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+-)1ln(111分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数111)1ln()(-+++=x x x g ,从其导数入手即可证明。

【解】1111)(+-=-+='x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-+++=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 ,即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数,故函数)(x g 在),1(+∞-上的最小值为0)0()(min==g x g , ∴当1->x 时,0)0()(=≥g x g ,即0111)1ln(≥-+++x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(111,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ),那么要证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明【例2】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方; 分析:函数)(x f 的图象在函数)(x g 的图象的下方)()(x g x f <⇔不等式问题, 即3232ln 21x x x <+,只需证明在区间),1(∞+上,恒有3232ln 21x x x <+成立,设)()()(x f x g x F -=,),1(+∞∈x ,考虑到061)1(>=F 要证不等式转化变为:当1>x时,)1()(F x F >,这只要证明: )(x g 在区间),1(+∞是增函数即可。

专题一 微重点 导数中的函数构造问题

专题一 微重点 导数中的函数构造问题

微重点3 导数中的函数构造问题导数中的函数构造问题是高考考查的一个热点内容,经常以客观题出现,同构法构造函数也常在解答题中出现,通过已知等式或不等式的结构特征,构造新函数,解决比较大小、解不等式、恒成立等问题.考点一 导数型构造函数考向1 利用f (x )与x 构造例1 (2022·苏州质检)已知函数f (x )满足f (x )=f (-x ),且当x ∈(-∞,0]时,f (x )+xf ′(x )<0成立,若a =20.6·f (20.6),b =ln 2·f (ln 2),c =log 218·f ⎝⎛⎭⎫log 218,则a ,b ,c 的大小关系是( ) A .a >b >cB .c >b >aC .a >c >bD .c >a >b答案 B解析 因为f (x )=f (-x ),所以函数f (x )是偶函数,令g (x )=x ·f (x ),则g (x )是奇函数,g ′(x )=f (x )+x ·f ′(x ),当x ∈(-∞,0]时,f (x )+xf ′(x )<0成立,所以g (x )在x ∈(-∞,0]上单调递减,又g (x )在R 上是连续函数,且是奇函数,所以g (x )在R 上单调递减,则a =g (20.6),b =g (ln 2),c =g ⎝⎛⎭⎫log 218, 因为20.6>1,0<ln 2<1,log 218=-3<0, 所以log 218<0<ln 2<1<20.6, 所以c >b >a .规律方法 (1)出现nf (x )+xf ′(x )的形式,构造函数F (x )=x n f (x );(2)出现xf ′(x )-nf (x )的形式,构造函数F (x )= f (x )x n . 跟踪演练1 已知定义在(0,+∞)上的函数f (x )满足f ′(x )-f (x )x -3>0,且f (1)=0,则不等式f (e x )-3x e x >0的解集为( )A .(0,1)B .(1,+∞)C .(0,+∞)D .(e ,+∞)答案 C解析 设g (x )=f (x )x-3ln x , 则g ′(x )=xf ′(x )-f (x )x 2-3x=xf ′(x )-f (x )-3x x 2. 因为f ′(x )-f (x )x-3>0,x >0, 所以xf ′(x )-f (x )-3x >0,所以g ′(x )>0,即g (x )在(0,+∞)上单调递增.不等式f (e x )-3x e x >0可转化为f (e x )e x -3ln e x >0, 又g (e x)=f (e x )e x -3ln e x , 且g (1)=f (1)1-3ln 1=0, 即g (e x )>g (1),所以e x >1,解得x >0.考向2 利用f (x )与e x 构造例2 (2022·枣庄质检)已知f (x )为定义在R 上的可导函数,f ′(x )为其导函数,且f (x )<f ′(x )恒成立,其中e 是自然对数的底数,则( )A .f (2 022)<e f (2 023)B .e f (2 022)<f (2 023)C .e f (2 022)=f (2 023)D .e f (2 022)>f (2 023)答案 B解析 设函数g (x )=f (x )e x , 可得g ′(x )=f ′(x )-f (x )e x, 由f (x )<f ′(x ),可得f ′(x )-f (x )>0,所以g ′(x )>0,所以g (x )单调递增,则f (2 022)e 2 022< f (2 023)e 2 023, 即e f (2 022)<f (2 023).规律方法 (1)出现f ′(x )+nf (x )的形式,构造函数F (x )=e nx f (x );(2)出现f ′(x )-nf (x )的形式,构造函数F (x )=f (x )e nx . 跟踪演练2 (2022·成都模拟)已知定义在R 上的函数f (x )满足f (x )+f ′(x )>0,且f (3)=3,则f (x )>3e 3-x 的解集为________.答案 (3,+∞)解析 设F (x )=f (x )·e x ,则F ′(x )=f ′(x )·e x +f (x )·e x=e x [f (x )+f ′(x )]>0,∴F (x )在R 上单调递增.又f (3)=3,则F (3)=f (3)·e 3=3e 3.∵f (x )>3e 3-x 等价于f (x )·e x >3e 3,即F (x )>F (3),∴x >3,即所求不等式的解集为(3,+∞).考向3 利用f (x )与sin x ,cos x 构造例3 偶函数f (x )的定义域为⎝⎛⎭⎫-π2,π2,其导函数为f ′(x ),若对任意的x ∈⎣⎡⎭⎫0,π2,有f ′(x )·cos x <f (x )sin x 成立,则关于x 的不等式2f (x )<f ⎝⎛⎭⎫π3cos x的解集为__________________. 答案 ⎝⎛⎭⎫-π2,-π3∪⎝⎛⎭⎫π3,π2 解析 令g (x )=f (x )cos x ,x ∈⎝⎛⎭⎫-π2,π2, ∴g (-x )=f (-x )cos(-x )=f (x )cos x =g (x ),∴g (x )为偶函数,又g ′(x )=f ′(x )cos x -f (x )sin x ,∴当x ∈⎣⎡⎭⎫0,π2时,g ′(x )<0, 即g (x )在⎣⎡⎭⎫0,π2上单调递减, 又g (x )为偶函数,∴g (x )在⎝⎛⎦⎤-π2,0上单调递增, 不等式2f (x )<f ⎝⎛⎭⎫π3cos x 可化为f (x )cos x <f ⎝⎛⎭⎫π3cos π3, 即g (x )<g ⎝⎛⎭⎫π3,则⎩⎨⎧ |x |>π3,-π2<x <π2,解得-π2<x <-π3或π3<x <π2. 规律方法 函数f (x )与sin x ,cos x 相结合构造可导函数的几种常见形式(1)F (x )=f (x )sin x ,F ′(x )=f ′(x )sin x +f (x )cos x ;(2)F (x )=f (x )sin x, F ′(x )=f ′(x )sin x -f (x )cos x sin 2x; (3)F (x )=f (x )cos x ,F ′(x )=f ′(x )cos x -f (x )sin x ;(4)F (x )=f (x )cos x, F ′(x )=f ′(x )cos x +f (x )sin x cos 2x. 跟踪演练3 已知奇函数f (x )的导函数为f ′(x ),且f (x )在⎝⎛⎭⎫0,π2上恒有f (x )sin x < f ′(x )cos x成立,则下列不等式成立的是( ) A.2f ⎝⎛⎭⎫π6>f ⎝⎛⎭⎫π4B .f ⎝⎛⎭⎫-π3<3f ⎝⎛⎭⎫-π6C.3f ⎝⎛⎭⎫-π4<2f ⎝⎛⎭⎫-π3 D.2f ⎝⎛⎭⎫π3<3f ⎝⎛⎭⎫π4 答案 B解析 构造函数F (x )=f (x )sin x, 由f (x )在⎝⎛⎭⎫0,π2上恒有f (x )sin x < f ′(x )cos x成立, 即f ′(x )sin x -f (x )cos x >0,∴F ′(x )=f ′(x )sin x -f (x )cos x (sin x )2>0, ∴F (x )在⎝⎛⎭⎫0,π2上单调递增, 又F (-x )=f (-x )sin (-x )=-f (x )-sin x=F (x ), ∴F (x )为偶函数,∵π6<π4, ∴F ⎝⎛⎭⎫π6<F ⎝⎛⎭⎫π4,∴f ⎝⎛⎭⎫π6sin π6<f ⎝⎛⎭⎫π4sin π4, ∴2f ⎝⎛⎭⎫π6<f ⎝⎛⎭⎫π4,故A 错误;∵偶函数F (x )在⎝⎛⎭⎫0,π2上单调递增, ∴F (x )在⎝⎛⎭⎫-π2,0上单调递减, ∵-π3<-π6,∴F ⎝⎛⎭⎫-π3>F ⎝⎛⎭⎫-π6, ∴f ⎝⎛⎭⎫-π3sin ⎝⎛⎭⎫-π3>f ⎝⎛⎭⎫-π6sin ⎝⎛⎭⎫-π6,∴-f ⎝⎛⎭⎫-π3>-3f ⎝⎛⎭⎫-π6, ∴f ⎝⎛⎭⎫-π3<3f ⎝⎛⎭⎫-π6,故B 正确; F ⎝⎛⎭⎫-π4<F ⎝⎛⎭⎫-π3,∴f ⎝⎛⎭⎫-π4sin ⎝⎛⎭⎫-π4<f ⎝⎛⎭⎫-π3sin ⎝⎛⎭⎫-π3,∴-3f ⎝⎛⎭⎫-π4<-2f ⎝⎛⎭⎫-π3, ∴3f ⎝⎛⎭⎫-π4>2f ⎝⎛⎭⎫-π3,故C 错误; ∵π3>π4,∴F ⎝⎛⎭⎫π3>F ⎝⎛⎭⎫π4,∴f ⎝⎛⎭⎫π3sin π3>f ⎝⎛⎭⎫π4sin π4, ∴2f ⎝⎛⎭⎫π3>3f ⎝⎛⎭⎫π4,故D 错误.考点二 同构法构造函数例4 已知a >0,若在(1,+∞)上存在x 使得不等式e x -x ≤x a -a ln x 成立,则a 的最小值为________.答案 e解析 ∵x a =ln ln e e a x a x =,∴不等式即为e x -x ≤e a ln x -a ln x .由a >0且x >1得a ln x >0,设y =e x -x ,则y ′=e x -1>0,故y =e x -x 在(1,+∞)上单调递增,∴x ≤a ln x ,即a ≥x ln x, 即存在x ∈(1,+∞),使a ≥x ln x, ∴a ≥⎝⎛⎭⎫x ln x min ,设f (x )=x ln x(x >1), 则f ′(x )=ln x -1ln 2x, 当x ∈(1,e)时,f ′(x )<0;当x ∈(e ,+∞)时,f ′(x )>0;∴f (x )在(1,e)上单调递减,在(e ,+∞)上单调递增,∴f (x )min =f (e)=e ,∴a ≥e.故a 的最小值为e.规律方法 指对同构,经常使用的变换形式有两种,一种是将x 变成ln e x ,然后构造函数;另一种是将x 变成e ln x ,然后构造函数.跟踪演练4 已知a >0,b >0,且(a +1)b +1=(b +3)a ,则( )A .a >b +1B .a <b +1C .a <b -1D .a >b -1 答案 B解析 因为(a +1)b +1=(b +3)a ,a >0,b >0,所以ln (a +1)a =ln (b +3)b +1>ln (b +2)b +1. 设f (x )=ln (x +1)x(x >0), 则f ′(x )=x x +1-ln (x +1)x 2. 设g (x )=x x +1-ln(x +1)(x >0), 则g ′(x )=1(x +1)2-1x +1=-x (x +1)2<0, 所以g (x )在(0,+∞)上单调递减.当x →0时,g (x )→0,所以g (x )<0,即f ′(x )<0,故f (x )在(0,+∞)上单调递减.因为f (a )>f (b +1),所以a <b +1. 专题强化练1.(2022·咸阳模拟)已知a =1e 2,b =ln 24,c =ln 39,则( )A .a <b <cB .c <a <bC .b <a <cD .c <b <a答案 B 解析 设f (x )=ln x x 2,则a =f (e),b =f (2), c =f (3),又f ′(x )=1-2ln x x 3, 当x ∈(e ,+∞)时,f ′(x )<0,故f (x )=ln x x 2在(e ,+∞)上单调递减, 注意到e<4=2<e<3,则有f (3)<f (e)<f (2),即c <a <b .2.(2022·哈尔滨模拟)已知f (x )是定义在R 上的偶函数,f ′(x )是f (x )的导函数,当x ≥0时,f ′(x )-2x >0,且f (1)=3,则f (x )>x 2+2的解集是( )A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(0,1)D .(-∞,-1)∪(0,1)答案 B解析 令g (x )=f (x )-x 2,则g (-x )=f (-x )-(-x )2=g (x ),所以函数g (x )也是偶函数,g ′(x )=f ′(x )-2x ,因为当x ≥0时,f ′(x )-2x >0,所以当x ≥0时,g ′(x )=f ′(x )-2x >0,所以函数g (x )在[0,+∞)上单调递增,不等式f (x )>x 2+2即为不等式g (x )>2,由f (1)=3,得g (1)=2,所以g (x )>g (1),所以|x |>1,解得x <-1或x >1,所以f (x )>x 2+2的解集是(-∞,-1)∪(1,+∞).3.(2022·南京质检)设a ,b 都为正数,e 为自然对数的底数,若a e a <b ln b ,则( )A .ab >eB .b >e aC .ab <eD .b <e a解析 由已知a e a <b ln b ,则e a ln e a <b ln b .设f (x )=x ln x ,则f (e a )<f (b ).∵a >0,∴e a >1,∵b >0,b ln b >a e a >0,∴b >1.当x >1时,f ′(x )=ln x +1>0,则f (x )在(1,+∞)上单调递增,所以e a <b .4.(2022·常州模拟)已知函数y =f (x )为奇函数,且当x >0时,f ′(x )sin x +f (x )cos x >0,则下列说法正确的是( )A .f ⎝⎛⎭⎫5π6<-f ⎝⎛⎭⎫7π6<-f ⎝⎛⎭⎫-π6 B .-f ⎝⎛⎭⎫7π6<f ⎝⎛⎭⎫5π6<-f ⎝⎛⎭⎫-π6 C .-f ⎝⎛⎭⎫-π6<-f ⎝⎛⎭⎫7π6<f ⎝⎛⎭⎫5π6 D .-f ⎝⎛⎭⎫-π6<f ⎝⎛⎭⎫5π6<-f ⎝⎛⎭⎫7π6 答案 D解析 令g (x )=f (x )sin x ,因为f (x )为奇函数,则g (x )为偶函数,又当x >0时,f ′(x )sin x +f (x )cos x >0,即g ′(x )>0,则g (x )在(0,+∞)上单调递增,则有g ⎝⎛⎭⎫-π6=g ⎝⎛⎭⎫π6<g ⎝⎛⎭⎫5π6<g ⎝⎛⎭⎫7π6, 即-12 f ⎝⎛⎭⎫-π6<12 f ⎝⎛⎭⎫5π6<-12 f ⎝⎛⎭⎫7π6, 即-f ⎝⎛⎭⎫-π6<f ⎝⎛⎭⎫5π6<-f ⎝⎛⎭⎫7π6. 5.函数f (x )的定义域是R ,f (0)=2,对任意x ∈R ,f (x )+f ′(x )>1,则不等式e x f (x )>e x +1的解集为( )A .{x |x >0}B .{x |x <0}C .{x |x <-1或x >1}D .{x |x <-1或0<x <1}解析 构造函数g (x )=e x f (x )-e x ,因为g ′(x )=e x f (x )+e x f ′(x )-e x=e x [f (x )+f ′(x )]-e x >e x -e x =0,所以g (x )=e x f (x )-e x 在R 上单调递增.又因为g (0)=e 0f (0)-e 0=1,所以原不等式转化为e x f (x )-e x >1,即g (x )>g (0),解得x >0.所以原不等式的解集为{x |x >0}.6.(多选)(2022·渭南模拟)设实数λ>0,对任意的x >1,不等式λe λx ≥ln x 恒成立,则λ的取值可能是( )A .e B.12e C.1e D.2e答案 ACD解析 由题设,e λx ·λx ≥x ln x =e ln x ·ln x ,令f (t )=t ·e t (t >0),则f ′(t )=(t +1)·e t >0,所以f (t )单调递增,又f (λx )≥f (ln x ),即当x ∈(1,+∞)时,λx ≥ln x ,即λ≥ln x x 恒成立,令g (x )=ln x x,x ∈(1,+∞), 则g ′(x )=1-ln x x 2, 所以在(1,e)上,g ′(x )>0,即g (x )单调递增;在(e ,+∞)上,g ′(x )<0,即g (x )单调递减,则g (x )≤g (e)=1e ,故λ≥1e. 7.已知f (x )的定义域为(0,+∞),f ′(x )为f (x )的导函数,且满足f (x )<-xf ′(x ),则不等式f (x +1)>(x -1)f (x 2-1)的解集是________.答案 (2,+∞)解析根据题意,构造函数y=xf(x),x∈(0,+∞),则y′=f(x)+xf′(x)<0,所以函数y=xf(x)的图象在(0,+∞)上单调递减.又因为f(x+1)>(x-1)f(x2-1),所以(x+1)f(x+1)>(x2-1)f(x2-1),所以0<x+1<x2-1,解得x>2.所以不等式f(x+1)>(x-1)f(x2-1)的解集是(2,+∞).8.(2022·龙岩质检)已知m>0,n∈R,若log2m+2m=6,2n+1+n=6,则m2n=________. 答案 1解析由题意得log2m+2m=2n+1+n,log2m+2m=2×2n+n,令g(x)=log2x+2x(x>0),则g′(x)=1x ln 2+2>0,所以g(x)在(0,+∞)上单调递增,因为g(m)=g(2n),所以m=2n,所以m2n=1.。

构造函数法解决导数不等式问题(二)

构造函数法解决导数不等式问题(二)

构造函数法解决导数不等式问题(二)考点四构造F (x )=f (x )±g (x ),F (x )=f (x )g (x ),F (x )=f (x )g (x )类型的辅助函数【方法总结】(1)若F (x )=f (x )+ax n +b ,则F ′(x )=f ′(x )+nax n -1;(2)若F (x )=f (x )±g (x ),则F ′(x )=f ′(x )±g ′(x );(3)若F (x )=f (x )g (x ),则F ′(x )=f ′(x )g (x )+f (x )g ′(x );(4)若F (x )=f (x )g (x ),则F ′(x )=f ′(x )g (x )-f (x )g ′(x )[g (x )]2.由此得到结论:(1)出现f ′(x )+nax n -1形式,构造函数F (x )=f (x )+ax n +b ;(2)出现f ′(x )±g ′(x )形式,构造函数F (x )=f (x )±g (x );(3)出现f ′(x )g (x )+f (x )g ′(x )形式,构造函数F (x )=f (x )g (x );(4)出现f ′(x )g (x )-f (x )g ′(x )形式,构造函数F (x )=f (x )g (x ).【例题选讲】[例1](1)函数f (x )的定义域为R ,f (-1)=3,对任意x ∈R ,f ′(x )<3,则f (x )>3x +6的解集为()A .{x |-1<x <1}B .{x |x >-1}C .{x |x <-1}D .R答案C解析设g (x )=f (x )-(3x +6),则g ′(x )=f ′(x )-3<0,所以g (x )为减函数,又g (-1)=f (-1)-3=0,所以根据单调性可知g (x )>0的解集是{x |x <-1}.(2)定义在R 上的函数f (x )满足f (1)=1,且对∀x ∈R ,f ′(x )<12,则不等式f (log 2x )>log 2x +12的解集为________.答案(0,2)解析构造函数F (x )=f (x )-12x ,则F ′(x )=f ′(x )-12<0,∴函数F (x )在R 上是减函数.由f (1)=1,得F (1)=f (1)-12=1-12=12∴f (log 2x )>log 2x +12⇔f (log 2x )-12log 2x >12⇔F (log 2x )>F (1)⇔log 2x <1⇔0<x <2.(3)定义在R 上的可导函数f (x )满足f (1)=1,且2f ′(x )>1,当x ∈-π2,3π2时,不等式f (2cos x )>32-2sin 2x2的解集为()A B -π3,C D -π3,答案D解析令g (x )=f (x )-x 2-12,则g ′(x )=f ′(x )-12>0,∴g (x )在R 上单调递增,且g (1)=f (1)-12-12=0,∵f (2cos x )-32+2sin 2x 2=f (2cos x )-2cos x 2-12=g (2cos x ),∴f (2cos x )>32-2sin 2x2,即g (2cos x )>0,∴2cos x >1,又x ∈-π2,3π2,∴x -π3,(4)f (x )是定义在R 上的偶函数,当x ≥0时,f ′(x )>2x .若f (a -2)-f (a )≥4-4a ,则实数a 的取值范围是()A .(-∞,1]B .[1,+∞)C .(-∞,2]D .[2,+∞)答案A解析令G (x )=f (x )-x 2,则G ′(x )=f ′(x )-2x .当x ∈[0,+∞)时,G ′(x )=f ′(x )-2x >0,∴G (x )在[0,+∞)上是增函数.由f (a -2)-f (a )≥4-4a ,得f (a -2)-(a -2)2≥f (a )-a 2,即G (a -2)≥G (a ),又f (x )是定义在R 上的偶函数,知G (x )是偶函数.故|a -2|≥|a |,解得a ≤1.(5)已知f ′(x )是函数f (x )的导数,且f (-x )=f (x ),当x ≥0时,f ′(x )>3x ,则不等式f (x )-f (x -1)<3x -32的解集是()A -12,B ∞CD ∞答案D解析设g (x )=f (x )-32x 2,则g ′(x )=f ′(x )-3x .因为当x ≥0时,f ′(x )>3x ,所以当x ≥0时,g ′(x )=f ′(x )-3x >0,即g (x )在[0,+∞)上单调递增.因为f (-x )=f (x ),所以g (-x )=f (-x )-32x 2=f (x )-32x 2=g (x ),所以g (x )是偶函数.因为f (x )-f (x -1)<3x -32,所以f (x )-32x 2<f (x -1)-32(x -1)2,即g (x )<g (x -1),所以g (|x |)<g (|x -1|),则|x |<|x -1|,解得x <12.故选D .(6)设f ′(x )是奇函数f (x )(x ∈R )的导数,当x >0时,f (x )+f ′(x )·x ln x <0,则不等式(x -1)f (x )>0的解集为________.答案(0,1)解析由于函数y =f (x )为R 上的奇函数,则f (0)=0.当x >0时,f (x )+f ′(x )·x ln x <0,则f (1)<0.当x >0时,构造函数g (x )=f (x )ln x ,则g ′(x )=f ′(x )ln x +f (x )·1x =f (x )+f ′(x )·x ln xx <0,所以函数y =g (x )在区间(0,+∞)上单调递减,且g (1)=0.当0<x <1时,ln x <0,g (x )>g (1)=0,即f (x )ln x >0,此时f (x )<0;当x >1时,ln x >0,g (x )<g (1)=0,即f (x )ln x <0,此时f (x )<0.又f (1)<0,所以当x >0时,f (x )<0.由于函数y =f (x )为R 上的奇函数,当x <0时,f (x )>0.对于不等式(x -1)f (x )>0,当x <0时,x -1<0,则f (x )<0,不符合题意;当0<x <1时,x -1<0,则f (x )<0,符合题意;当x >1时,x -1>0,则f (x )>0,不符合题意.综上所述,不等式(x -1)f (x )>0的解集为(0,1).(7)(多选)定义在(0,+∞)上的函数f (x )的导函数为f ′(x ),且(x +1)f ′(x )-f (x )<x 2+2x 对任意x ∈(0,+∞)恒成立.下列结论正确的是()A.2f(2)-3f(1)>5B.若f(1)=2,x>1,则f(x)>x2+12x+12C.f(3)-2f(1)<7D.若f(1)=2,0<x<1,则f(x)>x2+12x+12解析CD答案设函数g(x)=f(x)-x2x+1,则g′(x)=(x+1)f′(x)-f(x)-(x2+2x)(x+1)2.因为(x+1)f′(x)-f(x)<x2+2x对任意x∈(0,+∞)恒成立,所以g′(x)<0,故g(x)在(0,+∞)上单调递减,从而g(1)>g(2)>g(3),整理得2f(2)-3f(1)<5,f(3)-2f(1)<7,故A错误,C正确.当0<x<1时,若f(1)=2,因为g(x)在(0,+∞)上单调递减,所以g(x)>g(1)=12,即f(x)-x2x+1>12,即f(x)>x2+12x+12,故D正确,从而B不正确.即结论正确的是CD.(8)已知函数f(x),对∀x∈R,都有f(-x)+f(x)=x2,在(0,+∞)上,f′(x)<x,若f(4-m)-f(m)≥8-4m,则实数m的取值范围为()A.[-2,2]B.[2,+∞)C.[0,+∞)D.(-∞,-2]∪[2,+∞)答案B解析因为对∀x∈R,都有f(-x)+f(x)=x2,所以f(0)=0,设g(x)=f(x)-12x2,则g(-x)=f(-x)-12x2,所以g(x)+g(-x)=f(x)-12x2+f(-x)-12x2=0,又g(0)=f(0)-0=0,所以g(x)为奇函数,且f(x)=g(x)+12x2,所以f(4-m)-f(m)=g(4-m)+12(4-m)2-g(m)+12m2=g(4-m)-g(m)+8-4m≥8-4m,则g(4-m)-g(m)≥0,即g(4-m)≥g(m).当x>0时,g′(x)=f′(x)-x<0,所以g(x)在(0,+∞)上为减函数,又g(x)为奇函数,所以4-m≤m,解得m≥2.(9)已知函数y=f(x)是R上的可导函数,当x≠0时,有f′(x)+f(x)x >0,则函数F(x)=xf(x)+1x的零点个数是()A.0B.1C.2D.3答案B解析依题意,记g(x)=xf(x),则g′(x)=xf′(x)+f(x),g(0)=0,当x>0时,g′(x)=x[f′(x)+f(x)x]>0,g(x)是增函数,g(x)>0;当x<0时,g′(x)=x[f′(x)+f(x)x]<0,g(x)是减函数,g(x)>0.在同一坐标系内画出函数y=g(x)与y=-1x的大致图象,结合图象可知,它们共有1个公共点,因此函数F(x)=xf(x)+1x的零点个数是1.(10)函数f(x)满足x2f′(x)+2xf(x)=e xx,f(2)=e28,当x>0时,f(x)的极值状态是___________.答案没有极大值也没有极小值解析因为x2f′(x)+2xf(x)=e x x,关键因为等式右边函数的原函数不容易找出,因此把等式左边函数的原函数找出来,设h (x )=x 2f (x ),则h ′(x )=e x x ,且h (2)=e 22,因为x 2f ′(x )+2xf (x )=e x x ,则f ′(x )=e x -2h (x )x 3,判断f (x )的极值状态就是判断f ′(x )的正负,设g (x )=e x -2h (x ),则g ′(x )=e x -2h ′(x )=e x -2·e xx =e x ·x -2x ,这里涉及二阶导,g (x )在x =2处取得最小值0,因此g (x )≥0,则f ′(x )≥0,故f (x )没有极大值也没有极小值(有难度,但不失为好题目).【对点训练】1.已知函数f (x )的定义域为R ,f (-1)=2,且对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为()A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .(-∞,+∞)1.答案B解析由f (x )>2x +4,得f (x )-2x -4>0.设F (x )=f (x )-2x -4,则F ′(x )=f ′(x )-2.因为f ′(x )>2,所以F ′(x )>0在R 上恒成立,所以F (x )在R 上单调递增.又F (-1)=f (-1)-2×(-1)-4=2+2-4=0,故不等式f (x )-2x -4>0等价于F (x )>F (-1),所以x >-1,故选B .2.已知函数f (x )(x ∈R )满足f (1)=1,f (x )的导数f ′(x )<12,则不等式f (x 2)<x 22+12的解集为.2.答案{x |x <-1或x >1}解析设F (x )=f (x )-12x ,∴F ′(x )=f ′(x )-12,∵f ′(x )<12,∴F ′(x )=f ′(x )-12<0,即函数F (x )在R上单调递减.∵f (x 2)<x 22+12,∴f (x 2)-x 22<f (1)-12,∴F (x 2)<F (1),而函数F (x )在R 上单调递减,∴x 2>1,即不等式的解集为{x |x <-1或x >1}.3.已知定义域为R 的函数f (x )的导数为f ′(x ),且满足f ′(x )<2x ,f (2)=3,则不等式f (x )>x 2-1的解集是()A .(-∞,-1)B .(-1,+∞)C .(2,+∞)D .(-∞,2)3.答案D解析令g (x )=f (x )-x 2,则g ′(x )=f ′(x )-2x <0,即函数g (x )在R 上单调递减.又不等式f (x )>x 2-1可化为f (x )-x 2>-1,而g (2)=f (2)-22=3-4=-1,所以不等式可化为g (x )>g (2),故不等式的解集为(-∞,2).故选D .4.定义在(0,+∞)上的函数f (x )满足x 2f ′(x )+1>0,f (1)=4,则不等式f (x )>1x +3的解集为________.4.解析(1,+∞)答案由x 2f ′(x )+1>0得f ′(x )+1x 2>0,构造函数g (x )=f (x )-1x -3,则g ′(x )=f ′(x )+1x2>0,即g (x )在(0,+∞)上是增函数.又f (1)=4,则g (1)=f (1)-1-3=0,从而g (x )>0的解集为(1,+∞),即f (x )>1x+3的解集为(1,+∞).5.设f (x )为R 上的奇函数,当x ≥0时,f ′(x )-cos x <0,则不等式f (x )<sin x 的解集为.5.答案(0,+∞)解析令φ(x )=f (x )-sin x ,∴当x ≥0时,φ′(x )=f ′(x )-cos x <0,∴φ(x )在[0,+∞)上单调递减,又f (x )为R 上的奇函数,∴φ(x )为R 上的奇函数,∴φ(x )在(-∞,0]上单调递减,故φ(x )在R上单调递减且φ(0)=0,不等式f (x )<sin x 可化为f (x )-sin x <0,即φ(x )<0,即φ(x )<φ(0),故x >0,∴原不等式的解集为(0,+∞).6.设f (x )和g (x )分别是定义在R 上的奇函数和偶函数,f ′(x ),g ′(x )分别为其导数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集是()A .(-3,0)∪(3,+∞)B .(-3,0)∪(0,3)C .(-∞,-3)∪(3,+∞)D .(-∞,-3)∪(0,3)6.答案D解析令h (x )=f (x )g (x ),当x <0时,h ′(x )=f ′(x )g (x )+f (x )g ′(x )>0,则h (x )在(-∞,0)上单调递增,又f (x ),g (x )分别是定义在R 上的奇函数和偶函数,所以h (x )为奇函数,所以h (x )在(0,+∞)上单调递增.又由g (-3)=0,可得h (-3)=-h (3)=0,所以当x <-3或0<x <3时,h (x )<0,故选D .7.设f (x ),g (x )是定义在R 上的恒大于0的可导函数,且f ′(x )g (x )-f (x )g ′(x )<0,则当a <x <b 时,有()A .f (x )g (x )>f (b )g (b )B .f (x )g (a )>f (a )g (x )C .f (x )g (b )>f (b )g (x )D .f (x )g (x )>f (a )g (a )7.解析C答案令F (x )=f (x )g (x ),则F ′(x )=f ′(x )g (x )-f (x )g ′(x )[g (x )]2<0,所以F (x )在R 上单调递减.又a <x <b ,所以f (a )g (a )>f (x )g (x )>f (b )g (b ).又f (x )>0,g (x )>0,所以f (x )g (b )>f (b )g (x ).8.设函数f (x )在R 上存在导数f ′(x ),对任意x ∈R ,都有f (-x )+f (x )=x 2,在(0,+∞)上f ′(x )<x ,若f (2-m )+f (-m )-m 2+2m -2≥0,则实数m 的取值范围为__________.8.答案[1,+∞)解析令g (x )=f (x )-x 22,则g (-x )+g (x )=0,g (x )是R 上的奇函数.又当x ∈(0,+∞)时,g ′(x )=f ′(x )-x <0,所以g (x )在(0,+∞)上单调递减,所以g (x )是R 上的单调减函数.原不等式等价于g (2-m )+g (-m )≥0,g (2-m )≥-g (-m )=g (m ),所以2-m ≤m ,m ≥1.9.已知f (x )是定义在R 上的减函数,其导函数f ′(x )满足f (x )f ′(x )+x <1,则下列结论正确的是()A .对于任意x ∈R ,f (x )<0B .对于任意x ∈R ,f (x )>0C .当且仅当x ∈(-∞,1),f (x )<0D .当且仅当x ∈(1,+∞),f (x )>09.答案B解析∵f (x )f ′(x )+x <1,f (x )是定义在R 上的减函数,f ′(x )<0,∴f (x )+xf ′(x )>f ′(x ),∴f (x )+(x -1)f ′(x )>0,∴[(x -1)f (x )]′>0,∴函数y =(x -1)f (x )在R 上单调递增,而x =1时,y =0,则x <1时,y <0,故f (x )>0.x >1时,x -1>0,y >0,故f (x )>0,∴f (x )>0对任意x ∈R 成立,故选B .10.已知y =f (x )为R 上的可导函数,当x ≠0时,f ′(x )+f (x )x >0,若g (x )=f (x )+1x,则函数g (x )的零点个数为()A .1B .2C .0D .0或210.答案C 解析令h (x )=xf (x ),因为当x ≠0时,xf ′(x )+f (x )x>0,所以h ′(x )x >0,因此当x >0时,h ′(x )>0,当x <0时,h ′(x )<0,又h (0)=0,易知当x ≠0时,h (x )>0,又g (x )=h (x )+1x,所以g (x )≠0,故函数g (x )的零点个数为0考点五构造具体函数关系式【方法总结】这类题型需要根据题意构造具体的函数关系式,通过具体的关系式去解决不等式及求值问题.【例题选讲】[例1](1)(2020·全国Ⅰ)若2a +log 2a =4b +2log 4b ,则()A .a >2bB .a <2bC .a >b 2D .a <b 2答案B解析由指数和对数的运算性质得2a +log 2a =4b +2log 4b =22b +log 2b .令f (x )=2x +log 2x ,则f (x )在(0,+∞)上单调递增.又∵22b +log 2b <22b +log 2b +1=22b +log 2(2b ),∴2a +log 2a <22b +log 2(2b ),即f (a )<f (2b ),∴a <2b .故选B .(2)已知α,β∈-π2,π2,且αsin α-βsin β>0,则下列结论正确的是()A .α>βB .α2>β2C .α<βD .α+β>0答案B解析构造函数f (x )=x sin x ,则f ′(x )=sin x +x cos x .当x ∈0,π2时,f ′(x )≥0,f (x )是增函数,当x ∈-π2,f ′(x )<0,f (x )是减函数,又f (x )为偶函数,∴αsin α-βsin β>0⇔αsin α>βsin β⇔f (α)>f (β)⇔f (|α|)>f (|β|)⇔|α|>|β|⇔α2>β2,故选B .(3)(多选)若0<x 1<x 2<1,则()A .x 1+ln x 2>x 2+ln x 1B .x 1+ln x 2<x 2+ln x 1C .12e x x >21e x x D .12e x x <21e x x 答案AC解析令f (x )=x -ln x ,∴f ′(x )=1-1x =x -1x,当0<x <1时,f ′(x )<0,∴f (x )在(0,1)上单调递减.∵0<x 1<x 2<1,∴f (x 2)<f (x 1),即x 2-ln x 2<x 1-ln x 1,即x 1+ln x 2>x 2+ln x 1.设g (x )=e xx ,则g ′(x )=x e x -e x x 2=e x (x -1)x 2.当0<x <1时,g ′(x )<0,即g (x )在(0,1)上单调递减,∵0<x 1<x 2<1,∴g (x 2)<g (x 1),即22e x x <11e x x ,∴12e x x >21e x x ,故选AC .A .(a +1)a +2>(a +2)a+1B .log a (a +1)>log a +1(a +2)C .log a (a +1)<a +1a D .log a +1(a +2)<a +2a +1答案ABD解析若A 成立,则(a +1)a +2>(a +2)a +1,两边取自然对数,得(a +2)ln(a +1)>(a +1)ln(a+2),因为a ≥2,所以ln(a +1)a +1>ln(a +2)a +2.令f (x )=ln xx ,则x ≥3,f ′(x )=1-ln x x 2<0,故f (x )在[3,+∞)上单调递减,所以ln(a +1)a +1>ln(a +2)a +2,故A 成立;若B 成立,则log a (a +1)>log a +1(a +2),即ln(a +1)ln a >ln(a +2)ln(a +1),设g (x )=ln(x +1)ln x ,x ≥2,则g ′(x )=ln x x +1-ln(x +1)x (ln x )2=x ln x -(x +1)ln(x +1)x ·(x +1)(ln x )2,令h (x )=x ln x ,x ≥2,则h ′(x )=ln x +1>0,故h (x )在[2,+∞)上单调递增,所以x ln x -(x +1)ln(x +1)<0,所以g ′(x )<0,故g (x )在[2,+∞)上单调递减,所以ln(a +1)ln a >ln(a +2)ln(a +1),故B 成立;若C 成立,则log a (a +1)<a +1a ,即ln(a +1)a +1<ln a a ,由A 知f (x )=ln xx 在[2,e)上单调递增,在(e ,+∞)上单调递减,取a =2,故C 不成立;若D 成立,则log a +1(a +2)<a +2a +1,即ln(a +2)a +2<ln(a +1)a +1,由A 知D 成立.故选ABD .(6)(2021·全国乙)设a =2ln1.01,b =ln1.02,c =1.04-1,则()A .a <b <cB .b <c <aC .b <a <cD .c <a <b答案B 解析b -c =ln1.02- 1.04+1,设f (x )=ln(x +1)-1+2x +1,则b -c =f (0.02),f ′(x )=1x +1-221+2x=1+2x -(x +1)(x +1)1+2x,当x >0时,x +1=(x +1)2>1+2x ,故当x >0时,f ′(x )=1+2x -(x +1)(x +1)1+2x<0,所以f (x )在(0,+∞)上单调递减,所以f (0.02)<f (0)=0,即b <c .a -c =2ln 1.01- 1.04+1,设g (x )=2ln(x +1)-1+4x +1,则a -c =g (0.01),g ′(x )=2x +1-421+4x =2[1+4x -(x +1)](x +1)1+4x,当0<x <2时,4x +1=2x +2x +1>x 2+2x +1=(x +1)2=x +1,故当0<x <2时,g ′(x )>0,所以g (x )在(0,2)上单调递增,所以g (0.01)>g (0)=0,故c <a ,从而有b <c <a ,故选B .(7)已知函数f (x )的定义域为(0,+∞),导函数为f ′(x ),若xf ′(x )-f (x )=x ln x ,且=1e ,则()A .f 0B .f (x )在x =1e 处取得极大值C .0<f (1)<1D .f (x )在(0,+∞)上单调递增答案ACD解析由题知函数f (x )的定义域为(0,+∞),导函数为f ′(x ),xf ′(x )-f (x )=x ln x ,即满足xf ′(x )-f (x )x 2=ln x x .因为f (x )x ′=xf ′(x )-f (x )x 2,所以f (x )x ′=ln x x ,所以可设f (x )x =12ln 2x +b (b 为常数),所以f (x )=12x ln 2x +bx .因为=12·1e ln 21e +b e =1e ,解得b =12,所以f (x )=12ln 2x +12x ,所以f (1)=12,满足0<f (1)<1,所以C 正确;因为f ′(x )=12ln 2x +ln x +12=12(ln x +1)2≥0,且仅有f 0,所以B 错误,A ,D 正确.故选ACD .【对点训练】1.若a =ln 22,b =ln 33,c =ln 66,则()A .a <b <cB .c <b <aC .c <a <bD .b <a <c1.答案C解析设f (x )=ln xx ,则f ′(x )=1-ln x x2,所以f (x )在(0,e)上单调递增,在(e ,+∞)上单调递减,即有f (6)<f (4)<f (3),所以ln 66<ln 44=ln 22<ln 33,故c <a <b .2.设a ,b >0,则“a >b ”是“a a >b b ”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.答案D解析因为a ,b >0,由a a >b b 可得a ln a >b ln b .设函数f (x )=x ln x ,则f ′(x )=ln x +1,由f ′(x )>0可得x >1e ,所以函数f (x )=x ln x a >b 不一定有a ln a >b ln b ,即a a >b b ,所以充分性不成立;当a a >b b ,即a ln a >b ln b 时,不一定有a >b ,所以必要性不成立,所以“a >b ”是“a a >b b ”的既不充分也不必要条件,故选D .3.已知0<x 1<x 2<1,则()A .ln x 1x 2>ln x 2x 1B .ln x 1x 2<ln x 2x 1C .x 2ln x 1>x 1ln x 2D .x 2ln x 1<x 1ln x 23.答案D解析设f (x )=x ln x ,则f ′(x )=ln x +1,由f ′(x )>0,得x >1e,所以函数f (x )调递增;由f ′(x )<0,得0<x <1e f (x )f (x )在(0,1)上不单调,所以f (x 1)与f (x 2)的大小无法确定,从而排除A ,B ;设g (x )=ln xx ,则g ′(x )=1-ln x x 2,由g ′(x )>0,得0<x <e,即函数g (x )在(0,e)上单调递增,故函数g (x )在(0,1)上单调递增,所以g (x 1)<g (x 2),即ln x 1x 1<ln x 2x 2,所以x 2ln x 1<x 1ln x 2.故选D .4.已知a >b >0,a b =b a ,有如下四个结论:(1)b <e ;(2)b >e ;(3)存在a ,b 满足a ·b <e 2;(4)存在a ,b 满足a ·b >e 2,则正确结论的序号是()A .(1)(3)B .(2)(3)C .(1)(4)D .(2)(4)4.答案C解析由a b =b a 两边取对数得b ln a =a ln b ⇒ln a a =ln b b .对于y =ln xx,由图象易知当b <e<a 时,才可能满足题意.故(1)正确,(2)错误;另外,由a b =b a ,令a =4,b =2,则a >e ,b <e ,ab =8>e 2,故(4)正确,(3)错误.因此,选C .5.设x ,y ,z 为正数,且2x =3y =5z ,则()A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z5.答案D解析令2x =3y =5z =t (t >1),两边取对数得x =log 2t =ln t ln 2,y =log 3t =ln t ln 3,z =log 5t =ln tln 5,从而2x =2ln 2ln t ,3y =3ln 3ln t ,5z =5ln 5ln t .由t >1知,要比较三者大小,只需比较2ln 2,3ln 3,5ln 5的大小.又2ln 2=4ln 4,e<3<4<5,由y =ln x x 在(e ,+∞)上单调递减可知,ln 33>ln 44>ln 55,从而3ln 3<4ln 4<5ln 5,3y <2x <5z ,故选D .6.已知a <5且a e 5=5e a ,b <4且b e 4=4e b ,c <3且c e 3=3e c ,则()A .c <b <a B .b <c <a C .a <c <bD .a <b <c6.答案D解析方法一由已知e 55=e a a ,e 44=e bb,e 33=e c c ,设f (x )=e xx ,则f ′(x )=(x -1)e x x 2,所以f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,所以f (3)<f (4)<f (5),f (c )<f (b )<f (a ),所以a <b <c .方法二设e x=e 55x ,①,e x =e 44x ,②,e x=e 33x ,③,a ,b ,c 依次为方程①②③的根,结合图象,方程的根可以看作两个图象的交点的横坐标,∵e 55>e 44>e 33,由图可知a <b <c.7.若0<x 1<x 2<a ,都有x 2ln x 1-x 1ln x 2≤x 1-x 2成立,则a 的最大值为()A .12B .1C .eD .2e7.答案B解析ln x 1x 1-ln x 2x 2≤1x 2-1x 1,即ln x 1x 1+1x 1≤ln x 2x 2+1x 2,令f (x )=ln x x +1x,则f (x )在(0,a )上为增函数,所以f ′(x )≥0在(0,a )上恒成立,f ′(x )=-ln xx 2,令f ′(x )=0,解得x =1,所以f (x )在(0,1)上为增函数,在(1,+∞)上为减函数,所以a ≤1,所以a 的最大值为1,选B .8.下列四个命题:①ln 5<5ln 2;②ln π>πe;③;④3eln 2>42.其中真命题的个数是()A .1B .2C .3D .48.答案B解析构造函数f (x )=ln xx ,则f ′(x )=1-ln x x 2,当x ∈(0,e)时,f ′(x )>0,f (x )单调递增;当x ∈(e ,+∞)时,f ′(x )<0,f (x )单调递减.①ln 5<5ln 2⇒2ln 5<5ln 2⇒ln 55<ln 22,又2<5<e ,故错误.②ln π>πe ⇒2ln π>πe ⇒ln ππ>12e=ln e e ,又e>π>e ,故正确.③⇒11ln 2<ln 11=2ln 11⇒ln 22=ln 44<ln 1111,又4>11>e ,故正确.④3eln 2>42⇒322eln 2>2×322⇒3232ln 22>ln e e ,显然错误.因此选B .A .0<a <b <1B .b <a <0C .1<a <bD .a =b 10.答案ABD 解析因为实数a ,b 满足2a +3a =3b +2b ,所以设f (x )=2x +3x ,g (x )=3x +2x ,在同一平面直角坐标系中作出f (x )与g (x )的图象如图所示.由图象可知:①当x <0时,f (x )<g (x ),所以当2a +3a =3b +2b 时,b <a <0,故B 正确;②当x =0或1时,f (x )=g (x ),所以当2a +3a =3b +2b 时,a =b =0或a =b =1,故D 正确;③当0<x <1时,f (x )>g (x ),所以当2a +3a =3b +2b 时,0<a <b <1,故A 正确;④当x >1时,f (x )<g (x ),所以当2a +3a =3b +2b 时,1<b <a ,故C 错误.故选ABD .11.已知函数f (x )=e x x -ax ,x ∈(0,+∞),当x 2>x 1时,不等式f (x 1)x 2<f (x 2)x 1恒成立,则实数a 的取值范围为()A .(-∞,e]B .(-∞,e)C ∞D ∞,e 211.答案D 解析因为x ∈(0,+∞),所以x 1f (x 1)<x 2f (x 2),即函数g (x )=xf (x )=e x -ax 2在x ∈(0,+∞)上是单调增函数,则g ′(x )=e x -2ax ≥0在x ∈(0,+∞)上恒成立,所以2a ≤e x x在x ∈(0,+∞)上恒成立.令m (x )=e x x ,则m ′(x )=(x -1)e x x 2,当x ∈(0,1)时,m ′(x )<0,m (x )单调递减,当x ∈(1,+∞)时,m ′(x )>0,m (x )单调递增,所以2a ≤m (x )min =m (1)=e ,所以a ≤e 2.故选D .12.设f ′(x )为函数f (x )的导函数,已知x 2f ′(x )+xf (x )=ln x ,f (e)=1e,则下列结论正确的是()A .f (x )在(0,+∞)单调递增B .f (x )在(0,+∞)单调递减C .f (x )在(0,+∞)上有极大值D .f (x )在(0,+∞)上有极小值12.答案B 解析由x 2f ′(x )+xf (x )=ln x ,得xf ′(x )+f (x )=ln x x ,构造F ′(x )=xf ′(x )+f (x )=ln x x ,F (x )=xf (x )=ln 2x 2+m ,当x =e 时,xf (x )=ln 2x 2+m ,又e f (e)=ln 2e 2+m ,所以m =12,所以f (x )=ln 2x +12x,所以f ′(x )=-(ln x -1)22x 2≤0,f (x )在(0,+∞)单调递减,选B .13.(多选)下列不等式中恒成立的有()A .ln(x +1)≥x x +1,x >-1B .ln x x >0C .e x ≥x +1D .cos x ≥1-12x 213.答案ACD 解析A 选项,因为x >-1,令t =x +1>0,f (t )=ln t +1t -1,则f ′(t )=1t -1t 2=t -1t2,所以当0<t <1时,f ′(t )=t -1t 2<0,即f (t )单调递减;当t >1时,f ′(t )=t -1t 2>0,即f (t )单调递增,所以f (t )min =f (1)=0,即f (t )=ln t +1t -1≥0,即ln t ≥t -1t,即ln(x +1)≥x x +1,x >-1恒成立,故A 正确;B 选项,令f (x )=ln x x >0,则f ′(x )=1x -=2x -x 2-12x 2=-(x -1)22x 2≤0显然恒成立,所以f (x )=ln x x >0上单调递减,又f (1)=0,所以当x ∈(0,1)时,f (x )>f (1)=0,即ln x B 错;C 选项,令f (x )=e x -x -1,则f ′(x )=e x -1,当x >0时,f ′(x )=e x -1>0,所以f (x )单调递增;当x <0时,f ′(x )=e x -1<0,所以f (x )单调递减,则f (x )≥f (0)=0,即e x ≥x +1恒成立,故C 正确;D 选项,令f (x )=cos x -1+12x 2,则f ′(x )=-sin x +x ,令h (x )=f ′(x )=-sin x +x ,则h ′(x )=-cos x +1≥0恒成立,即函数f ′(x )=-sin x +x 单调递增,又f ′(0)=0,所以当x >0时,f ′(x )>0,即f (x )=cos x -1+12x 2单调递增;当x <0时,f ′(x )<0,即f (x )=cos x -1+122单调递减,所以f (x )min =f (0)=0,因此cos x ≥1-12x 2恒成立,故D 正确.。

《导数-深度·拔高系列讲义》 构造函数解决函导压轴小题(内附:万能积分法+不定积分详解)

《导数-深度·拔高系列讲义》 构造函数解决函导压轴小题(内附:万能积分法+不定积分详解)

导剧-深度•兹龙系列锦义第M篇构造晶数解决晶导及抽小墨(内附:万能积分法+不定积分详解)目录一、技能储备 (2)情境一.常规构造 (2)题型①:指幕型 (2)题型②:三角型 (3)题型③:对数型 (3)情境二.非常规构造 (4)题型1:在常规构造的基础上,导数相关式中存在独立于/(x)和/'(X)之外的项心) (4)题型2:若干常规构造模型组合(附:万能积分法) (6)二、拓展:不定积分 (8)一、原函数与不定积分 (8)二、基本积分表 (8)三、不定积分的性质 (9)四、计算方法 (9)NO.1第一类换元积分法(凑微分法) (9)NO.2第二类换元法 (10)N0.3分部积分法(凑微分法) (11)三、典型例题 (12)一、技能储备【引例】已知函数丁= /(工)的图象关于y轴对称,且当x£ (-oo,0),/(x) + xf\x) < 0成立,。

=2%/(2°2), b = log,3./(lo g;r3), c = k)g3 9・7(k)g3 9),则的大小关系是()A.a >h>cB.a >c>hC.c>b>aD.h>a>c类似于引例,在已知/(x) + 0"(x)<O这种导数相关式(等式或不等式)的前提下,让我们解与/(X)相关的不等式或比较大小的题目,这种问题的难点是如何通过旻数担差式构造出与/(X)相关的单调性可推算的新函数(有时也直接求出/(X)的解析式)进而求解问题构造新函数是解决这类问题的通法也是难点,下面我们就以曼效也去式的种类为依据进行分类,分别介绍不同类型下如何构造新函数.情境一.常规构造【解题模型】1. 若/(X)+.尸(X)> 0,则可构造函数G(x)=若• /(%);2. 若/(x)—r(x)>。

,则可构造函数G(x) = /区;e x3. ①若/(x) + 2/”(x) > 0 , 则可构造函数G(x)=「1/(x);\_则可构造函数G(x) = /' • /(x), (nsN* ).4. ①若/。

导数同构136题(含解析)

导数同构136题(含解析)

精挑同构试题1.已知函数)0()(≠=a Inx ae x f x ,若)1,0(∈∀x ,xIna x x f +<2)(,求a 的取值范围.解析:由xx x xaeae In x Inx x Inx ae Ina x Inx ae xIna x )(2<⇒>+⇒>+对)1,0(∈∀x 恒成立。

构造)1,0(,)(∈=x xInxx h ,)(x h 单增,所以:max ][x x xe x a e x a ae x >⇒>⇒<,因为ea x 1)1,0(≥∴∈2.已知aInx e x f x-=)(,若对任意),0(+∞∈x ,不等式aIna x f >)(恒成立,求正实数a 的取值范围.解析:InaInx eaIna aInx e Inax x>-⇒>--Inx e Inx x Inx x e Inx Ina x +=+>-+⇒-构造x e x g x +=)(,单增,所以:1)1(][min =--=-<⇒-<⇒>-x x Inx x Ina Inx x Ina Inx Ina x 3.设实数0λ>,若对任意的(0,)x ∈+∞,不等式0≥-λλInxe x恒成立,则λ的取值范围是().解:Inx x xInxe xInx xe Inxe=≥⇒≥-λλλλ0,即Inx x ≥λ恒成立,max ln 1x x eλ⎛⎫≥= ⎪⎝⎭,4.已知xaInx e x≥-1恒成立,则实数a 的最大值为()。

答案:15.设实数0m >,若对任意的x e ≥,若不等式2ln 0mx x x me -≥恒成立,则m 的最大值为().解:22ln ln 0ln ln ln ln mm m m x xxx x m m m x x me x x me x x e e x e x x x x-≥⇒≥⇒≥⇒≥⇒≤,得()min ln m x x e ≤=(注意定义域).6.对任意的(0,)x ∈+∞,不等式32ln 0mx x x me -≥恒成立,求实数m 的最大值.解:由题意得2322ln 22ln ln ln m m m x xxx m m x x me x x e e x e x x≥⇒≥⇒≥,即2ln m x x ≥,()2min 2ln m x x e⇒≤⋅=-.7.已知函数()()ln 133f x m x x =⋅+--,若不等式()3xf x mx e >-在()0,x ∈+∞上恒成立,则实数m 的取值范围是().解:由题意得:()()()ln 133331ln 1x xm x x mx e e x mx m x +-->-⇒-->-+,右边凑1,得()()()()()()()ln 1311ln 1131ln 11x x xe x m x x e x m ex +-->+-+-⇒-->-+-得3m ≤.(说明:定义域大于零,所以()ln 1x x >+,3m =成立).8.对0>∀x ,不等式0ln ln 22≥+-a x ae x 恒成立,则实数a 的最小值为_____..解:由题意得:ax Ina x ae a x aex x=-≥⇒≥+-ln ln 20ln ln 222ee x a a x In x e a x In a x In a x xex a xIn x21)(22min 22=≥⇒≥⇒=≥⇒9.若a Inx x xx +-≥+∞∈),,0(恒成立,则a 的最大值(C )A.1B.e1 C.0D.e-解析:01111≤⇒++--≥⇒+-≥----a a Inx x e a Inx x e Inx x Inx x 10.已知关于x 的不等式13≥--aInx x xex 对于任意的),1(+∞∈x 恒成立,则实数a 的取值范围(B )A.]1,e -∞-(B.]3,-∞-(C.]2,∞-( D.]2,2e -∞-(解析:113113-3-3++≥+-=++≥⇒≥--+aInx x Inx x Inx x e aInx x xe Inx x x.31,3-≤∴>≥-∴a x aInx Inx 11.已知不等式ααx e Inx x x ≥++1,对),1(+∞∈x 恒成立,则实数a 的最小值为()A.e- B.2e -C.e- D.e2-解析:)(ααααInxx x eInx x Inx e x x e Inx x ----+-=+-≥+⇒≥++令)()(1)()(αInx g x g e x g ex x g x x-≥⇒-='⇒+=--e x InxxInx x -≥⇒>-≥⇒-≥⇒ααα)1(,12.对任意的(0,)x ∈+∞,恒有()12ln axa e x x x ⎛⎫+≥+⋅ ⎪⎝⎭,求实数a 的最小值.解:由题意得:22222ln 2ln ln ln ax ax e ax x x x x x x ⋅+≥+=+即22ln 2ln ln ax x ax e ax x e x ⋅+≥⋅+,得2max 2ln 2ln x ax x a x e⎛⎫≥⇒≥= ⎪⎝⎭.13.已知0x 0x A.2In x ≥ B.ex 1<C.002ln 0x x +=D.002ln 0x e x +=解析:222ln 0xx e x +=xIn xe xIn x In x Inx x xe1211112==-=⇒0212=+⇒=⇒ Inx x xInx 14.已知函数ln 1f x x x =-+,1()()对0,x ∀∈+∞恒成立,求实数k 的取值范围.解析:由题意得:()1ln 1xe x k x x --≥-+⎡⎤⎣⎦右边式子凑1得()11ln 11xe x k x x --≥+-+-⎡⎤⎣⎦即()ln(1)1ln 11x x e x k e x +⎡⎤--≥-+-⎣⎦,因为()ln 1x x ≥+当且仅当0x =等号成立,所以满足1k ≤即可当且仅当11x e x --=,即0x =等号成立,所以1k ≤.15.已知函数()()()1ln 1x f x x e g x k x k x +=⋅=⋅++,.设()()()h x f x g x =-,其中0k >,若()0h x ≥恒成立,求k 的取值范围.解析:由题意得:()()1ln 1ln 1ln 1x x x x ek x x e k x x +++⋅>++⇒>++因为()ln 1ln 1x x ek x x ++≥++,当且仅当1x =时等号成立因为x e ex ≥,所以等价于证:()()ln 1ln 1e x x k x x ++≥++当且仅当1x =时等号成立,所以e k ≤.16.已知函数()f x xlnx =,()f x '为()f x 的导函数.证明:2()2x f x e -<解析:由题意得:2ln 2x x x e -<,因为ln xx e≤(当且仅当x e =时等号成立)等价于证明22122x x x x x e e e e --⋅≤⇒≤,构造()2xx g x e=则()()2xx x g x e -'=,易知()()1max 22g x g e-==17.若函数1)()(---=Inx a e x x f 无零点,则整数a 的最大值是()A.3B.2C.1D.0解析:01)()(2>---=Inx a ex x f x)2(11212>-=---++≥---⇒+x a Inx ax Inx x Inx ax e Inx x12=∴<⇒a a 18.已知ln f x x ax a =+-.若-=-的最小值为M ,求证1M ≤.解析:构造()()1xf x e x =-+,则()0f x >则()()11ln ln 1x f x f x e x x x --+=-+--,()()()()()1ln 11ln 11x g x e x a x f x f x a x -=--+=-+--+()()()min1ln 0f x f x -+=,()11x g x e a x-'=--()1g a '=-,接下来分类讨论:1.当0a =,则()min 1g x =,成立;2.当0a >,则()10g a '=-<,得()()min 11g x g ≤=,成立;3.当0a <,则()10g a '=->,得()()min 11g x g ≤=;19.已知函数=+-++.(为常数)若2b =,若对任意的1,x ∈+∞,0f x ≥恒成立,求实数a 的取值范围.解析:由题意得:()()1ln 2201x a x e a x a x -+-++≥≥即()11ln 22ln 22x x a x a x a e a x ax x a e ---++≥-⇒--+≥-,()()1ln 12x a x x e x -⇒-+≥-+右边凑1,得()()1ln 1211x a x x x e --+≥--+⇒()()()()ln ln ln 1ln 1121x x x x a ee ee ---+≥-+,构造()ln 1x x g x e e =-+,则()0g x <,即()()ln 21a g x g x ⋅≥⋅-当且仅当1x =时取等号,所以只需满足2a ≤.20.若1ln e ax xa x-≤+恒成立,求实数a 的取值范围.【解析】1ln e 1ln e e ln 1ax ax ax xa x ax x x x ax x---+≤+⇔+≤+⇔≥-+而()ln e e ln 1x ax ax x x ax --=≥-+,故a ∈R21.已知函数),0(,)(+∞∈-=x ax xx f ,当21x x >时,不等式1221x x <恒成立,则实数a 的取值范围为(D )A.(-∞,]e B.(,)e -∞C.(,)2e-∞D.(-∞,]2e22.设函数)()(Inx x a xe x f x +-=,若0)(≥x f 恒成立,则实数a 的取值范围()A.[]e ,0 B.[]10, C.(]e ,∞- D.[)+∞,e解析:同构思想:],0[)(e a ex e Inx x a e x Inx x ∈∴≥+≥+ 23.(2020成都二诊)已知函数x e x x g xxx f -⋅==)(ln )(,,若存在R x x ∈∞+∈21)0(,,,使得)0()()(21<==k k x g x f 成立,则ke x x ⋅212(的最大值为()A.2e B.eC.24e D.21e 解析:0ln 0ln )(ln )(22211211<==⇔<==⇒⋅==-k eIne x x k e x x x e x x g x x x f x x x x,构造xInxx F =)(,做出图像:因为0<k 容易知道:10,1021<<<<x e x 又因为)(x F 在)1,0(单增所以:2max 222121214][)(2ee k e k e x x Inx x e x k k k x =⇒=⇒=⇒=24.(重庆渝中区模拟)若关于x 的不等式)0(1ln <≥++a x ex a x a x 对任意的()∞+∈,1x 恒成立,则实数a 的最小值是().解析1:a Inx a x Inx e aInx x e x a-=-≥+---)(,令x e x x g -+=)(,因为单增所以:e a Inxxa Inx x a-≥⇒≤-⇒-≥min ][。

运用导数运算法则构造函数的五种题型

运用导数运算法则构造函数的五种题型

【例
1】已知函数
f
(x)
的定义域为
R
,
f
1 2
=

1 2
,对任意的
x R 满足
f
( x)
4x
.当
[0, 2 ] 时,不等
式 f (sin ) + cos 2 0 的解集为( )
A.
7 6
, 11 6
B.
4 3
,
5 3
C.
3
,
2 3
D.
6
,
5 6
【答案】D
【分析】根据题意构造函数 g(x) = f (x) − 2x2 + 1 ,则 g(x) = f (x) − 4x 0 ,所以得到 g(x) 在 R 上为增函
所以 y = g(x) 在 x (− ,− )上单调递增, 22
又因为 f (0) = 0 ,
所以 g(0) = f(0) • cos 0 = 0 , 所以当 x (− , 0) 时, g(x) 0 ,
2 当 x (0, ) 时, g(x) 0 ,
2
f
(x)
=
[ g(x)] cos x
∴ g ( x) 2018 的解集为 (0, + ) ,即不等式 ex f ( x) 2ex + 2018 的解集为 (0, + ) .
故选 A.
【点评】若 f ( x) + f ( x) k ,可构造 y = f ( x) ex − kx . 【变式训练】定义在 R 上的奇函数 f ( x) 的导函数满足 f ( x) f ( x) ,且 f ( x) = f ( x + 4) ,若 f (2019) = −e ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档