武汉大学数值分析

合集下载

武大数院培养方案

武大数院培养方案

武大数院培养方案武汉大学数学与统计学院本科生培养方案2014 Autumn及一些数学软件),具有编写简单应用程序的能力;4.了解数学科学的某些新发展和应用前景;5.有较强的语言表达能力,掌握资料查询、文献检索及运用现代信息技术获取相关信息的基本方法,具有一定的科学研究和教学能力。

四、学制和学分要求:学制:4年学分:150学分五、学位授予:理学学士学位六、专业主干(核心)课程学科基础课:数学分析,高等代数与解析几何,抽象代数,实变函数,常微分方程,泛函分析,复变函数,广义函数与偏微分方程,概率论,拓扑学,数值分析(1),微分几何。

其他主干课程:微分流形,代数拓扑,交换代数,调和分析,数学模型,数学实验,大学物理,计算机基础等,数值分析(2),C语言,以及根据应用方向选择的基本课程。

双语课程:复变函数(Complex Variables Functions)、线性控制系统(Linear Control Systems)、微分几何(Differential Geometry)。

七、实践性教学环节安排:主要实践性教学环节:包括计算实习、科研训练、生产劳动和毕业论文等,一般安排10~20周。

八、毕业条件及其它必要的说明:按本科生培养方案修满150学分(具体见培养方案),通过国家英语四级考试。

数学与统计学院基地班本科人才培养方案数学与统计学院数学与应用数学专业本科人才培养方案一、专业代码:070101专业名称:数学与应用数学(Mathematics and Applied Mathematics)二、专业培养本专业有两个方向:应用数学方向和金融数学方向。

应用数学方向培养掌握数学科学的基本理论与基本方法,具备运用数学知识、使用计算机解决实际问题的能力,受到科学研究的初步训练,能在科技、教育和经济部门从事研究、教学工作或在生产经营及管理部门从事实际应用、开发研究和管理工作的高级专门人才。

金融数学方向培养具有良好的数学素养,掌握金融数学、经济学和金融学的基本理论和方法,具备运用所学的数学与金融分析方法进行经济、金融信息分析与数学处理的能力,能够胜任在银行、保险、证券、信托等金融部门从事金融业务性、技术性以及管理性工作,胜任在企业从事财务、理财、风险管理工作,胜任在教育、科研部门从事教学、科研工作的复合型人才。

武汉大学研究生课程(计划)表

武汉大学研究生课程(计划)表

武汉大学研究生课程(计划)表2003–2004学年第1学期水利水电学院2002-2003级研究生3. “教学实践”栏应填:实习内容及名称、时间、人数、周数、学时、负责教师等。

填表时间:年月日填表人:4. 有教学辅助手段要求的:如幻灯(幻)、投影(投)、录象(录)等填在“教室”栏内。

武汉大学研究生课程(计划)表2003–2004学年第1学期水利水电学院2002-2003级研究生3. “教学实践”栏应填:实习内容及名称、时间、人数、周数、学时、负责教师等。

填表时间:年月日填表人:4. 有教学辅助手段要求的:如幻灯(幻)、投影(投)、录象(录)等填在“教室”栏内。

武汉大学研究生课程(计划)表2003–2004学年第1学期水利水电学院2002-2003级研究生说明:1. “课类”包括:必修(必)、限选(限)、任选(选)。

2. “职称”栏包括:教授(教)、副教授(副)、讲师(讲)、助教(助),以此类推。

主管院长:3. “教学实践”栏应填:实习内容及名称、时间、人数、周数、学时、负责教师等。

填表时间:年月日填表人:4. 有教学辅助手段要求的:如幻灯(幻)、投影(投)、录象(录)等填在“教室”栏内。

武汉大学研究生课程(计划)表2003–2004学年第1学期水利水电学院2002-2003级研究生说明:1. “课类”包括:必修(必)、限选(限)、任选(选)。

2. “职称”栏包括:教授(教)、副教授(副)、讲师(讲)、助教(助),以此类推。

主管院长:3. “教学实践”栏应填:实习内容及名称、时间、人数、周数、学时、负责教师等。

填表时间:年月日填表人:4. 有教学辅助手段要求的:如幻灯(幻)、投影(投)、录象(录)等填在“教室”栏内。

武汉大学研究生课程(计划)表2003–2004学年第1学期水利水电学院2002-2003级研究生说明:1. “课类”包括:必修(必)、限选(限)、任选(选)。

2. “职称”栏包括:教授(教)、副教授(副)、讲师(讲)、助教(助),以此类推。

数值分析 李庆扬 王能超 易大义著华中科技大学出版社第5版 答案

数值分析 李庆扬 王能超 易大义著华中科技大学出版社第5版 答案

第一章 绪论1.设0x >,x 的相对误差为δ,求ln x 的误差。

解:近似值*x 的相对误差为*****r e x x e x x δ-===而ln x 的误差为()1ln *ln *ln **e x x x e x =-≈进而有(ln *)x εδ≈2.设x 的相对误差为2%,求n x 的相对误差。

解:设()n f x x =,则函数的条件数为'()||()p xf x C f x =又1'()n f x nx-= , 1||n p x nx C n n-⋅∴==又((*))(*)r p r x n C x εε≈⋅ 且(*)r e x 为2((*))0.02nr x n ε∴≈3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, *456.430x =,*57 1.0.x =⨯解:*1 1.1021x =是五位有效数字;*20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =⨯是二位有效数字。

4.利用公式(2.3)求下列各近似值的误差限:(1) ***124x x x ++,(2) ***123x x x ,(3) **24/x x . 其中****1234,,,x x x x 均为第3题所给的数。

解:*41*32*13*34*151()1021()1021()1021()1021()102x x x x x εεεεε-----=⨯=⨯=⨯=⨯=⨯***124***1244333(1)()()()()1111010102221.0510x x x x x x εεεε----++=++=⨯+⨯+⨯=⨯***123*********123231132143(2)()()()()1111.10210.031100.031385.6101.1021385.6102220.215x x x x x x x x x x x x εεεε---=++=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯≈ **24****24422*4335(3)(/)()()110.0311056.430102256.43056.43010x x x x x x x εεε---+≈⨯⨯+⨯⨯=⨯=5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为343V R π=则何种函数的条件数为23'4343p R V R R C VRππ===(*)(*)3(*)r p r r V C R R εεε∴≈=又(*)1r V ε=故度量半径R 时允许的相对误差限为1(*)10.333r R ε=⨯≈6.设028Y =,按递推公式1n n Y Y -=-(n=1,2,…)计算到100Y 。

数值分析课程第五版课后习题答案(李庆扬等)

数值分析课程第五版课后习题答案(李庆扬等)

数值分析课程第五版课后习题答案(李庆扬等)数值分析课程第五版课后习题答案(李庆扬等)第一章:数值分析导论1. 解答:数值分析是一门研究如何使用计算机来解决数学问题的学科。

它包括了从数学理论到计算实现的一系列技术。

数值分析的目标是通过近似的方式求解数学问题,其结果可能不是完全精确的,但是能够满足工程或科学应用的要求。

2. 解答:数值分析在实际应用中起着重要的作用。

它可以用于求解复杂的数学方程、计算机模拟及建模、数据的统计分析等等。

数值分析是科学计算和工程计算的基础,对许多领域都有着广泛的应用,如物理学、经济学、生物学等。

3. 解答:数值方法指的是使用数值计算的方式来求解数学问题。

与解析方法相比,数值方法一般更加灵活和高效,可以处理一些复杂的数学问题。

数值方法主要包括了数值逼近、插值、数值积分、数值微分、线性方程组的求解、非线性方程的求根等。

4. 解答:计算误差是指数值计算结果与精确解之间的差异。

在数值计算中,由于计算机的有限精度以及数值计算方法本身的近似性等因素,都会导致计算误差的产生。

计算误差可以分为截断误差和舍入误差两种。

第二章:数值误差分析1. 解答:绝对误差是指实际值与精确值之间的差异。

例如,对于一个计算出的数值近似解x和精确解x_0,其绝对误差为| x - x_0 |。

绝对误差可以衡量数值近似解的精确程度,通常被用作评估数值计算方法的好坏。

2. 解答:相对误差是指绝对误差与精确解之间的比值。

对于一个计算出的数值近似解x和精确解x_0,其相对误差为| (x - x_0) / x_0 |。

相对误差可以衡量数值近似解相对于精确解的精确度,常用于评估数值计算方法的收敛速度。

3. 解答:舍入误差是由于计算机的有限精度而引起的误差。

计算机中使用的浮点数系统只能表示有限的小数位数,因此在进行数值计算过程中,舍入误差不可避免地会产生。

舍入误差会导致计算结果与精确结果之间存在差异。

4. 解答:误差限度是指对于给定的数值计算问题,所能容忍的误差范围。

数值分析第五版第5章习题答案

数值分析第五版第5章习题答案

第5章
)矩阵行列式的值很小。

)矩阵的范数小。

)矩阵的范数大。

(7)奇异矩阵的范数一定是零。

答:错误,

•可以不为0。

(8)如果矩阵对称,则|| A||1 = || A||∞。

答:根据范数的定义,正确。

(9)如果线性方程组是良态的,则高斯消去法可以不选主元。

答:错误,不选主元时,可能除数为0。

(10)在求解非奇异性线性方程组时,即使系数矩阵病态,用列主元消去法产生的误差也很小。

答:错误。

对于病态方程组,选主元对误差的降低没有影响。

(11)|| A ||1 = || A T||∞。

答:根据范数的定义,正确。

(12)若A是n n的非奇异矩阵,则
)
(
cond
)
(
cond1-
=A
A。

答:正确。

A是n n的非奇异矩阵,则A存在逆矩阵。

根据条件数的定义有:
1
111111 cond()
cond()()
A A A
A A A A A A A
-
------
=•
=•=•=•
习题
如有侵权请联系告知删除,感谢你们的配合!。

武汉大学《数值分析》课件-第7章

武汉大学《数值分析》课件-第7章


b
n
a
可知 t [ 0, n] .
由Lagrange插值基函数有
lk
(x)
lk
(a
th)
n i0,ik
x xk
xi xi
n ti i0,ik k i
(1)nk
n
ti
k !(n k )! i0,ik
而 dx hd t b a dt,所以
n
b a
lk
(x)dx
n 0
再用 h/2 代替 h , 使(6)式变为
F*
F2
(h)
1 8
k2h2
3 32
k3h3
(7..).
用4乘(7)式减去(6)式,消去含 h2的项,得
F*
[
F2
(
h 2
)
F2 (h
/
2) 3
F2 (h)]
1 8
(k83)h3
...
同样记
而 I 3( f ) b 6 a (1 4 1) (b a )
有 R ( ,1) 0
I(
f
)
I3(
f
)
R( ,
f
)
b a{ f 6
(a) 4
f
(a
b) 2
f
(b)}
R( ,
f
)
(1)当 f ( x) x时 , I ( f ) b 2 a2 I3( f ) b 6 a ( a 22a 2b b ) b2 2 a2
| R(1, f ) | M n1 hn2 n n (t i)dt
(n 1)!
0 i0
(5)
验证求积公式(3)的代数精确度,不用误差估计的(4)式,

武汉大学 计算方法Chapter1_1

武汉大学 计算方法Chapter1_1

定理2:若近似值的相对误差限为 则x至少有n位有效数字.
Er ( x)
1 10 n1 2(a1 1)
证明:由于
x* x x x x x x Er ( x) x
*
(a1 1) 10
(武汉大学出版社)
科普读物
石钟慈院士著 《第三种科学方法:计算机时代的科学计算》 北京 : 清华大学出版社 广州 : 暨南大学出版社, 2000
参考书目 (References)
Numerical Analysis (Seventh Edition)
数值分析 (第七版 影印版)
Richard L. Burden & J. Douglas Faires (高等教育出版社)
这个问题就是要求由函数f(x)=sin x给定的 曲线从x=0到x=48英寸间的弧长L. 由微积分学我们知道,所求的弧长可表示为:
L
48 0
1 ( f ( x)) dx
' 2
48
0
1 (cos x) 2 dx
上述积分为第二类椭圆积分,它不能用普通 方法来计算.
本课程第六章的内容:数值积分
Axb
本课程第三章、第四章的内容: 线性方程组的数值方法!
4、已经测得在某处海洋不同深度处的水温如下:
深度(M) 466 741 950 1422 1634 水温(oC)7.04 4.28 3.40 2.54 2.13 根据这些数据,希望合理地估计出其它深度(如500米, 600米,1000米…)处的水温
8
( x x1 )2 ( y y1 )2 ( z z1 )2 (t1 -t) c 0 ( x x2 )2 ( y y2 )2 ( z z2 )2 (t 2 -t) c 0 ( x x3 )2 ( y y3 )2 ( z z3 )2 (t 3 -t) c 0 ( x x4 )2 ( y y4 )2 ( z z4 )2 (t 4 -t) c 0 ( x x5 )2 ( y y5 )2 ( z z5 )2 (t 5 -t) c 0 ( x x6 )2 ( y y6 )2 ( z z6 )2 (t 6 -t) c 0

武汉大学07数值分析研究生试卷(A)

武汉大学07数值分析研究生试卷(A)

武 汉 大 学2007~2008学年第一学期硕士研究生期末考试试题 科目名称:数值分析 学生所在院: 学号: 姓名: 注意:所有的答题内容必须答在答题纸上,凡答在试题或草稿纸上的一律无效。

一、(15分)给定方程 01)1()(=--=x e x x f(1) 分析该方程存在几个根;(2) 用迭代法求出这些根,精确至2位有效数;(3) 说明所用的迭代格式是收敛的.二、(15分)设线性方程组为0,,221122221211212111≠⎩⎨⎧=+=+a a b x a x a b x a x a(1)证明用Jacobi 迭代法和Gauss-Seidel 迭代法解此方程组要么同时收敛,要么同时发散.(2) 当同时收敛时比较其收敛速度.三、(10分)设A 为非奇异矩阵,方程组b Ax =的系数矩阵A 有扰动A ∆,受扰动后的方程组为b x x A A =∆+∆+))((,若1||||||||1<∆⋅-A A ,试证:||||||||1||||||||||||||||11A A A A x x ∆⋅-∆⋅≤∆--四、(15求)(x f 的Hermite 插值多项式)(3x H ,并给出截断误差)()()(3x H x f x R -=。

五、(10分)已知数据设2)1()(-+=x b ax x f ,求常数a ,b , 使得 ∑==-302min ])([i i i y x f六、(15分)定义内积 ⎰-=11)()(),(dx x g x f g f 在},,1{2x x Span H =中求||)(x x f =的最佳平方逼近元素. 七、(10分)给定求积公式⎰-++-≈hh h Cf Bf h Af dx x f 22)()0()()(试确定C B A ,,,使此求积公式的代数精度尽可能高,并问是否是Gauss 型公式.八、(10分)给定微分方程初值问题⎪⎩⎪⎨⎧=≤≤=2)0(102y x y dxdy用一个二阶方法计算)(x y 在0.1 , 0.2 处的近似值. 取 1.0=h 计算结果保留5位有效数字。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

注:1、教师命题时题目之间不留空白;2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考
注:1、教师命题时题目之间不留空白;2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考
注:1、教师命题时题目之间不留空白;2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考
注:1、教师命题时题目之间不留空白;2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考
注:1、教师命题时题目之间不留空白;2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考
注:1、教师命题时题目之间不留空白;2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考。

相关文档
最新文档