热水管网的水力计算
热水管网的水力计算

方法:同冷水,但因水温高, 和粘滞系数小 于冷水,且考虑结垢等因素,水力计算采用热 水水力计算表
二、回水管网的计算 (1) 管网循环流量 管段的热损失:
Ws
DLK (1h)(tc
tz 2
tj)
Ws——计算管段热损失,kJ/h; K——无保温时管道的传热系数, kJ/(m2•h•℃) ;
2 采用蒸汽间接加热:
Gmh
1.1
~
1.2 3.6Qh
h
Gmh——蒸汽间接加热热水时的蒸汽耗量,kg/h;
——蒸汽的气化热,可查表决定;
Qh——设计小时耗热量,W。 3 采用热水间接加热
Gms
1.1
~
1.2
C
B
3.6Qh
tmc t
mz
Gms——蒸汽间接加热热水时的蒸汽耗量,W; tmc——热媒热水供应温度,℃; tmz——热媒热水回水温度,℃;
Q、CB同上。
8-3 加热器及贮存设备的选择计算
一、局部加热设备计算 二、集中热水供应加热设备选择计算 1. 传热面积的计算
Fp——水加热器的传热面积,m2; Qz——制备热水所需的热量,可按设计小时耗热量计算,W; ε——传热效率的修正系数, α——热损失附加系数,一般取α=1.1~1.2 ;
具体算法
6)计算配水管网的热损失,求总循环流量。 将∑Ws代入下式求解热水系统的总循环流量Qx :
7)复核各管段终点的水温
8)计算循环管网的总水头损失 H——循环管网的总水头损失,kPa; 损Hp失—,—k循Pa环;流量通过配水计算管路的沿程、局部 H损x—失—,循kP环a;流量通过回水计算管路的沿程、局部
定时供应旅馆、住宅、医院、集体宿 舍、工业企业卫生间、浴室
热水热力管网的水力计算

热水管网的水力计算是在完成热水供应系统布置,绘出热水管网系统图及选定加热设备后进行的。
水力计算的目的是:计算第一循环管网(热媒管网)的管径和相应的水头损失;计算第二循环管网(配水管网和回水管网)的设计秒流量、循环流量、管径和水头损失;确定循环方式,选用热水管网所需的各种设备及附件,如循环水泵、疏水器、膨胀设施等。
第一循环管网的水力计算:1.热媒为热水:以热水为热媒时,热媒流量G按公式(8-8)计算。
热媒循环管路中的配、回水管道,其管径应根据热媒流量G、热水管道允许流速,通过查热水管道水力计算表确定,并据此计算出管路的总水头损失Hh。
热水管道的流速,宜按表8-45选用。
当锅炉与水加热器或贮水器连接时,如图8-12所示:热媒管网的热水自然循环压力值Hzr按式(8-35)计算:式中:Hzr—热水自然循环压力,Pa;Δh—锅炉中心与水加热器内盘管中心或贮水器中心垂直高度,m;p1—锅炉出水的密度,kg/m3;p2—水加热器或贮水器的出水密度,kg/m3。
当Hzr>Hh时,可形成自然循环,为保证运行可靠一般要求(8-36):当Hzr不满足上式的要求时,则应采用机械循环方式,依靠循环水泵强制循环。
循环水泵的流量和扬程应比理论计算值略大一些,以确保可靠循环。
2.热媒为高压蒸汽:以高压蒸汽为热媒时,热媒流量G按公式(8-6)或(8-7)确定。
热媒蒸汽管道一般按管道的允许流速和相应的比压降确定管径和水头损失。
高压蒸汽管道的常用流速见表8-13。
确定热媒蒸汽管道管径后,还应合理确定凝水管管径。
第二循环管网的水力计算:1.配水管网的水力计算配水管网水力计算的目的主要是根据各配水管段的设计秒流量和允许流速值来确定配水管网的管径,并计算其水头损失值。
(1)热水配水管网的设计秒流量可按生活给水(冷水系统)设计秒流量公式计算。
(2)卫生器具热水给水额定流量、当量、支管管径和最低工作压力同给水规定。
(3)热水管道的流速,宜按表8-12选用。
热水管网的水力计算

第8章建筑内部热水供应系统8.4热水管网的水力计算8.4 热水管网的水力计算8.4热水管网的水力计算热水管网的水力计算是在完成热水供应系统布置,绘出热水管网系统图及选定加热设备后进行的。
水力计算的目的是:计算第一循环管网(热媒管网)的管径和相应的水头损失;计算第二循环管网(配水管网和回水管网)的设计秒流量、循环流量、管径和水头损失;确定循环方式,选用热水管网所需的各种设备及附件,如循环水泵、疏水器、膨胀设施等。
以热水为热媒时,热媒流量G按公式(8-8)计算。
热媒循环管路中的配、回水管道,其管径应根据热媒流量G、热水管道允许流速,通过查热水管道水力计算表确定,并据此计算出管路的总水头损失Hh 。
热水管道的流速,宜按表8-45选用。
8.4.1 第一循环管网的水力计算1.热媒为热水热水管道的流速表8-12当锅炉与水加热器或贮水器连接时,如图8-12所示,热媒管网的热水自然循环压力值H zr 按式(8-35)计算:)(8.921ρρ-∆=h H zr 图8-128.4热水管网的水力计算8.4.1 第一循环管网的水力计算式中H zr —热水自然循环压力,Pa ;Δh —锅炉中心与水加热器内盘管中心或贮水器中心垂直高度,m ;ρ1—锅炉出水的密度,kg/m 3;ρ2—水加热器或贮水器的出水密度,kg/m 3。
当H zr >H h 时,可形成自然循环,为保证运行可靠一般要求(8-36):h H 当H zr 不满足上式的要求时,则应采用机械循环方式,依靠循环水泵强制循环。
循环水泵的流量和扬程应比理论计算值略大一些,以确保可靠循环。
zr H ≥(1.1~1.15)hH2.热媒为高压蒸汽以高压蒸汽为热媒时,热媒流量G按公式(8-6)或(8-7)确定。
热媒蒸汽管道一般按管道的允许流速和相应的比压降确定管径和水头损失。
高压蒸汽管道的常用流速见表8-13。
高压蒸气管道常用流速表8-13 确定热媒蒸汽管道管径后,还应合理确定凝水管管径。
供热工程热水网络的水力计算及水压图课件

• 供热工程热水网络概述 • 水力计算的基本原理与方法 • 热水网络的水压图绘制 • 热水网络的水力计算实例 • 热水网络的水压图实例分析 • 热水网络的维护与管理
01
供热工程热水网络概述
CHAPTER
热水网络的定义与特点
定义 特点
热水网络的重要性及应用
步骤
行水压图的绘制,如CAD、 Excel等。
01
02
1. 收集管网相关数据,包括管
网的拓扑结构、管径、长度、
高程等。
03
2. 根据管网数据建立管网的数
学模型,包括节点方程和管道
方程。
04
3. 利用计算机软件进行管网的
水力计算,求解制水压图,
将节点压力和管道阻力以图形
热水网络的日常维护
01
02
定期检查
清洗与保养
03 阀门与附件检查
热水网络的故障诊断与处理
故障识别
诊断方法
修复措施
热水网络的节能减排措施
优化调度
根据用热需求,合理调 度供热机组,降低能耗。
保温措施
废热回收
智能化控制
对热水管网进行保温处 理,减少热量损失。
利用技术手段回收废热, 提高能源利用效率。
重要性
应用
热水网络广泛应用于住宅、商业、工 业等领域,提供热水供应和采暖服务, 满足生产和生活的需要。
热水网络的发展历程与趋势
发展历程
发展趋势
02
水力计算的基本原理与 方法
CHAPTER
水力计算的定义与目的
定义
目的
水力计算的基本原理
伯努利方程
水在流动过程中,由于流速的变化, 会产生水头损失。伯努利方程是描述 水流中任意两点的压力、速度和位置 之间的关系。
热力管网工程水力计算

热力管网工程水力计算一、水力计算5.1 计算条件与计算参数5.1.1 依据热用户对蒸汽参数的要求,确定管网水力计算参数如下:(1)中压负荷:最大蒸汽流量 171.2t/h;最小蒸汽流量 144t/h。
(2)低压负荷:最大蒸汽流量 193.8t/h;最小蒸汽流量 150.8t/h。
5.1.2 计算中需要控制的参数如下:末端低压用户参数:P:~0.5MPa,T:150~180℃;末端中压用户参数:P:2.3~2.4MPa,T:230~240℃。
5.2 热网工程系统水力计算5.2.1 水力计算依据本项目设计根据近期最大负荷确定管径,综合投资比较,确定最优管径方案。
至用户的管径是根据用户的参数要求、负荷情况确定的。
5.2.2 水力计算结果最小负荷144t/h 时,从电厂以3.3MPa,365℃外供,主管管径DN700,能够满足各用户的参数需求。
最大负荷193.8t/h 时,从电厂以1.6MPa,285℃外供,主管管径DN800,能够满足各用户的参数需求。
最大负荷150.8t/h 时,从电厂以1.35MPa,305℃外供,主管管径DN800,能够满足各用户的参数需求。
5.2.3 水力计算结果汇总表5.2.3-1 水力计算结果汇总表5.2.4 安全运行负荷管道在超低负荷运行时,管道沿途和用户末端会产生大量冷凝水,为避免水击撞管造成管道系统破坏,适当位置设大流量连续疏水,保证冷凝水及时排出同时加强沿途管网安全巡视,保障管网疏排水的畅通和对周围环境的安全防护。
此外,管道在超低负荷运行状态下管损十分突出,对管道实际运行的经济性将大大折扣。
根据管网设计计算要求,通过水力计算模拟结果确定管网运行的安全负荷临界位置;结合本项目热网布置特点,运行热负荷流量主要集中在管网中后段金峰镇的风阳工业园区范围内(图F 、G 点附近),该处集中分布中压约50%的热负荷和低压约40%的热负荷,通过计算该位置在最低负荷运行状态下介质过热程度可作为衡量项目管网的安全运行状态的重要依据;通过水力计算得出低压运行负荷在最大设计负荷50%状态下(流量约97t/h ),末端参考点(F 、G 点)的介质参数近似饱和状态;中压运行负荷在最大设计负荷45%状态下(流量约77t/h ),末端参考点(F 、G 点)的介质参数近似饱和状态;考虑风阳工业园区内介质参数为理论计算的末端参数,实际运行需要对此处及后段管网沿途设置大流量连续疏水,加强运行巡视等工作;此状态下低压流量设定为低压参数管网最低安全运行负荷。
供热工程第九章热水网络的水力计算和水压图

(1)、横坐标表示供热系统的管段单程长度,以米为单位。
下半部:表示供热系统的纵向标高,包括管网,散热器,
循环水泵,地形及建筑物的标高.对于室外热水
供热系统,当纵坐标无法将供热系统组成表示
(2)、纵坐标
清楚时,可在水压图的下部标出供热系统示意图.
上半部:供热系统的测压管水头线,包括动水压线(表示供
热系统在运行状态下的压力分布)和静水压线(在
(4)画动水压线
O点处的压头不论在系统工作时还是停止运 行时,都是不变的,等于膨胀水箱的高度, 那么动压线的起点与静压线在此处重合, 即图中的O点。当系统工作时,由于水泵驱 动水在系统中循环流动,A点的测压管水头 必然高于O点的测压管水头,两者之间的差 值就是OA的压力损失,这样A点的测压管 水头就确定了,即图中的点,同理可以确 定其它各点的测压管水头高度。
二、绘制热水网路水压图的步骤和方法
1、以网路循环水泵的中心线的高度(或其它方便的高度) 为基准面,一定的比例尺作出标高的刻度。
2、选定静水压曲线的位置。 静水压曲线是网路循环水泵停止工作时,网络上
各点的测压管水头的连接线,是一条水平的直线,静 水压曲线的高度必须满足下列的技术要求: (1)、在与热水网路直接连接的用户系统内,底层散热 器的所承受的静水压力不应超过散热器的承压能力。 (2)、热水网路及与它直接连接的用户系统内,不会出 现汽化和倒空。
一、热水网路压务状况的基本技术要求
1、在与热水网路直接连接的用户系统内,压 力不应超过该用户系统用热设备及其管道 构件的承压能力。(保证设备不压坏)
如柱形铸铁散热器的承压能力 4 105为Pa, 作用在该用户系统最底层散热器的表压力, 无论在网络运行或停止运行时都不得超过 Pa。 4 105
刍议热水管网的水力计算

公用工程设计l
Pbc tts egl ul Uii sn i le D i i
【 章 编号 】 0 79 6 (0 6 0 -0 70 文 10 .4 7 2 0 ) 80 7 -3
刍汉 热 水 管 同的水
■ 简 煦根 , 毅 ( 边 农二 师设 计院有 限责任公 司, 新疆 库 尔勒 8 4
1 热水 管网水 力计算 的特 点
热水管网水力计算的方法 、 步骤和原理等均 与
生 活 给 水 管 网 水 力 计 算 相 同 , 由于 热 水 与 生 活 给 但 水 的计 算 水温 不 同 , 水 管 网的 水 力 计 算 又 有 着特 热
殊之处 。
式 , 给水计算值 的基础 上乘 以温 度修正 系数 。 应在 建议在 ( 觎
[ e r] h tw t :tmprtr; h da l ac l i ; K y wod o ae e e ue y ui c l a o r a r c u tn
om l: f r u a mo i e o f c e t df dc e i i in
4 由于热 水 管 网 在 运 行 中不 断 补 进 冷 水 , 冷 ) 而 水 中 溶 解 氧 和 侵 蚀 性 二 氧 化碳 等会 对 管 壁 产 生 腐
范》 修 订 时对 热水 管 因结垢 而 引起 的管径缩 小 问题 做 出规
定。
【 关键 词】 水; 热 温度 ; 力计 算; 式 ; 水 公 修正 系数
【 中图分类号】 U8 2. T 2 ̄ 1 【 文献标 志码】 A
1热 水 管 网 中 的热 水 水 温 比生 活给 水 管 网 中的 ) 冷 水 水 温 高 。在 热 水 供 应 系 统 中 , 热 设备 出 口水 加 温 一 般 为 6 ℃ ~ 7 , 配 水 点 水 温 一 般 不 低 于 0 0C o 5 ℃, 回加热 设备循环 回水温度 不低于 5 ℃, 5 返 O 故热 水 管道水力计算 中热 水 水 温 一 般 采取 平 均 值 6  ̄ 0C。
供热管道的水力计算及热力站主要设备选择

供热管道的水力计算及热力站主要设备选择本文从设计角度讲述了供热管网水力计算的方法及热力站内主要设备选型和注意事项。
标签:供热系统;水力计算;设备选型集中供热系统热水管道的水力计算是管道设计中及其重要的部分,通过水力计算结果不仅可以确定热水网路各管段的管径,还可以确定网路循环水泵的流量和扬程。
在保证系统管网水力平衡的基础上,再进行合理的选用热力站内的设备,是提高供热质量,降低供热成本的前提。
以下将介绍水力计算和设备选型的方法及注意事项。
一、管网水力计算方法在热水网路中经常采用当量长度法,亦即将管段的局部损失折合成相当的沿程损失计算管网总损失。
在水力计算前首先要确定热力网的设计流量,应按下式计算:G=3.6Q/c(t1-t2)G—供热管网设计流量,t/hQ—设计热负荷,kwc—水的比熱容,kJ/(kg.℃)t1—供热管网供水温度,℃t2—供热管网回水温度,℃采用当量长度法进行水力计算时,热水网路中管段的总压降等于ΔP=R(l+ld)=RlzhPaR—每米管长的沿程损失(比摩阻),Pa/ml—管道的实际长度,mld—局部阻力的当量长度,mlzh—管段的折算长度,m其中局部阻力的当量长度ld可按管道实际长度l的百分数来计算,即ld=αjlm αj—局部阻力当量百分数,%,对于小于450mm无方形补偿器的管道αj=0.3。
供热管道的平均比摩阻R值,对于确定整个管网的管径起着决定性作用,如选用比摩阻R值越大,需要的管径越小,因而降低了管网的基建投资和热损失,但网路循环水泵的基建投资和运行电耗随之增大,这就需要确定一个经济比摩阻,使系统在规定年限内总费用最小。
对于采用间接连接的热水网路系统,根据运行经验,主线的平均比摩阻尽量小于100Pa/m,而支线的平均比摩阻可以在小于300Pa/m的范围内选择。
根据区域大小不同有所区别,例如对于建筑群内的供热二次管网,整体外网损失控制在5m左右,这样热力站内循环水泵扬程不会过高,供热管道的管径也较为适中,整个系统容易水力平衡,投入运行后易于调节,基建投资也较为合理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a
3
一.设计用水量计算
1 按用水单位数计算:
Qr
kh
mqr 24
Qr——设计小时用水量,L/h;
m——用水计算单位数,人数或床位数;
Kh——热水小时变化系数(P246表8.2.1~8.2.3);
qr—— 热 水 用 水 量 定 额 , L/ 人 ·d 或 L/ 床 ·d 。
(P240表8.1.1) 。
a
17
•tz 的计算
假设水温落与管道表面积成正比,近似算出单位面 积的温降值,计算各管段的水温降落值。
t T Fຫໍສະໝຸດ tz tctfΔt——配水管网中的面积比温降,℃/㎡; ΔT——配水环路起点和终点的温差,ΔT=5~15℃; F——计算管路的总外表面积,㎡; tc 、tz——计算管路起点、终点的水温,℃; Σf ——计算管段的散热面积,㎡,可查表计算。
第9章 热水供应系统计算
•水质、水温及热水定额 •热水量、耗热量、热媒耗量的计算 •加热器及贮存设备的选择计算 •热水管网的水力计算
a
1
9-1 水质、水温及热水用水量定额
一 、水质
➢ 《生活饮用水卫生标准》; ➢ 钙镁离子含量:
用水量<10m3/ d (60℃) 不处理; 用水量≥10m3 / d且总硬度(以CaCO3计)>300mg/L,处理。
第二循环系统:(配水管、回水管系统) 目的:确定热水系统的D、
h h
a
12
第二循环系统的计算
一.配、回水管系计算 1.配水管系
内容:确定DN及 方法:同冷水,采用h热水水力计算表.
v 1 .2 m /s , d m i2 nm 0m
2.回水管系
不配水,仅通过用以补偿配水管系热损失的循环流
量。
a
W——设计小时耗热量,kJ/h; Qr——设计小时热水量,L/h; CB——水的比热,kJ/Kg·℃; tr——热水温度,℃; tL——冷水计算温度,℃。
a
7
三、热媒耗量计算
1 蒸汽直接加热:
Gm
1.1~1.23.6W
imir
GWm————设直计接小加时热耗的热蒸量汽,耗k量J/,h;kg/h; im——蒸汽热焓,kJ/h,按蒸汽绝对压力查表确定(P248表
二 、水温
冷水按P244表8.1.5选用。热水按P244表8.1.4选用。
三、 用水定额
1 按建筑性质和卫生器具完善程度, P240表8.1.1。 2 按建筑性质和卫生器具的单位用水量, P241表8.1.2。
a
2
9-2 热水量、耗热量、 热媒耗量的计算
• 设计用水量计算 • 耗热量计算 • 热媒耗量计算
tZ'tc
wx CBqx
tc
t
a
20
6)计算循环管网的总水头损失
H(HpHx)hj
H——循环管网的总水头损失,kPa; Hp——循环流量通过配水计算管路的沿程、局
部损失,kPa;
a
18
2)计算配水管网总的热损失
Wx ws
3)总循环流量:
Qx
Ws
CB(tc tz)
Qx——循环流量,L/s;
CB——水的比热,kJ/kg•℃;
tc、tz——计算管路起点、终点的水温,℃;
Ws——计算管段的热损失,kJ/h。
a
19
4)计算循环管路各管段循环流量qx求定
( 具体算法)
5)复核各管段的终点水温
Qr Ql Qh QrtrCBQltlCBQhthCB
流量平衡 热平衡
热水占混合水的百分数:
Kr
Qr Qh
th tr
tl tl
tr——热水系统供水温度, th——混合后卫生器具出水温度,℃ tL——冷水计算温度,℃
冷水按P244表8.1.5选用。热水按P244表8.1.4选用。
a
6
二、耗热量计算
W C Btr tlQ r
a
15
二、机械循环管网的计算
内容: 确定管网的自然压力 回水管经 循环流量 循环流量在配水、回水管路中的水头损失。
a
16
1.全日制热水供应系统 1)管段热损失:
w sDL (1 K )t(c 2tztj)
ws——计算管段热损失,kJ/h; K——无保温时管道的传热系数, kJ/(m2•h•℃) ; η——保温系数; tDj————计管算道管的段外周径围,空m气;温(度见表,9℃-3;) L——计算管段的长度,m; ttcz————计计算算管管段段的的终起点点水水温温,,℃℃。;
Gms——热媒热水的耗量,kg/h;
tmc——热媒热水供应温度,℃;
tmz——热媒热水回水温度,℃;
a
9
9-3 加热器及贮存设备的选择计算
1. 传热面积的计算
FP
Q
Ktj
Fp——水加热器传热面积,m2; Q——所需的热量,按设计小时耗热量计算,w;
ε——传热效率修正系数,
α——热损失附加系数,一般取α=1.1~1.2 ;
8.2.4)。
ir——蒸汽与冷水混合后的热焓,kJ/kg, ir=4.187× tr
a
8
2 蒸汽间接加热:
Gmh1.1~1.23.6hW
Gmh——间接加热的蒸汽耗量,kg/h; rh——蒸汽气化热,查表(P248表8.2.4) ; W——设计小时耗热量,kJ/h。
3 热水间接加热
Gms1.1~1.2CB3tm.c 6tm W z
13
循环流量的目的:补偿配水管网在用水低峰时管 道散失的热量,保证各配水点水温。
循环方式
自然循环
机械循环
全日制循环 定时循环
a
14
自然循环 (见图9-6)
实现自然循环条件:Hzr >1.35Hx
循环作用水头:
H z r1 h 0 2 1
Hzr——第二循环系统的自然循环压力值,Pa; ⊿h——锅炉或水加热器的中心至立管顶部的标高差,m; γ2——最远处立管管段中点的水的比重,kg/m3; γ1——配水主立管管段中点的水的比重,kg/m3。
a
4
一、设计用水量计算
2 按使用热水的卫生器具数计算
Q r K rqhn0b
Qr——设计小时用水量,L/h; qh—— 卫 生 器 具 的 小 时 用 水 定 额 , L/h ; ( P241 表 8.1.2)
b——同类卫生器具同时使用百分数;
Kr——热水混合系数。
a
5
Kr热水占混合水的百分数系数求定:
K——传热系数,W/m2•℃;
⊿tj——热媒和被加热水的计算温差,℃;具体计算方法
a
10
2 贮水器容积的计算 1)理论法: 热水用水曲线→逐时耗热曲线→绘出耗热积分曲线
→拟定供热曲线 2)经验法 贮水器的贮热量可按经验,由下表确定
a
11
9-4 热水管网的水力计算
第一循环系统: 目的:确定热媒系统的D、