换多目标函数优化设计有关离散变量优化设计问题优化方
第七章多目标函数的优化设计

第七章多目标函数的优化设计在实际问题的解决过程中,往往会面临多个目标的优化设计。
传统的优化方法常常只关注单一目标的优化,无法同时兼顾多个目标的需求。
因此,多目标函数的优化设计成为了一个重要的研究领域。
多目标函数的优化设计涉及到多个目标函数的最优化问题,称为多目标优化问题。
多目标优化问题的解决方法有两类:一类是将多目标优化问题转化为单目标优化问题,另一类是直接解决多目标优化问题。
第一种方法是将多目标优化问题转化为单目标优化问题。
这种方法通常会使用一些合成目标函数或加权目标函数的方式来将多个目标函数合并为一个单目标函数。
常用的方法有加权和法、Tchebycheff法、罚函数法等。
但是这种方法不仅涉及到目标函数之间的比重问题,而且通常只能得到近似解,并不能完全解决多目标优化问题。
第二种方法是直接解决多目标优化问题。
这种方法通常会利用一些优化算法来求解多目标优化问题,如遗传算法、粒子群算法、蚁群算法等。
这些算法通常是基于群体智能的思想,通过不断的迭代来寻找最优解的近似解。
这些算法通常会生成一组近似最优解,即所谓的帕累托解集。
帕累托解集是多目标优化问题的解集,其中的解称为帕累托解。
帕累托解的定义是指在解集中没有其他解能够改进一个解的一些目标函数值而不损害其他目标函数值的解。
帕累托解集的大小和分布会影响多目标优化问题的解决质量。
因此,如何有效地生成帕累托解集成为了多目标优化问题研究的一个重要方向。
除了解决多目标优化问题的方法外,还需要考虑如何对多目标优化问题的解进行评价。
常用的评价指标有全局评价指标和局部评价指标。
全局评价指标能够反映整个帕累托解集的性能,常用的指标有最小距离、全局适应度值、发散度等。
局部评价指标用于评价帕累托解集中的个体解的性能,常用的指标有支配关系、可行性等。
总结起来,多目标函数的优化设计是一个重要的研究领域,涉及到多个目标函数的最优化问题。
解决多目标函数的优化设计可以采用将多目标优化问题转化为单目标优化问题的方法或者直接解决多目标优化问题的方法。
多目标及离散变量优化方法-文档资料

min F ( x) wi fi ( x)
i 1
l
wi——加权因子 (wi≥0,i=1,2,…,l ) 加权因子取值对计算结果的正确性影响较大。
第六章 第二节 多目标优化方法
加权因子wi确定的方法: ①将各分目标转化后加权 为消除各分目标在量级上的差别,先将分目标函数fi(x) 转化为无量纲等量级目标函数 f i ( x) (i 1,2,...,l ) ( f i ( x) 1) 再组成统一目标函数。 l F ( x) wi f i ( x)
第六章
结束
第一节 多目标优化问题
机械设计中,同时要求几项设计指标达到最优的问题 ——多目标优化设计问题
T .. ( x ) [ f ( x ), f ( x ) f ( x )] F 2 l min min 1 n
s.t. g j ( x) 0 ( j 1,2,...,m)
x R
x R n
第二节 一、主要目标法
多目标优化方法
基本思想:多个目标中选择一个目标作为主要目标, 而其它目标则只需满足一定的要求即可,即 将目标转化为约束条件 目标函数转化为:
f k ( x) min (k ) x(D k) D x | f i min f i ( x) f i max (i 1,2,...,k 1, k 1,...l , x D)
式中,f imin和f imax为第i个目标函数的上、下限。 一般 f i ( x) 只有问题,通过一定方法转化为 统一目标函数或综合目标函数作为多目标优 化问题的评价函数。
第六章 第二节 多目标优化方法
常用的方法有:线性加权法、理想点法(目标规划法) 、 功效系数法和极大极小法等。
06多目标及离散变量优化方法简介

U (x ) =
∑
l
i =1
f i (x ) f i fi
2
分层序列法及宽容分层序列法
分层序列法的基本思想是将多目标优化问 题式中的J个目标函数分清主次,按其重要程度 逐一排除,然后依次对各个目标函数求最优解. 不过后一目标应在前一目标最优解的集合域内寻 优.
现在假设f1(x)最重要,f2 (x)其次,f3 (x)再其次,…. 首先对第一个目标函数f1(x)求解,得最优值
x∈R
s.t . g j ( x ) ≤ 0 ( j = 1, 2, , p ) hk (x ) = 0 ( k = 1,2, , q )
f 2 (x )
f 3 (x )
T f 4 ( x )]
在多目标优化模型中,还有一类模型,其特点 是,在约束条件下,各个目标函数不是同等地被最优 化,而是按不同的优先层次先后地进行优化.例如: 工厂生产:1号产品,2号产品,3号产品,…,M号 产品.应如何安排生产计划,在避免开工不足的条件 下,使工厂获得最大利润,工人加班时间尽量地少. 若决策者希望把所考虑的两个目标函数按其重 要性分成以下两个优先层次:第一优先层次——工厂 获得最大利润.第—优先层次——工人加班时间尽可 能地少.那么,这种先在第一优先层次极大化总利润, 然后在此基础上再在第二优先层次同等地极小化工人 加班时间的问题就是分层多目标优化问题.
主要目标法的思想是抓住主要目标,兼顾其它 要求.求解时从多目标中选择一个目标作为主要目 标,而其它目标只需满足一定要求即可.为此,可 将这些目标转化成约束条件.也就是用约束条件的 形式来保证其他日标不致太差,这样处理后,就成 为单目标优化问题. 设有l个目标函数f1(x),f2(x),…,fl(x),其 中 x ∈ D,求解时可从上述多目标函数中选择一个 f(x)作为主要目标,则问题变为
多目标优化设计方法

多目标优化设计方法多目标优化(Multi-Objective Optimization,MOO)是指在考虑多个冲突目标的情况下,通过寻求一组最优解,并找到它们之间的权衡点来解决问题。
多目标优化设计方法是指为了解决多目标优化问题而采取的具体方法和策略。
本文将介绍几种常见的多目标优化设计方法。
1.加权和方法加权和方法是最简单直观的多目标优化设计方法之一、其基本思想是将多个目标函数进行加权求和,将多目标优化问题转化为单目标优化问题。
具体来说,给定目标函数集合f(x)={f1(x),f2(x),...,fn(x)}和权重向量w={w1,w2,...,wn},多目标优化问题可以表示为:minimize Σ(wi * fi(x))其中,wi表示各个目标函数的权重,fi(x)表示第i个目标函数的值。
通过调整权重向量w的取值可以改变优化问题的偏好方向,从而得到不同的最优解。
2. Pareto最优解法Pareto最优解法是一种基于Pareto最优原理的多目标优化设计方法。
Pareto最优解指的是在多个目标函数下,不存在一种改进解使得所有目标函数都得到改进。
换句话说,一个解x是Pareto最优解,当且仅当它不被其他解严格支配。
基于Pareto最优原理,可以通过比较各个解之间的支配关系,找到Pareto最优解集合。
3.遗传算法遗传算法是一种模仿自然界中遗传机制的优化算法。
在多目标优化问题中,遗传算法能够通过遗传操作(如选择、交叉和变异)进行,寻找较优的解集合。
遗传算法的基本流程包括:初始化种群、评估种群、选择操作、交叉操作、变异操作和更新种群。
通过不断迭代,遗传算法可以逐渐收敛到Pareto最优解。
4.支持向量机支持向量机(Support Vector Machine,SVM)是一种常用的机器学习方法。
在多目标优化问题中,SVM可以通过构建一个多目标分类模型,将多个目标函数转化为二进制分类问题。
具体来说,可以将目标函数的取值分为正例和负例,然后使用SVM算法进行分类训练,得到一个最优的分类器。
多目标优化设计方法讲解

多目标优化设计方法讲解多目标优化是指在一个优化问题中存在多个目标函数需要同时优化的情况。
多目标优化问题在实际应用中非常常见,例如在工程设计、金融投资和运筹学中等等。
与单目标优化问题不同的是,多目标优化问题需要找到一组解,满足所有目标函数的最优性要求。
本文将介绍多目标优化的相关概念和设计方法。
1.目标函数的定义方法:对于每个目标函数,我们需要明确定义其数学形式。
目标函数一般是一个关于决策变量的函数,用于衡量解的质量。
这些目标函数可以是线性的、非线性的、连续的或离散的。
2. Pareto优化:在多目标优化问题中,我们通常使用Pareto优化来解决。
Pareto优化是一种基于Pareto支配的解集划分方法。
Pareto支配是指解集中的解在至少一个目标上比另一个解更好,且在其它目标上至少一样好。
解集中不被任何其它解所支配的解被称为Pareto最优解。
Pareto最优解形成了一个称为Pareto前沿的非支配集合。
3. Pareto优化算法:常见的Pareto优化算法包括遗传算法(GA)、模拟退火算法(SA)、粒子群优化算法(PSO)和多目标蚁群算法等。
这些算法基于不同的策略和参数设置,通过多次迭代找到Pareto最优解。
4.解集的评价和选择:找到Pareto最优解后,需要根据具体应用的要求进行解集的评价和选择。
一种常见的方法是使用其中一种距离度量方法,如欧氏距离或海明顿距离,来度量解集中各个解之间的相似度。
另一种方法是基于问题的特定要求进行解集的选择。
5.偏好权重方法:在实际应用中,不同的目标函数可能具有不同的权重。
偏好权重方法可以对不同目标函数赋予不同的权重,从而根据具体需求得到更合理的解集。
常见的偏好权重方法有加权和法、电报求和法和最大化方法等。
6.可行性约束:在多目标优化问题中,可能存在一些约束条件,如可行性约束和偏好约束。
可行性约束是指解集中的解必须满足一些约束条件。
在算法设计中,需要考虑如何有效地处理这些约束,以充分利用已有信息,降低空间。
最优化_第7章多目标及离散变量优化方法

最优化_第7章多目标及离散变量优化方法在实际问题中,往往存在多个相互关联的优化目标,这就引出了多目标优化问题。
与单目标优化问题相比,多目标优化问题更加复杂,需要综合考虑多个目标之间的平衡和权衡。
多目标优化方法可以分为基于加权法的方法和基于多目标遗传算法的方法。
其中,基于加权法的方法将多个目标函数转化为单一的综合目标函数,通过对综合目标函数的优化来求解多目标优化问题。
而基于多目标遗传算法的方法则直接将多目标函数进行优化,通过一系列的遗传算子(如选择、交叉和变异)来逐步逼近多目标的最优解。
在多目标优化问题中,离散变量的存在进一步增加了问题的复杂性。
离散变量是指变量的取值只能是有限个数中的一个,与连续变量不同。
针对离散变量的多目标优化问题,可以采用遗传算法、粒子群算法等进化计算方法进行求解。
这些算法通常会使用染色体编码来表示离散变量,采用相应的遗传算子对染色体进行进化操作。
在实际应用中,多目标及离散变量优化方法可以应用于多个领域。
举个例子,对于资源分配问题,可以将资源的分配方案和目标函数(如成本、效益、风险等)作为多个目标进行优化,得到最优的资源分配方案。
又比如,在工程设计中,可以将设计方案的多个目标(如性能、重量、成本等)作为优化目标,找到最优的设计方案。
总之,多目标及离散变量优化方法是解决实际问题中复杂优化问题的有效手段。
通过综合考虑多个目标和处理离散变量,可以得到更加全面和合理的最优解,提高问题的解决效果。
在实际应用中,需要选择合适的优化方法和算法,并针对具体问题进行适当的调整和改进,以获得更好的优化结果。
机械优化设计_第七章多目标及离散变量优化方法

i m in w i f i X X D i 1
的最优解,
它就是原多目标优化问题的解。
机械优化设计 难点:如何找到合理的权系数 解决方法:将各单目标最优化值的倒数取作权系数
wi
1 fi
( i 1, 2 , , l )
f i m in f i X ( i 1, 2 , , l )
i i
适用于要求目标函数越小越好。 ③当 f i 取得的值越靠近预先确定的适当值时,
c i 越大;否则 c i 越小。
机械优化设计
3)功效系数的确定方法
①直线法
机械优化设计 ②折线法
③指数法
机械优化设计 4)功效系数的特点 A.优点: 直观,计算后调整方便, 避免某一目标函数值不可接受而评价函数值较好。 可以处理希望目标函数值取某一适当值的情况。 B.事先要求明确函数值的取值范围 C. 有一个单目标不能接受,则总方案不能接受。
机械优化设计 3.协调曲线法
基本思想:在多目标优化设计中,当各分目
标函数的最优值出现矛盾时,先求出一组非
劣解,以其集合得出协调曲线,再根据恰当 的匹配关系得到满意曲线,沿着满意程度的 增加的方向,各分目标值下降,直至获得选 好解。 主要用来解决设计目标互相矛盾的多目标 优化设计问题。
机械优化设计 说明: 1)若一个目标函数值已确定,则另一目 标函数值也由此曲线确定。 2)若认为R点是一个满意的设计方案, 则曲线中QS间所有设计点都是满意的,且比 R更好。
X D
1)可反映各个单目标对整个多目标问题的重要程度; 2)对各个分目标函数作统一量纲处理。
机械优化设计 (2)极大极小法
考虑对各个目标最不利情况下求出最有利的解。就是对 多目标极小化问题采用各个目标 f i ( i 1, 2, , l ) 中的最大值作为评价函数的函数值来构造它。 即取 或
第7章 多目标优化和离散变量优化概述

[x2*] [x1*] X*周围的整型点群 [x1*]+1 X*周围的整型点群 均不在可行域内
离X*较远处整型点为 优化点
7.2.3 离散变量优化问题的网格解法
1、方法: 以一定的变量增量为间隔,把设计空间划分为若干个网格,计算 在域内的每个网格结点上的目标函数值,比较其大小,再以目标 函数值最小的节点为中心,在其附近空间划分更小的网格,在计 算在域内各节点上的目标函数值。重复进行下去,直到网格小到 满足精度为止。 2、特点: 此法对低维变量较有效,对多维变量因其要计算的网格节点数目 成指数幂增加,故很少使用。
7.1.2多目标优化问题解的特性
1.非劣解
是指若有m个目标fi(X0)(i=1,2,,m),当要求(m-1)个目标值不变坏时, 找不到一个X,使得另一个目标函数值fi(X)比fi(X*)更好,则将此X*作 为非劣解,关键是要选择某种形式的折中。
2.例 V min F ( X ) min f1 ( X ), f 2 ( X )]T [
(ii)分目标函数值最优化法: j 1 / f j *
f j * minf j ( X) XD 目的:反映了各分目标函数离开各自最优值的程度。
7.1.5功效系数法——几何平均法
(1)适用条件:
各单目标要求不全相同,有的要求极小值,有的要求极大 值,有的则要求有一个合适的值。
(2)方法:
f2 ( X ) x f1 ( X ) x 2 2 x D { x | 0 x 2}
X R
n
a a’ 1
b
2
说明:
(1)当 D { x | 0 x 1} 时, X=[1,1]T,是绝对最优解; 其余点是劣解。 全区域中都能找到 (2)当 D { x | 0 x 2} 时, 全部分目标函数值 都比它小的点 X∈[1,2]中任何点都 是非劣解;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在许多实际设计中,一个设计方案又企望有几项设计指 标同时都达到最优值,这种在优化设计中同时要求两项极其 以上设计指标达到最优值得问题,成为多目标优化设计,目 标函数称为多目标函数。
7.3.1多目标数要求同时 达到最优,则表示为
上式称为向量目标函数,是多目标函数; 式中的f1(x),f2(x),……,fm(x)称为目标函数中的各分目标函数
所建立的目标函数一般分为:单目标函数,多目标函数 一般的,所包含的分目标函数越多,设计结果越完善,但 设计求解的难度增大。因此,在实际设计中,在满足设计性 能要求的前提下,应尽量减少分目标函数的个数。
7.1.3关于约束条件问题
设计约束是在设计中对设计变量所提出的种种限制来确 定的。约束条件表达式同常有显性约束与隐性约束;不等 式约数与等式约束;边界约束与性能约束等。
第七章 关于机械优化设计当中的 几个问题
建立优化数学模型的有关问题 数学模型中的尺度变换 多目标函数优化设计 关于离散变量的优化设计问题 优化方法的选择及评价准则
7.1建立优化数学模型的有关问题
优化数学模型总体包含:设计变量,目标函数,约束条件
7.1.1关于设计变量的确定
工程设计中总是包含许多各种设计参数。在确定设计变 量时,要对各种参数加以分析,以进行取舍。
设计变量必须是独立变量。要从优互相依赖关系的变量 中剔除非独立变量。
下图所示为汽车前轮转向梯形机构。
等腰梯形机构ABCD中,给定机架长度LAD=a(常数)。 当汽车转弯时,为了保证所有车轮都处于纯滚动,要求从
动件CD转角 与主动件AB转角 保持某确定关系
该四杆机构的参数有各杆长度:l1,l2,l3,l4,和初始角 其中l4=a为已知,是设计常 量;又l1=l3,l3为非独立变 量;又
约束一维多目标优 化设计解的情况。 在可行域[0,1]中, 绝对最优解发生在 x*=1处。 存在绝对最优解 (x*,F*)
n=2 m=2约束多目标 优化设计解的情
况,点x*为最优 点。
2有效解(非裂解)与劣解 定义二:对于一般表达式,若有设计点x∈D,不存在任意 的x∈D,使F(x) ≤F(x*)成立,或fj(x) ≥fj(x*),对于所有的 j=1,2,……m成立。则称x*为有效解或非劣解。 例7.1 一个二维分目标(n=1,m=2)的多目标优化问题为
该优化问题不存在绝对最优解, 可行域D边界上一段曲线A1至 A2为有效解集,在可行域的其 余部分全部构成劣解集。
,l2是l1与
的函数,故l2也
为非独立变量。所以只有两
个参数是独立变量
设计变量愈多维数愈高,设计的自由度越大,容易得到 较理想的优化结果;但维数越高,会使目标函数,约束函 数所包含的变量增多,导致计算量增大,并使优化过程更 为复杂及降低解题的效率。所以,在建立目标函数时,确 定设计变量的原则是在满足设计要求得前提下,将尽可能减 少设计变量的个数,即降低维数。
定义三:在可行域D内,除绝对最优解与有效解集以外, 部分的设计点均称劣解点,劣解点的全部称为劣解集。 例7.2一个二维分目标的多目标优化设计问题。
D:
见右图,在可行域[0,4]内,区间 [1,3]为有效解集;[0,1],[3,4] 为劣解集。
例7.3二维(n=2)两个分目标(m=2)优化问题。分目标 函数为f1(x),f2(x),可行域D目标函数等值线见右下图。
D:
见右下图。 取x=b,该点是有效解。因为在可行域D内,任取另一点 X,不存在F(x) ≤F(b), 即f1(x) ≤f1(b), 又同时有f2(x) ≤f2(b)。 x=b点满足有效解定义。
同理,区间[1,2]中的 任意一点都满足有效解 定义。所以,区间[1,2] 组成了有效解(非劣解) 集。
1绝对最优解
定义一:一般表达式多目标设计优化问题,若包括所有的 J=1,2,……m对于任意的设计点x∈D都有
fj(x) ≥fj(x*) 成立,则点x*是多目标优化问题的绝对最优解。
无约束一维多目标 优化设计问题 (维数n=1, 分目标m=2) x*为绝对最优解得 迭代点,绝对最优 解(x*,F*)
数学模型的一般表达式
gu(x) ≥0 hv(x)=0
(u=1,2,……,p) (v=1,2……,q<n)
为了与单目标优化问题相区别,在目标函数前加V, 即表示为
7.3.2多目标优化设计的概念
在单目标优化设计中,对于各种性态函数,总可以通过对 迭代点函数值的比较,找出全局最优解,对任意两个解都能 判断其优劣。而多目标函数问题与单目标则有根本区别,任 意两个解之间,就不一定能判断出优劣。
按设计问题维数的大小,通常把优化设计问题规模分为 三类:
小型优化问题:维数2-10 中型优化问题:维数10-50 大型优化问题:维数50以上
7.1.2关于目标函数的建立
优化设计数学模型中的目标函数F(x),是以设计变量表 示设计问题所追求的某一种或几种性能指标的解析表达式, 用它来评价设计方案的优劣程度。通常,设计所追求的性能 指标较多,建立目标函数,要针对影响质量和性能最为重要 的,最显著的指标作为设计追求的根本目标写入目标函数。
7.2.1数学模型中的尺度变换
数学模型中的尺度变换问题,是指用过改变在设计空间中 个坐标分量的比例,以改善数学性态的一种办法。
7.2.1设计变量的尺度变换
7.2.2约束条件的尺度变换
7.2.3目标函数的尺度变换
7.3多目标函数优化问题
在设计中,优化设计方案的好坏仅依赖于一项设计指标, 即所建立的目标函数仅含一个目标的函数,这样的目标函数 称为单目标函数,属于单目标优化设计问题。