三角形中位线相关练习题(可分三次完成,附答案)

合集下载

利用三角形的中位线、中线、角平分线、中垂线解决圆锥曲线问题专项练习含答案(高考数学提分)

利用三角形的中位线、中线、角平分线、中垂线解决圆锥曲线问题专项练习含答案(高考数学提分)

第4讲 利用三角形的中位线、中线、角平分线、中垂线解决圆锥曲线问题一.选择题(共10小题)1.已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方.若线段PF 的中点在以原点O 为圆心,||OF 为半径的圆上,则直线PF 的斜率是( )A B C .D .22.如图,从双曲线22221(0,0)x y a b a b-=>>的左焦点F 引圆222x y a +=的切线,切点为T ,延长FT 交双曲线右支于P 点,若M 为线段FP 的中点,O 为坐标原点,则||||MO MT -与b a -的大小关系为( )A .||||MO MT b a ->-B .||||MO MT b a -<-C .||||MO MT b a -=-D .以上三种可能都有3.从双曲线22221(0,0)x y a b a b-=>>的左焦点F 引圆222x y a +=的切线,切点为T ,延长FT交双曲线右支于P 点,若M 为线段FP 的中点,O 为坐标原点,则||||MO MT -等于()A .c a -B .b a -C .a b -D .c b -4.设1F ,2F 是双曲线22221(0,0)x y a b a b-=>>的两个焦点,点P 在双曲线上,已知1||PF 是2||PF 和12||F F 的等差中项,且12120F PF ∠=︒,则该双曲线的离心率为( )A .1B .32C .52D .725.已知点P 是椭圆22221(0,0)x y a b xy a b+=>>≠上的动点,1(,0)F c -、2(,0)F c 为椭圆的左、右焦点,O 为坐标原点,若M 是12F PF ∠的角平分线上的一点,且1F M MP ⊥,则||OM 的取值范围是( ) A .(0,)cB .(0,)aC .(,)b aD .(,)c a6.设1(,0)F c -,2(,0)F c 是双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点,点P 是C 右支上异于顶点的任意一点,PQ 是12F PF ∠的角平分线,过点1F 作PQ 的垂线,垂足为Q ,O 为坐标原点,则||OQ 的长为( ) A .定值a B .定值b C .定值cD .不确定,随P 点位置变化而变化7.圆锥曲线具有丰富的光学性质,从椭圆的一个焦点发出的光线,经过椭圆反射后,反射光线经过椭圆的另一个焦点.直线:280l x y +-=与椭圆22:11612x y C +=相切于点P ,椭圆C 的焦点为1F ,2F ,由光学性质知直线1PF ,2PF 与l 的夹角相等,则12F PF ∠的角平分线所在的直线的方程为( ) A .210x y --=B .10x y -+=C .210x y -+=D .10x y --=8.根据圆锥曲线的光学性质:从双曲线的一个焦点发出的光线,经双曲线反射后,反射光线的反向延长线过双曲线的另一个焦点.由此可得,过双曲线上任意一点的切线,平分该点与两焦点连线的夹角.请解决下面问题:已知1F ,2F 分别是双曲线22:12y C x -=的左、右焦点,若从点2F 发出的光线经双曲线右支上的点0(A x ,2)反射后,反射光线为射线AM ,则2F AM ∠的角平分线所在的直线的斜率为( )A .B .CD 9.设直线30(0)x y m m -+=≠与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A ,B ,若点(,0)P m 满足||||PA PB =,则该双曲线的离心率是( )AB .32C .52 D1 10.椭圆22221(0)x y a b a b +=>>的右焦点为(,0)F c 关于直线by x c=的对称点Q 在椭圆上,则椭圆的离心率是( ) ABCD .35二.多选题(共1小题)11.已知1F ,2F 分别为双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,C 的一条渐近线l 的方程为y =,且1F 到l的距离为点P 为C 在第一象限上的点,点Q 的坐标为(2,0),PQ 为12F PF ∠的平分线,则下列正确的是( )A .双曲线的方程为221927x y -=B .12||2||PF PF =C .12||36PF PF +=D .点P 到x三.填空题(共7小题)12.已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,||OF 为半径的圆上,则||PF = ;P 点的坐标为 .13.已知F 是抛物线2y x =的焦点,A 、B 是该抛物线上的两点,||||3AF BF +=,则线段AB 的中点到y 轴的距离为 .14.抛物线22(0)y px p =>的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足120AFB ∠=︒.过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则||||MN AB 的最大值为 .15.设抛物线22(0)y px p =>的焦点为F ,已知A ,B 为抛物线上的两个动点,且满足60AFB ∠=︒,过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则||||MN AB 的最大值为 .16.抛物线22(0)y px p =>的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足90AFB ∠=︒,过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则||||MN AB 的最大值为 .17.已知1F 、2F 分别为双曲线22:1927x y C -=的左、右焦点,点A C ∈,点M 的坐标为(2,0),AM 为12F AF ∠的平分线,则2||AF = .18.如图,从椭圆的一个焦点1F 发出的光线射到椭圆上的点P ,反射后光线经过椭圆的另一个焦点2F ,事实上,点0(P x ,0)y 处的切线00221xx yy a b+=垂直于12F PF ∠的角平分线.已知椭圆22:143x y C +=的两个焦点是1F ,2F ,点P 是椭圆上除长轴端点外的任意一点,12F PF ∠的角平分线PT 交椭圆C 的长轴于点(,0)T t ,则t 的取值范围是 .四.解答题(共8小题)19.已知椭圆2222:1(0)x y E a b a b+=>>的左右焦点分别为:1(2,0)F -,2(2,0)F ,P 为椭圆E上除长轴端点外任意一点,△12PF F 周长为12. (1)求椭圆E 的方程;(2)作12F PF ∠的角平分线,与x 轴交于点(,0)Q m ,求实数m 的取值范围.20.如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分.过对称轴的截口BAC 是椭圆的一部分,灯丝位于椭圆的一个焦点1F 上,片门位于该椭圆的另一个焦点2F 上.椭圆有光学性质:从一个焦点出发的光线,经过椭圆面反射后经过另一个焦点,即椭圆上任意一点P 处的切线与直线1PF 、2PF 的夹角相等.已知12BC F F ⊥,垂足为1F ,1||3F B m =,12||4F F cm =,以12F F 所在直线为x 轴,线段12F F 的垂直平分线为y 轴,建立如图的平面直角坐标系. (1)求截口BAC 所在椭圆C 的方程;(2)点P 为椭圆C 上除长轴端点和短轴端点外的任意一点.①是否存在m ,使得P 到2F 和P 到直线x m =的距离之比为定值,如果存在,求出的m 值,如果不存在,请说明理由;②若12F PF ∠的角平分线PQ 交y 轴于点Q ,设直线PQ 的斜率为k ,直线1PF 、2PF 的斜率分别为1k ,2k ,请问21k kk k +是否为定值,若是,求出这个定值,若不是,请说明理由.21.在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b+=>>与直线:()l x m m R =∈,四点(3,1)-,(-0),(3,1)-,(中有三个点在椭圆C 上,剩余一个点在直线l 上.()I 求椭圆C 的方程;(Ⅱ)若动点P 在直线l 上,过P 作直线交椭圆C 于M ,N 两点,使得||||PM PN =,再过P 作直线l MN '⊥.证明直线l '恒过定点,并求出该定点的坐标.22.已知椭圆2222:1(0)x y C a b a b+=>>的左,右焦点分别为1F ,2F ,上顶点为B .Q 为抛物线224y x =的焦点,且10F B QB ⋅=,12120F F QF += (Ⅰ)求椭圆C 的标准方程;(Ⅱ)过定点(0,4)P 的直线l 与椭圆C 交于M ,N 两点(M 在P ,N 之间),设直线l 的斜率为(0)k k >,在x 轴上是否存在点(,0)A m ,使得以AM ,AN 为邻边的平行四边形为菱形?若存在,求出实数m 的取值范围;若不存在,请说明理由.23.在①离心率12e =,②椭圆C 过点3(1,)2,③△12PF F这三个条件中任选一个,补充在下面(横线处)问题中,解决下面两个问题.设椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F 、F ,过1F 且斜率为k 的直线l 交椭圆于P 、Q 两点,已知椭圆C的短轴长为,_____. (1)求椭圆C 的方程;(2)若线段PQ 的中垂线与x 轴交于点N ,求证:1||||PQ NF 为定值. 24.已知A ,B ,C 是椭圆22:14x W y +=上的三个点,O 是坐标原点.(Ⅰ)当点B 是W 的右顶点,且四边形OABC 为菱形时,求此菱形的面积; (Ⅱ)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由. 25.已知过抛物线2:2(0)C y px p =>的焦点,斜率为1(A x ,1)y 和2(B x ,212)()y x x <两点,且9||2AB =.(1)求抛物线C 的方程; (2)若抛物线C 的准线为l ,焦点为F ,点P 为直线:20m x y +-=上的动点,且点P 的横坐标为a ,试讨论当a 取不同的值时,圆心在抛物线C 上,与直线l 相切,且过点P 的圆的个数.26.设抛物线2:4C y x =的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.。

(完整版)三角形的中位线经典练习题及其答案

(完整版)三角形的中位线经典练习题及其答案

八年级三角形的中位线练习题及其答案1.连结三角形___________的线段叫做三角形的中位线. 2.三角形的中位线______于第三边,并且等于_______. 3.一个三角形的中位线有_________条. 4。

如图△ABC 中,D 、E 分别是AB 、AC 的中点,则线段CD 是△ABC 的___, 线段DE 是△ABC _______5、如图,D 、E 、F 分别是△ABC 各边的中点 (1)如果EF =4cm ,那么BC =__cm 如果AB =10cm ,那么DF =___cm(2)中线AD 与中位线EF 的关系是___6.如图1所示,EF 是△ABC 的中位线,若BC=8cm ,则EF=_______cm .(1) (2) (3) (4)7.三角形的三边长分别是3cm ,5cm ,6cm ,则连结三边中点所围成的三角形的周长是_________cm . 8.在Rt △ABC 中,∠C=90°,AC=•5,•BC=•12,•则连结两条直角边中点的线段长为_______. 9.若三角形的三条中位线长分别为2cm ,3cm,4cm,则原三角形的周长为( ) A .4。

5cm B .18cm C .9cm D .36cm10.如图2所示,A ,B 两点分别位于一个池塘的两端,小聪想用绳子测量A ,B 间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A ,B 的点C ,找到AC ,BC 的中点D,E ,并且测出DE 的长为10m ,则A ,B 间的距离为( )A .15mB .25mC .30mD .20m11.已知△ABC 的周长为1,连结△ABC 的三边中点构成第二个三角形,•再连结第二个三角形的三边中点构成第三个三角形,依此类推,第2010个三角形的周长是( ) A 、20081 B 、20091 C 、220081 D 、22009112.如图3所示,已知四边形ABCD ,R ,P 分别是DC ,BC 上的点,E ,F 分别是AP ,RP 的中点,当点P 在BC上从点B 向点C 移动而点R 不动时, 那么下列结论成立的是( ) A .线段EF 的长逐渐增大 B .线段EF 的长逐渐减少 C .线段EF 的长不变 D .线段EF 的长不能确定13.如图4,在△ABC 中,E ,D ,F 分别是AB ,BC ,CA 的中点,AB=6,AC=4,则四边形AEDF•的周长是( ) A .10 B .20 C .30 D .4014.如图所示,□ ABCD 的对角线AC ,BD 相交于点O ,AE=EB ,求证:OE ∥BC .15.已知矩形ABCD 中,AB =4cm ,AD =10cm ,点P 在边BC 上移动,点E 、F 、G 、H 分别是AB 、AP 、DP 、DC 的中点。

2022年北师大版八下《 三角形的中位线》配套练习(附答案)

2022年北师大版八下《 三角形的中位线》配套练习(附答案)

6.3 三角形的中位线1.如图,为测量池塘边A,B两点间的距离,小明在池塘的一侧选取一点O,测得OA,OB的中点分别是点D,E,且DE=14米,那么A,B间的距离是() A.18米B.24米C.28米D.30米2.如图,在△ABC中,点D,E分别是AB,AC的中点,∠A=50°,∠ADE =60°,那么∠C的度数为()A.50°B.60°C.70°D.80°3.如图,在Rt△ABC中,∠A=30°,BC=1,点D,E分别是直角边BC,AC的中点,那么DE的长为()A.1 B.2 C. 3 D.1+ 34.如图,点D,E,F分别是△ABC各边的中点,连接DE,EF,DF.假设△ABC 的周长为10,那么△DEF的周长为____.5.如图,▱ABCD的对角线AC,BD相交于点O,点E是CD的中点,△ABD 的周长为16 cm,那么△DOE的周长是____cm.6.如图,在△ABC中,D,E,F分别是BC,AC,AB的中点.(1)假设DE=10 cm,那么AB=____cm;(2)中线AD与中位线EF有什么特殊关系?证明你的猜测.7.我们把依次连接任意一个四边形各边中点得到的四边形叫做中点四边形.如图,在四边形ABCD中,E,F,G,H分别是边AB,BC,CD,DA的中点,依次连接各边中点得到中点四边形EFGH.(1)这个中点四边形EFGH的形状是___________;(2)请证明你的结论.8.如图,四边形ABCD中,点P是对角线BD的中点,点E,F分别是AB,CD的中点,AD=BC,∠PEF=30°,那么∠PFE的度数是()A.15°B.20°C.25°D.30°9.如图,在四边形ABCD中,R,P分别是BC,CD上的点,E,F分别是AP,RP的中点,当点P在CD上从C向D移动而点R不动时,那么以下结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不变D.线段EF的长与点P的位置有关10.如图,EF是△ABC的中位线,BD平分∠ABC交EF于点D,假设DE=2,那么EB=____.11.如图,△ABC的周长是1,连接△ABC三边的中点构成第2个三角形,再连接第2个三角形三边中点构成第3个三角形,依此类推,第2021个三角形的周长为________.12.如图,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH 是平行四边形.13.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,AB=10,BC=15,MN=3.(1)求证:BN=DN;(2)求△ABC的周长.14.如图,在▱ABCD中,AE=BF,AF,BE相交于点G,CE,DF相交于点证:GH∥BC且GH=12BC.15.如图,在▱ABCD中,E是CD的中点,F是AE的中点,FC与BE相交于点证:GF=GC.方法技能:1.三角形有三条中位线,每条中位线都与第三边有相应的位置关系和数量关系,位置关系可证明两直线平行,数量关系可证明线段相等或倍分关系.2.三角形的三条中位线将原三角形分为四个全等的小三角形,每个小三角形的周长都等于原三角形周长的一半.3.当题目中有中点时,特别是有两个中点且都在一个三角形中,可直接利用三角形中位线定理.易错提示:对三角形中位线的意义理解不透彻而出错答案:1. C2. C3. A4. 55. 86. (1) 20(2) 解:AD与EF互相平分.证明:∵D,E,F分别为BC,AC,AB的中点,∴DE∥AB,DE=12AB,AF=12AB,∴DE=AF,∴四边形AFDE是平行四边形,∴AD与EF互相平分7. (1) 平行四边形(2) 解:连接AC,由三角形中位线性质得,EF∥AC且EF=12AC,GH∥AC且GH=12AC,∴EF綊GH,∴四边形EFGH是平行四边形8. D9. C10. 211.1 2202112. 解:连接BD,∵E,H分别是AB,AD的中点,∴EH是△ABD的中位线,∴EH=12BD,EH∥BD,同理可证FG=12BD,FG∥BD,∴EH綊FG,∴四边形EFGH是平行四边形13. 解:(1)∵AN平分∠BAD,∴∠1=∠2,∵BN⊥AN,∴∠ANB=∠AND =90°,又∵AN=AN,∴△ABN≌△ADN(ASA),∴BN=DN(2)∵△ABN≌△ADN,∴AD=AB=10,∵DN=BN,点M是BC的中点,∴MN是△BDC的中位线,∴CD=2MN=6,∴△ABC的周长=AB+BC+CD+AD=10+15+6+10=4114. 解:连接EF,证四边形ABEF,EFCD分别为平行四边形,从而得G是BE的中点,H是EC的中点,∴GH是△EBC的中位线,∴GH∥BC且GH=12BC15. 解:取BE的中点H,连接FH,CH,∵F是AE的中点,H是BE的中点,∴FH是△ABE的中位线,∴FH∥AB且FH=12▱ABCD中,AB∥DC,AB=DC,∴FH∥EC,又∵点E是DC的中点,∴EC=12DC=12AB,∴FH=EC,∴四边形EFHC是平行四边形,∴GF=GC.第1课时三角形的全等和等腰三角形的性质一.选择题〔共8小题〕1.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,那么添加的条件不能为〔〕A. BD=CE B. AD=AE C. DA=DE D. BE=CD2.等腰三角形的一个角是80°,那么它顶角的度数是〔〕A.80°B.80°或20°C.80°或50°D.20°3.实数x,y满足,那么以x,y的值为两边长的等腰三角形的周长是〔 〕A. 20或16 B. 20 C. 16 D. 以上答案均不对4.如图,在△ABC中,AB=AC,∠A=40°,BD为∠ABC的平分线,那么∠BDC的度数是〔 〕A. 60° B. 70° C. 75° D. 80°5.等腰三角形的两边长分别是3和5,那么该三角形的周长是〔 〕A. 8 B. 9 C. 10或12 D. 11或136.如图,给出以下四组条件:①AB DE BC EF AC DF ===,,;②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,;④AB DE AC DF B E ==∠=∠,,. 其中,能使ABC DEF △≌△的条件共有〔 〕A .1组B .2组C .3组D .4组7.在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个局部, 那么这个等腰三角形的底边长为〔 〕A. 7 B. 11 C. 7或11 D. 7或108.等腰三角形一腰上的高与另一腰的夹角为30°,那么顶角的度数为〔 〕A. 60° B. 120° C. 60°或150° D. 60°或120°二.填空题〔共10小题〕9.等腰三角形的一个内角为80°,那么另两个角的度数是 _________ .10.如图,AB∥CD,AB=AC,∠ABC=68°,那么∠ACD= _________ .第10题 第11题 第12题 第13题11.如图,在△ABC中,AB=AC,△ABC的外角∠DAC=130°,那么∠B= _________ °.12.如图,AB∥CD,AE=AF,CE交AB于点F,∠C=110°,那么∠A=________°.13.如图,在△ABC中,AB=AC,BC=6,AD⊥BC于D,那么BD=_________ .14.如图,在△ABC中,AB=AD=DC,∠BAD=32°,那么∠BAC=_________ °.第14题 第15题 第16题 第17题 第18题15.如图,AB与CD交于点O,OA=OC,OD=OB ,∠A=50°,∠B=30°,那么∠D的度数为_____.16.如图,在△ABC中,AB=AC,CD平分∠ACB,∠A=36°,那么∠BDC的度数为_________.17.如图,在△ABC中,AB=AC,点D为BC边的中点,∠BAD=20°,那么∠C=_________ .18.如图,在△ABC中,AB=AC,∠A=80°,E,F,P分别是AB,AC,BC边上一点,且BE=BP ,CP=CF,那么∠EPF=_________ 度.三.解答题〔共5小题〕19.:如图,在等腰△ABC中,AB=AC,O是底边BC上的中点,OD⊥AB于D,OE⊥AC于E.求证:AD=AE.20.如图,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.求证:〔1〕△ABD≌△ACD;〔2〕BE=CE.21.如下图,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点.试判断OE和AB 的位置关系,并给出证明.22.如图,在△ABC中,D、E分别是AC和AB上的点,BD与CE相交于点O,给出以下四个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.〔1〕上述四个条件中,由哪两个条件可以判定AB=AC?〔用序号写出所有的情形〕〔2〕选择〔1〕小题中的一种情形,说明AB=AC.23.〔1〕如图,在△ABC中,∠ABC、∠ACB的平分线相交于F,过F作DE∥BC,分别交AB、A C于点D、E.判断DE=DB+EC是否成立?为什么?〔2〕如图,假设点F是∠ABC的平分线和外角∠ACG的平分线的交点,其他条件不变,请猜测线段DE、DB、EC之间有何数量关系?证明你的猜测.参考答案一、CBBCDCCD二、9、50°,50°或80°,20°;10、44;11、65;12、40;13、3;14、69;15、30°;16、72;17、70;18、50三、19、证明:∵AB=AC,∴∠B=∠C.∵OD⊥AB,OE⊥AC,∴∠ODB=∠OEC=90°.∵O是底边BC上的中点,∴OB=OC,在△OBD与△OCE中,∴△OBD≌△OCE〔AAS〕.∴BD=CE.∵AB=AC,∴AB﹣BD=AC﹣CE.即AD=AE.20、证明:〔1〕∵D是BC的中点,∴BD=CD,在△A BD和△ACD中,,∴△ABD≌△ACD〔SSS〕;…〔4分〕〔2〕由〔1〕知△ABD≌△ACD,∴∠BAD=∠CAD,即∠BAE=∠CAE,在△ABE和△ACE中,∴△ABE≌△ACE 〔SAS〕,∴BE=CE〔全等三角形的对应边相等〕.〔其他正确证法同样给分〕…〔4分〕21、解:OE⊥AB.证明:在△B A C和△ABD中,,∴△BAC≌△ABD〔SAS〕.∴∠OBA=∠OAB,∴OA=OB.又∵AE=BE,∴OE⊥AB.答:OE⊥AB.22、〔1〕答:有①③、①④、②③、②④共4种情形.〔2〕解:选择①④,证明如下:∵OB=OC,∴∠OBC=∠OCB,又∵∠EBO=∠DCO,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,∴AC=AB.②④理由是:在△BEO和△CDO中∵,∴△BEO≌△CDO,∴∠EBO=∠DCO,∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC,23、解:〔1〕成立;∵△ABC中BF、CF平分∠ABC、∠ACB,∴∠1=∠2,∠5=∠4.∵DE∥BC,∴∠2=∠3,∠4=∠6.∴∠1=∠3,∠6=∠5.根据在同一个三角形中,等角对等边的性质,可知:BD=DF,EF=CE.∴DE=DF+EF=BD+CE.故成立.〔2〕∵BF分∠ABC,∴∠DBF=∠FBC.∵DF∥BC,∴∠DFB=∠FBC.∴∠ABF=∠DFB,∴BD=DF.∵CF平分∠AC G,∴∠ACF=∠FCG.∵DF∥BC,∴∠DFC=∠FCG.∴∠ACF=∠DFC,∴CE=EF.∵EF+DE=DF,即DE+EC=BD.。

2021年九年级数学中考一轮复习专题突破训练:三角形的中位线(附答案)

2021年九年级数学中考一轮复习专题突破训练:三角形的中位线(附答案)

2021年九年级数学中考一轮复习专题突破训练:三角形的中位线(附答案)1.如图,△ABC中,AB=4,AC=3,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为()A.B.1C.D.72.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为P A,PB的中点,对下列各值:①线段MN的长;②△P AB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④D.④⑤3.如图,四边形ABCD中,∠A=90°,AB=,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为()A.3B.4C.4.5D.54.如图,在矩形ABCD中,P、R分别是BC和DC上的点,E、F分别是AP和RP的中点,当点P在BC上从点B向点C移动,而点R不动时,下列结论正确的是()A.线段EF的长逐渐增长B.线段EF的长逐渐减小C.线段EF的长始终不变D.线段EF的长与点P的位置有关5.如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为()A.B.2C.D.36.如图,△ABC的面积是12,点D、E、F、G分别是BC、AD、BE、CE的中点,则△AFG 的面积是()A.4.5B.5C.5.5D.67.如图,△ABC中,已知AB=8,∠C=90°,∠A=30°,DE是中位线,则DE的长为()A.4B.3C.D.28.如图,在△ABC中,BD、CE是角平分线,AM⊥BD于点M,AN⊥CE于点N.△ABC 的周长为30,BC=12.则MN的长是()A.15B.9C.6D.39.如图,在四边形ABCD中,已知AB=CD,M、N、P分别是AD、BC、BD的中点∠ABD =20°,∠BDC=70°,则∠NMP的度数为()A.50°B.25°C.15°D.20°10.如图,在△ABC中,延长BC至D,使得CD=BC,过AC中点E作EF∥CD(点F 位于点E右侧),且EF=2CD,连接DF.若AB=8,则DF的长为()A.3B.4C.2D.311.如图,DE是△ABC的中位线,过点C作CF∥BD交DE的延长线于点F,则下列结论正确的是()A.EF=CF B.EF=DE C.CF<BD D.EF>DE12.如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,点D在BC上,以AC为对角线的所有平行四边形ADCE中,DE的最小值是()A.10B.8C.6D.513.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()A.7B.9C.10D.1114.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=10,BC =15,MN=3,则AC的长是()A.12B.14C.16D.1815.如图,D,E分别是△ABC的边AB,AC上的中点,如果△ADE的周长是6,则△ABC 的周长是()A.6B.12C.18D.2416.如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE 并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为.17.如图,正方形ABCD和正方形EFCG的边长分别为3和1,点F,G分别在边BC,CD 上,P为AE的中点,连接PG,则PG的长为.18.如图,在Rt△ABC中,∠ACB=90°,点D,E,F分别为AB,AC,BC的中点.若CD=5,则EF的长为.19.如图,已知AB=10,P是线段AB上的动点,分别以AP、PB为边在线段AB的同侧作等边△ACP和△PDB,连接CD,设CD的中点为G,当点P从点A运动到点B时,则点G移动路径的长是.20.如图,∠ACB=90°,D为AB中点,连接DC并延长到点E,使CE=CD,过点B 作BF∥DE交AE的延长线于点F.若BF=10,则AB的长为.21.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC=8,则EF的长为.22.如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为.23.如图,△ABC的周长为26,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=10,则PQ的长.24.在四边形ABCD中,对角线AC⊥BD且AC=6、BD=8,E、F分别是边AB、CD的中点,则EF=.25.如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD=BD,连接DM、DN、MN.若AB=6,则DN=.26.如图,在四边形ABDC中,E、F、G、H分别为AB、BC、CD、DA的中点,并且E、F、G、H四点不共线.当AC=6,BD=8时,四边形EFGH的周长是.27.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,点M为边AC的中点,点N 为边BC上任意一点,若点C关于直线MN的对称点C′恰好落在△ABC的中位线上,则CN的长为.28.如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD =BC,∠FPE=100°,则∠PFE的度数是.29.如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF =BC,连接CD和EF.(1)求证:DE=CF;(2)求EF的长.30.如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=∠DEF.31.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.32.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=10,AC=6,求DF的长.33.如图,在四边形ABCD中,AC⊥BD,BD=12,AC=16,E,F分别为AB,CD的中点,求EF的长.34.在△ABC中,E是AC边上一点,线段BE垂直∠BAC的平分线于D点,点M为BC边的中点,连接DM.(1)求证:DM=CE;(2)若AD=6,BD=8,DM=2,求AC的长.35.如图,在四边形ABCD中,AB=DC,E、F分别是AD、BC的中点,G、H分别是对角线BD、AC的中点.(1)求证:四边形EGFH是菱形;(2)若AB=,则当∠ABC+∠DCB=90°时,求四边形EGFH的面积.36.如图,E、F、G、H分别为四边形ABCD四边之中点.(1)求证:四边形EFGH为平行四边形;(2)当AC、BD满足时,四边形EFGH为菱形.当AC、BD满足时,四边形EFGH为矩形.当AC、BD满足时,四边形EFGH为正方形.37.如图,在△ABC中,AE平分∠BAC,BE⊥AE于点E,点F是BC的中点.(1)如图1,BE的延长线与AC边相交于点D,求证:EF=(AC﹣AB);(2)如图2,写出线段AB、AC、EF的数量关系,并证明你的结论.38.已知:△ABC中,AB=10.(1)如图①,若点D、E分别是AC、BC边的中点,求DE的长;(2)如图②,若点A1,A2把AC边三等分,过A1,A2作AB边的平行线,分别交BC 边于点B1,B2,求A1B1+A2B2的值;(3)如图③,若点A1,A2,…,A10把AC边十一等分,过各点作AB边的平行线,分别交BC边于点B1,B2,…B10.根据你所发现的规律,直接写出A1B1+A2B2+…+A10B10的结果.参考答案1.解:∵AD是△ABC角平分线,CG⊥AD于F,∴△AGC是等腰三角形,∴AG=AC=3,GF=CF,∵AB=4,AC=3,∴BG=1,∵AE是△ABC中线,∴BE=CE,∴EF为△CBG的中位线,∴EF=BG=,故选:A.2.解:∵点A,B为定点,点M,N分别为P A,PB的中点,∴MN是△P AB的中位线,∴MN=AB,即线段MN的长度不变,故①错误;P A、PB的长度随点P的移动而变化,所以,△P AB的周长会随点P的移动而变化,故②正确;∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,∴△PMN的面积不变,故③错误;直线MN,AB之间的距离不随点P的移动而变化,故④错误;∠APB的大小点P的移动而变化,故⑤正确.综上所述,会随点P的移动而变化的是②⑤.故选:B.3.解:如图,连结DN,∵DE=EM,FN=FM,∴EF=DN,当点N与点B重合时,DN的值最大即EF最大,在Rt△ABD中,∵∠A=90°,AD=3,AB=3,∴BD===6,∴EF的最大值=BD=3.故选A.4.解:连接AR,∵矩形ABCD固定不变,R在CD的位置不变,∴AD和DR不变,∵由勾股定理得:AR=,∴AR的长不变,∵E、F分别为AP、RP的中点,∴EF=AR,即线段EF的长始终不变,故选:C.5.解:∵BN平分∠ABC,BN⊥AE,∴∠NBA=∠NBE,∠BNA=∠BNE,在△BNA和△BNE中,∴△BNA≌△BNE,∴BA=BE,∴△BAE是等腰三角形,同理△CAD是等腰三角形,∴点N是AE中点,点M是AD中点(三线合一),∴MN是△ADE的中位线,∵BE+CD=AB+AC=19﹣BC=19﹣7=12,∴DE=BE+CD﹣BC=5,∴MN=DE=.故选:C.6.解:∵点D,E,F,G分别是BC,AD,BE,CE的中点,∴AD是△ABC的中线,BE是△ABD的中线,CE是△ACD的中线,AF是△ABE的中线,AG是△ACE的中线,∴△AEF的面积=×△ABE的面积=×△ABD的面积=×△ABC的面积=,同理可得△AEG的面积=,△BCE的面积=×△ABC的面积=6,又∵FG是△BCE的中位线,∴△EFG的面积=×△BCE的面积=,∴△AFG的面积是×3=,故选:A.7.解:∵∠C=90°,∠A=30°,∴BC=AB=4,又∵DE是中位线,∴DE=BC=2.故选:D.8.证明:∵△ABC的周长为30,BC=12.∴AB+AC=30﹣BC=18.延长AN、AM分别交BC于点F、G.如图所示:∵BM为∠ABC的角平分线,∴∠CBM=∠ABM,∵BM⊥AG,∴∠ABM+∠BAM=90°,∠G+∠CBM=90°,∴∠BAM=∠AGB,∴AB=BG,∴AN=GN,同理AC=CF,AM=MF,∴MN为△AFG的中位线,GF=BG+CF﹣BC,∴MN=(AB+AC﹣BC)=(18﹣12)=3.故选:D.9.解:∵在四边形ABCD中,M、N、P分别是AD、BC、BD的中点,∴PN,PM分别是△CDB与△DAB的中位线,∴PM=AB,PN=DC,PM∥AB,PN∥DC,∵AB=CD,∴PM=PN,∴△PMN是等腰三角形,∵PM∥AB,PN∥DC,∴∠MPD=∠ABD=20°,∠BPN=∠BDC=70°,∴∠MPN=∠MPD+∠NPD=20°+(180﹣70)°=130°,∴∠PMN==25°.故选:B.10.解:取BC的中点G,连接EG,∵E是AC的中点,∴EG是△ABC的中位线,∴EG=AB==4,设CD=x,则EF=BC=2x,∴BG=CG=x,∴EF=2x=DG,∵EF∥CD,∴四边形EGDF是平行四边形,∴DF=EG=4,故选:B.11.解:∵DE是△ABC的中位线,∴E为AC中点,∴AE=EC,∵CF∥BD,∴∠ADE=∠F,在△ADE和△CFE中,∵,∴△ADE≌△CFE(AAS),∴DE=FE.故选:B.12.解:平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小.∵OD⊥BC,BC⊥AB,∴OD∥AB,又∵OC=OA,∴CD=DB,∴OD是△ABC的中位线,∴OD=AB=3,∴DE=2OD=6.故选:C.13.解:∵BD⊥DC,BD=4,CD=3,由勾股定理得:BC==5,∵E、F、G、H分别是AB、AC、CD、BD的中点,∴HG=BC=EF,EH=FG=AD,∵AD=6,∴EF=HG=2.5,EH=GF=3,∴四边形EFGH的周长是EF+FG+HG+EH=2×(2.5+3)=11.故选:D.14.解:延长线段BN交AC于E.∵AN平分∠BAC,∴∠BAN=∠EAN,在△ABN与△AEN中,∵,∴△ABN≌△AEN(ASA),∴AE=AB=10,BN=NE,又∵M是△ABC的边BC的中点,∴CE=2MN=2×3=6,∴AC=AE+CE=10+6=16.故选:C.15.解:∵D、E分别是AB、AC的中点,∴AD=AB,AE=AC,DE=BC,∴△ABC的周长=AB+AC+BC=2AD+2AE+2DE=2(AD+AE+DE)=2×6=12.故选:B.16.解:当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,∵△A′BC与△ABC关于BC所在直线对称,∴A'C=AC=4,∠ACB=∠A'CB,∵点D,E分别为AC,BC的中点,∴D、E是△ABC的中位线,∴DE∥AB,∴∠CDE=∠MAN=90°,∴∠CDE=∠A'EF,∴AC∥A'E,∴∠ACB=∠A'EC,∴∠A'CB=∠A'EC,∴A'C=A'E=4,Rt△A'CB中,∵E是斜边BC的中点,∴BC=2A'E=8,由勾股定理得:AB2=BC2﹣AC2,∴AB==4;②当∠A'FE=90°时,如图2,∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A′BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;综上所述,AB的长为4或4;故答案为:4或4;17.解:方法1、延长GE交AB于点O,作PH⊥OE于点H.则PH∥AB.∵P是AE的中点,∴PH是△AOE的中位线,∴PH=OA=(3﹣1)=1.∵直角△AOE中,∠OAE=45°,∴△AOE是等腰直角三角形,即OA=OE=2,同理△PHE中,HE=PH=1.∴HG=HE+EG=1+1=2.∴在Rt△PHG中,PG===.故答案是:.方法2、如图1,延长DA,GP相交于H,∵四边形ABCD和四边形EFCG是正方形,∴EG∥BC∥AD,∴∠H=∠PGE,∠HAP=∠GEP,∵点P是AE的中点,∴AP=EP,∴△AHP≌△EGP,∴AH=EG=1,PG=PH=HG,∴DH=AD+AH=4,DG=CD﹣CG=2,根据勾股定理得,HG==2,∴PG=,故答案为.18.解:∵△ABC是直角三角形,CD是斜边的中线,∴CD=AB,又∵EF是△ABC的中位线,∴AB=2CD=2×5=10cm,∴EF=×10=5cm.故答案为:5.19.解:如图,分别延长AC、BD交于点H,过G作MN∥AB,分别交AH于M,BH于N,∵△APC和△BPD是等边三角形,∴∠A=∠B=60°,∴△AHB是等边三角形,∵∠A=∠DPB=60°,∴AH∥PD,∵∠B=∠CP A=60°,∴BH∥PC,∴四边形CPDH为平行四边形,∴CD与HP互相平分.∵G为CD的中点,∴G正好为PH中点,∵△ABH是等边三角形,∴在P的运动过程中,G始终为PH的中点,所以G的运行轨迹为△HAB的中位线MN.∴MN=AB=5,即G的移动路径长为5.故答案为:5.20.解:∵点D是AB的中点,BF∥DE,∴DE是△ABF的中位线.∵BF=10,∴DE=BF=5.∵CE=CD,∴CD=5,解得CD=4.∵△ABC是直角三角形,∴AB=2CD=8.故答案为:8.21.解:∵DE为△ABC的中位线,∠AFB=90°,∴DE=BC,DF=AB,∵AB=6,BC=8,∴DE=×8=4,DF=×6=3,∴EF=DE﹣DF=4﹣3=1.故答案为:1.22.解:∵DE为△ABC的中位线,∴AD=BD,∵∠AFB=90°,∴DF=AB=2.5,∵DE为△ABC的中位线,∴DE=BC=4,∴EF=DE﹣DF=1.5,故答案为:1.5.23.解:∵△ABC的周长是26,BC=10,∴AB+AC=26﹣10=16,∵∠ABC的平分线垂直于AE,∴在△ABQ和△EBQ中,,∴△ABQ≌△EBQ,∴AQ=EQ,AB=BE,同理,AP=DP,AC=CD,∴DE=BE+CD﹣BC=AB+AC﹣BC=16﹣10=6,∵AQ=DP,AP=DP,∴PQ是△ADE的中位线,∴PQ=DE=3.故答案是:3.24.解:如图,取BC的中点G,连接EG、FG,∵E、F分别是边AB、CD的中点,∴EG∥AC且EG=AC=×6=3,FG∥BD且FG=BD=×8=4,∵AC⊥BD,∴EG⊥FG,∴EF===5.故答案为:5.25.解:连接CM,∵M、N分别是AB、AC的中点,∴NM=CB,MN∥BC,又CD=BD,∴MN=CD,又MN∥BC,∴四边形DCMN是平行四边形,∴DN=CM,∵∠ACB=90°,M是AB的中点,∴CM=AB=3,∴DN=3,故答案为:3.26.解:∵F,G分别为BC,CD的中点,∴FG=BD=4,FG∥BD,∵E,H分别为AB,DA的中点,∴EH=BD=4,EH∥BD,∴FG∥EH,FG=EH,∴四边形EFGH为平行四边形,∴EF=GH=AC=3,∴四边形EFGH的周长=3+3+4+4=14,故答案为:1427.解:取BC、AB的中点H、G,连接MH、HG、MG.如图1中,当点C′落在MH上时,设NC=NC′=x,由题意可知:MC=MC′=2,MH=,HC′=,HN=﹣x,在Rt△HNC′中,∵HN2=HC′2+NC′2,∴(﹣x)2=x2+()2,解得x=.如图2中,当点C′落在GH上时,设NC=NC′=x,在Rt△GMC′中,MG=CH=,MC=MC′=2,∴GC′=,∵△HNC′∽△GC′M,∴=,∴=,∴x=.如图3中,当点C′落在直线GM上时,易证四边形MCNC′是正方形,可得CN=CM=2.此时点C′在中位线GM的延长线上,不符合题意舍弃.综上所述,满足条件的线段CN的长为或.故答案为为或.28.解:∵P是对角线BD的中点,E是AB的中点,∴EP=AD,同理,FP=BC,∵AD=BC,∴PE=PF,∵∠FPE=100°,∴∠PFE=40°,故答案为:40°.29.(1)证明:∵D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴DE BC,∵延长BC至点F,使CF=BC,∴DE=FC;(2)解:∵DE FC,∴四边形DEFC是平行四边形,∴DC=EF,∵D为AB的中点,等边△ABC的边长是2,∴AD=BD=1,CD⊥AB,BC=2,∴DC=EF=.30.证明:(1)∵点D,E,F分别是AB,BC,CA的中点,∴DE、EF都是△ABC的中位线,∴EF∥AB,DE∥AC,∴四边形ADEF是平行四边形;(2)∵四边形ADEF是平行四边形,∴∠DEF=∠BAC,∵D,F分别是AB,CA的中点,AH是边BC上的高,∴DH=AD,FH=AF,∴∠DAH=∠DHA,∠F AH=∠FHA,∵∠DAH+∠F AH=∠BAC,∠DHA+∠FHA=∠DHF,∴∠DHF=∠DEF.31.(1)证明:在△CAD中,∵M、N分别是AC、CD的中点,∴MN∥AD,MN=AD,在RT△ABC中,∵M是AC中点,∴BM=AC,∵AC=AD,∴MN=BM.(2)解:∵∠BAD=60°,AC平分∠BAD,∴∠BAC=∠DAC=30°,由(1)可知,BM=AC=AM=MC,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°,∵MN∥AD,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴BN2=BM2+MN2,由(1)可知MN=BM=AC=1,∴BN=32.解:延长CF交AB于点G,∵AE平分∠BAC,∴AF垂直平分CG,∴AC=AG,GF=CF,又∵点D是BC中点,∴DF是△CBG的中位线,∴DF=BG=(AB﹣AG)=(AB﹣AC)=2.33.解:如图,取BC边的中点G,连接EG、FG.∵E,F分别为AB,CD的中点,∴EG是△ABC的中位线,FG是△BCD的中位线,∴EG AC,FG BD.又BD=12,AC=16,AC⊥BD,∴EG=8,FG=6,EG⊥FG,∴在直角△EGF中,由用勾股定理,得EF===10,即EF的长度是10.34.(1)证明:在△ADB和△ADE中,,∴△ADB≌△ADE(ASA)∴AE=AB,BD=DE,∵BD=DE,BM=MC,∴DM=CE;(2)解:在Rt△ADB中,AB==10,∴AE=10,由(1)得,CE=2DM=4,∴AC=CE+AE=14.35.(1)证明:∵在四边形ABCD中,E、F分别是AD、BC的中点,G、H分别是对角线BD、AC的中点,∴EG∥AB,EG=AB,HF∥AB,HF=AB,∴EG∥HE,EG=HE,∴四边形EGFH是平行四边形.又EH=CD,AB=CD,∴EG=EH,∴平行四边形EGFH是菱形;(2)解:∵四边形ABCD中,G、F、H分别是BD、BC、AC的中点,∴GF∥DC,HF∥AB.∴∠GFB=∠DCB,∠HFC=∠ABC.∴∠HFC+∠GFB=∠ABC+∠DCB=90°.∴∠GFH=90°.∴菱形EGFH是正方形.∵AB=,∴EG=AB=.∴正方形EGFH的面积=()2=.36.(1)证明:如图,连接BD,∵E、F、G、H分别为四边形ABCD四边之中点,∴EH是△ABD的中位线,FG是△BCD的中位线,∴EH∥BD且EH=BD,FG∥BD且FG=BD,∴EH∥FG且EH=FG,∴四边形EFGH为平行四边形;(2)解:连接AC,同理可得EF∥AC且EF=AC,所以,AC=BD时,四边形EFGH为菱形;AC⊥BD时,四边形EFGH为矩形;AC=BD且AC⊥BD时,四边形EFGH为正方形.故答案为:AC=BD;AC⊥BD;AC=BD且AC⊥BD.37.(1)证明:如图1中,∵AE⊥BD,∴∠AED=∠AEB=90°,∴∠BAE+∠ABE=90°,∠DAE+∠ADE=90°,∵∠BAE=∠DAE,∴∠ABE=∠ADE,∴AB=AD,∵AE⊥BD,∴BE=DE,∵BF=FC,∴EF=DC==(AC﹣AB).(2)结论:EF=(AB﹣AC),理由:如图2中,延长AC交BE的延长线于P.∵AE⊥BP,∴∠AEP=∠AEB=90°,∴∠BAE+∠ABE=90°,∠P AE+∠APE=90°,∵∠BAE=∠P AE,∴∠ABE=∠APE,∴AB=AP,∵AE⊥BD,∴BE=PE,∵BF=FC,∴EF=PC=(AP﹣AC)=(AB﹣AC).38.解:(1)∵D、E分别是AC、BD的中点,且AB=10,∴DE=AB=5;(2)设A1B1=x,则A2B2=2x.∵A1、A2是AC的三等分点,且A1B1∥A2B2∥AB,∴A2B2是梯形A1ABB1的中位线,即:x+10=4x,得x=,∴A1B1+A2B2=10;(3)同理可得:A1B1+A2B2+…+A10B10=。

八年级数学三角形中位线培优专题训练

八年级数学三角形中位线培优专题训练

八年级数学三角形中位线培优专题训练一、内容提要1. 三角形中位线平行于第三边,并且等于第三边的一半。

梯形中位线平行于两底,并且等于两底和的一半。

2. 中位线性质定理的结论,兼有位置和大小关系,可以用它判定平行,计算线段的长度,确定线段的和、差、倍关系。

3. 运用中位线性质的关键是从出现的线段中点,找到三角形或梯形,包括作出辅助线。

4. 中位线性质定理,常与它的逆定理结合起来用。

它的逆定理就是平行线截比例线段定理及推论,①一组平行线在一直线上截得相等线段,在其他直线上截得的线段也相等 ②经过三角形一边中点而平行于另一边的直线,必平分第三边 ③经过梯形一腰中点而平行于两底的直线,必平分另一腰 5. 有关线段中点的其他定理还有: ①直角三角形斜边中线等于斜边的一半②等腰三角形底边中线和底上的高,顶角平分线互相重合 ③对角线互相平分的四边形是平行四边形 ④线段中垂线上的点到线段两端的距离相等 因此如何发挥中点作用必须全面考虑。

二、例题例1. 已知:△ABC 中,分别以AB 、AC 为斜边作等腰直角三角形ABM 和CAN ,P 是BC 的中点。

求证:PM =PN证明:作ME ⊥AB ,NF ⊥AC ,垂足E ,F ∵△ABM 、△CAN 是等腰直角三角形∴AE =EB=ME ,AF =FC =NF ,根据三角形中位线性质 PE =21AC =NF ,PF =21AB =MEPE ∥AC ,PF ∥AB∴∠PEB =∠BAC =∠PFC 即∠PEM =∠PFN∴△PEM ≌△PFN ∴PM =PN例2.已知△ABC 中,AB =10,AC =7,AD 是角平分线,CM ⊥AD 于M ,且N 是BC 的中点。

求MN 的长。

分析:N 是BC 的中点,若M 是另一边中点, 则可运用中位线的性质求MN 的长, 根据轴称性质作出△AMC 的全等三角形即可。

辅助线是:延长CM 交AB 于E (证明略 例3.如图已知:△ABC 中,AD 是角平分线,BE =CF ,M 、N 分别是BC 和EF 的中点 求证:MN ∥AD 证明一:连结EC ,取EC 的中点P ,连结PM 、PNP NMP ∥AB ,MP =21AB ,NP ∥AC ,NP =21AC ∵BE =CF ,∴MP =NP∴∠3=∠4=2MPN-180∠∠MPN +∠BAC =180(两边分平行的两个角相等或互补)∴∠1=∠2=2MPN-180∠ , ∠2=∠3∴NP ∥AC ∴MN ∥AD证明二:连结并延长EM 到G ,使MG =ME 连结CG ,FG则MN ∥FG ,△MCG ≌△MBE ∴CG =BE =CF ∠B =∠BCG∴AB ∥CG ,∠BAC +∠FCG =180∠CAD =21(180-∠FCG ) ∠CFG =21(180-∠FCG )=∠CAD ∴ MN ∥AD 例4. 已知:△ABC 中,AB =AC ,AD 是高,CE 是角平分线,EF ⊥BC 于F ,GE ⊥CE交CB 的延长线于G 求证:FD =41CG 证明要点是:延长GE 交AC 于H , 可证E 是GH 的中点过点E 作EM ∥GC 交HC 于M ,则M 是HC 的中点,EM ∥GC ,EM =21GC由矩形EFDO 可得FD =EO =21EM =41GC三、练习1. 如图11,M 、P 分别为△ABC 的AB 、AC 上 的点,且AM=BM ,AP=2CP ,BP 与CM 相交于N ,已知PN=1,则PB 的长为 ( ) A. 2 B. 3 C .4 D. 52. 如图12,△ABC 中,∠B =2∠C ,AD ⊥BC 于D ,M 为BC 的中点,AB=10,则MD 的长为 ( )A. 10B. 8 C .6 D. 53. 如图13,△ABC 是等边三角形,D 、E 、F 分别是AB 、BC 、AC 的中点,P 为不同于B 、E 、C 的BC 上的任意一点,△DPH 为等边三角形.连接FH ,则EP 与FH 的大小关系是 ( ) A. E P>FH B. EP=FH C. EP<FH D.不确定4. 如图14,在△ABC 中,AD 平分∠BAC ,BD ⊥AD ,DE ∥AC ,交AB 于E ,若AB=5,则DE 的长为 .C5. 如图15,△ABC中,AB=4,AC=7,M为BC的中点,AD平分∠BAC,过M作MF∥AD,交AC于F,则FC的长等于.6. 如图25,P为△ABC内一点,∠P AC=∠PBC,PM⊥AC于M,PN⊥BC于N.D是AB的中点.求证:DM=DN7. 如图16,在△ABC中,D、E是AB、AC上的点,且BD=CE,M、N分别是BE、CD的中点,直线MN分别交AB、AC于P、Q.求证:AP=AQ8. 如图17,BE、CF是△ABC的角平分线,AN⊥BE于N,AM⊥CF于M.求证:MN∥BC.9. 如图18,在△ABC中,AD平分∠BAC,AD=AB,CM⊥AD于M.求证:AB+AC=2AM10.如图19,四边形ABCD中,G、H分别是AD、BC的中点,AB=CD.BA、CD的延长线交HG的延长线于E、F.求证:∠BEH=∠CFH.1. 如图20,在△ABC中,∠ABC=2∠C,AD平分∠BAC,过BC的中点M作ME⊥AD,交BA的延长线于E,交AD的延长线于F.求证:12BE BD.2. 如图21,在△ABC中,AB<AC,P为AC上的点,CP=AB,K为AP的中点,M为BC的中点,MK的延长线交BA的长线于N.求证:AN=AK.3. 如图22,分别以△ABC的边AC、BC为腰,A、B为直角顶点,作等腰直角△ACE和等腰直角△BCD,M为ED的中点.求证:AM⊥BM.4. 如图23,点O是四边形ABCD内一点,∠AOB=∠COD=1200,AO=BO,CO=DO,E、F、G分别为AB、CD、BC的中点.求证:△EFG为等边三角形.5. 如图24,△ABC中,M是AB的中点,P是AC的中点,D是MB的中点,N是CD的中点,Q是MN的中点,直线PQ交MB于K.求证:K是DB的中点.6. 如图25,P为△ABC内一点,∠P AC=∠PBC,PM⊥AC于M,PN⊥BC于N.D是AB的中点.求证:DM=DN图21 图22 图23 图24 图257. 如图26,AP是△ABC的角平分线,D、E分别是AB、AC上的点,且BD=CE.又G、H分别为BC、DE的中点.求证:HG∥AP.8. 如图27,已知△ABD和△ACE都是直角三角形,且∠ABD=∠ACE=900,如图(a),连接DE,设M为DE的中点.(1)求证:MB=MC;(2)设∠BAD=∠CAE,固定△ABD,让Rt△ACE绕顶点A在平面内旋转到图(b)的位置,试问MB=MC是否成立?并证明其结论.9. 已知△ABC面积为S,作直线l∥BC,交AB于D,交AC于E,若△BED的积为K.求证:S≥4K.10.如图28,在△ABC中,AB=AC,D是BC边上的一点,E是线段AD上的一点.且∠BED=2∠CED=∠BAC.求证:BD=2CD.图26 图27。

鲁教版八年级数学上册《三角形的中位线》同步训练(附答案)

鲁教版八年级数学上册《三角形的中位线》同步训练(附答案)

鲁教版八年级数学上册《三角形的中位线》同步训练(附答案)1.如图,四边形ABCD中,AD=BC,点P是对角线BD的中点,E、F分别是AB、CD的中点,若∠EPF=130°,则∠PEF的度数为()A.25°B.30°C.35°D.50°2.如图,四边形ABCD的对角线AC,BD相交于点O,AC⊥BD,E,F分别是AB,CD的中点,若AC=BD=2,则EF的长是()A.2B.C.D.3.如图,在△ABC中,点D、E分别是BC、AC的中点,BF平分∠ABC,交DE于点F,若BC=6,则DF的长是()A.2B.3C.6D.44.如图,四边形ABCD中,AD∥BC,AD=2,BC=5,点E,F分别是对角线AC,BD的中点,则EF的长为()A.1B.1.5C.2.5D.3.55.如图,△ABC的周长为4,点D,E,F分别是AB,BC,CA的中点,则△DEF的周长是()A.1B.2C.3D.46.如图,已知在△ABC中,D,E,F分别是边BC,CA,AB的中点.AB=10,AC=8,则四边形AFDE的周长等于()A.18B.16C.14D.127.如图所示,在△ABC中,BC>AC,点D在BC上,DC=AC=10,且=,作∠ACB 的平分线CF交AD于点F,CF=8,E是AB的中点,连接EF,则EF的长为.8.如图,在△ABC中,M,N分别是AB和AC的中点,连接MN,点E是CN的中点,连接ME并延长,交BC的延长线于点D.若BC=4,则CD的长是多少?9.如图,在△ABC中,D是AB上一点,AD=AC,AE⊥CD,垂足为点E,F是BC的中点,若BD=10,求EF的长.10.如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE =30°,DF=3,DE=2,求FC的长度.11.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AE平分∠CAB,CE⊥AE于点E,延长CE交AB于点D.(1)求证:CE=DE;(2)若点F为BC的中点,求EF的长.12.如图,在△ABC中,AD是中线,AE是角平分线,点F在AE上,∠CF A=90°,试判断DF与AB的位置关系,并说明理由.13.如图,D、E、F分别是△ABC三边中点,AH⊥BC于H.求证:(1)∠BDF=∠BAC;(2)DF=EH.14.如图,在四边形ABCD中,AD=BC,E、F分别是边DC、AB的中点,FE的延长线分别AD、BC的延长线交于点H、G,求证:∠AHF=∠BGF.15.如图,点O是△ABC内一点,连接OB、OC,线段AB、OB、OC、AC的中点分别为D、E、F、G.(1)判断四边形DEFG的形状,并说明理由;(2)若M为EF的中点,OM=2,∠OBC和∠OCB互余,求线段BC的长.16.如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,过点E作EF∥CD交BC的延长线于点F,连接CD.(1)求证:DE=CF;(2)求EF的长.17.如图,在△ABC中,AB=AC,点D是边AB上一点,DE∥BC交AC于点E,连接BE,点F、G、H分别为BE、DE、BC的中点.(1)求证:FG=FH;(2)当∠A为多少度时,FG⊥FH?并说明理由.18.已知:如图,四边形ABCD中,对角线AC=BD,E,F为AB、CD中点,连EF交BD、AC于P、Q求证:OP=OQ.19.如图,在△ABC中,AE平分∠BAC,BE⊥AE于点E,点F是BC的中点.(1)如图1,BE的延长线与AC边相交于点D,求证:EF=(AC﹣AB);(2)如图2,△ABC中,AB=9,AC=5,求线段EF的长.参考答案1.解:∵P、F分别是BD、CD的中点,∴PF=BC,同理可得:PE=AD,∵AD=BC,∴PF=PE,∵∠EPF=130°,∴∠PEF=∠PFE=×(180°﹣130°)=25°,故选:A.2.解:取BC的中点G,AD的中点H,连接EG、GF、FH、HE,∵E,G分别是AB,BC的中点,AC=2∴EG=AC=1,EG∥AC,同理:FH=AC,FH∥AC,EG=AC,GF∥BD,GF=BD=1,∴四边形EGFH为平行四边形,∵AC=BD,∴GE=GF,∴平行四边形EGFH为菱形,∵AC⊥BD,EG∥AC,GF∥BD,∴EG⊥GF,∴菱形EGFH为正方形,∴EF=EG=,故选:D.3.解:∵D,E分别是BC,AC的中点,∴DE∥AB,∴∠BFD=∠ABF,∵BF平分∠ABC,∴∠DBF=∠ABF,∴∠BFD=∠DBF,∴DF=DB=BC==3,故选:B.4.解:∵取DC中点G,连结FG、EG,如图所示:∵点E,F分别是对角线AC,BD的中点,∴FG∥BC,EG∥AD,∵AD∥BC,∴EG∥BC,FG∥EG,∴E、F、G三点共线,∴FG是△BCD的中位线,∴FG=BC=2.5,∵AD∥BC,∴EG∥AD,∴EG是△ACD的中位线,∴EG=AD=1,∴EF=FG﹣EG=1.5.故选:B.5.解:∵△ABC的周长为4,∴AB+AC+BC=4,∵点D,E,F分别是AB,BC,CA的中点,∴EF=AB,DE=AC,DF=BC,∴△DEF的周长=EF+DE+DF=×(AB+AC+BC)=2,故选:B.6.解:∵D,E,F分别是边BC,CA,AB的中点.AB=10,AC=8,∴DE=AB=5,DF=AC=4,AF=AB=5,AE=AC=4,∴四边形AFDE的周长=AF+DF+DE+AE=5+5+4+4=18,故选:A.7.解:∵DC=AC=10,∠ACB的平分线CF交AD于F,∴F为AD的中点,CF⊥AD,∴∠CFD=90°,∵DC=10,CF=8,∴DF==6,∴AD=2DF=12,∵=,∴BD=8,∵点E是AB的中点,∴EF为△ABD的中位线,∴EF=BD=4,故答案为:4.8.解:∵M,N分别是AB和AC的中点,∴MN是△ABC的中位线,∴MN=BC=2,MN∥BC,∴∠NME=∠D,∠MNE=∠DCE,∵点E是CN的中点,∴NE=CE,在△MNE和△DCE中,,∴△MNE≌△DCE(AAS),∴CD=MN=2.9.解:∵AD=AC,AE⊥CD,∴CE=ED,∵F是BC的中点,∴EF是△CDB的中位线,∴EF=BD=×10=5.10.解:∵AF⊥BC,点D是边AB的中点,DF=3,∴AB=2DF=6.∵点D,E分别是边AB,AC的中点,∴DE∥BC,∴∠B=∠ADE=30°,∴AF=AB=3,由勾股定理得,BF===3,∴FC=BC﹣BF=.11.(1)证明:∵AE平分∠CAB,∴∠CAE=∠BAE,∵CE⊥AE,∴∠AEC=∠AED=90°,在△AEC和△AED中,,∴△AEC≌△AED(ASA),∴CE=DE;(2)在Rt△ABC中,∵AC=6,BC=8,∴,∵△AEC≌△AED,∴AD=AC=6,∴BD=AB﹣AD=4,∵点E为CD中点,点F为BC中点,∴.12.解:DF∥AB.理由如下:如图,延长CF交AB于点G,∵AE是角平分线,∴∠GAF=∠CAF,在△AGF和△ACF中,∴△AGF≌△ACF(ASA),∴GF=CF,即点F是GC的中点,∵AD是△ABC的中线,∴点D是BC的中点∴DF是△BCG的中位线,∴DF∥AB.13.证明:(1)∵D、F分别是AB、BC边中点,∴DF是△ABC的中位线,∴DF∥AC,DF=AC,∴∠BDF=∠BAC;(2)∵AH⊥BC于H,E是AC的中点,∴EH=AC,∴DF=EH.14.证明:连接BD,取BD的中点P,连接EP,FP,∵E、F、P分别是DC、AB、BD边的中点,∴EP是△BCD的中位线,PF是△ABD的中位线,∴PF=AD,PF∥AD,EP=BC,EP∥BC,∴∠H=∠PFE,∠BGF=∠FEP,∵AD=BC,∴PE=PF,∴∠PEF=∠PFE,∴∠AHF=∠BGF.15.解:(1)四边形DEFG是平行四边形,理由如下:∵E、F分别为线段OB、OC的中点,∴EF=BC,EF∥BC,同理DG=BC,DG∥BC,∴EF=DG,EF∥DG,∴四边形DEFG是平行四边形;(2)∵∠OBC和∠OCB互余,∴∠BOC=90°,∵M为EF的中点,OM=2,∴EF=2OM=4,∴BC=2EF=8.16.解:(1)∵D、E分别为AB、AC的中点,∴DE∥BC,DE=BC,∵EF∥CD∴四边形DEFC是平行四边形,∴DE=CF.(2)∵四边形DEFC是平行四边形,∴DC=EF,∵D为AB的中点,等边△ABC的边长是2,∴AD=BD=1,CD⊥AB,BC=2,∴DC=EF=.17.(1)证明:∵AB=AC.∴∠ABC=∠ACB,∵DE∥BC,∴∠ADE=∠ABC,∠AED=∠ACB,∴∠ADE=∠AED,∴AD=AE,∴DB=EC,∵点F、G、H分别为BE、DE、BC的中点,∴FG是△EDB的中位线,FH是△BCE的中位线,∴FG=BD,FH=CE,∴FG=FH;(2)解:延长FG交AC于N,∵FG是△EDB的中位线,FH是△BCE的中位线,∴FH∥AC,FN∥AB,∵FG⊥FH,∴∠A=90°,∴当∠A=90°时,FG⊥FH.18.证明:取BC中点G,连EG、FG,∵E,G为AB、BC中点,∴EG=AC,EG∥AC,∴∠FEG=∠OQP,同理,FG=BD,FG∥BD,∴∠EFG=∠OPQ,∵AC=BD,∴EG=FG,∴∠FEG=∠EFG,∴∠OPQ=∠OQP,∴OP=OQ.19.(1)证明:在△AEB和△AED中,,∴△AEB≌△AED(ASA)∴BE=ED,AD=AB,∵BE=ED,BF=FC,∴EF=CD=(AC﹣AD)=(AC﹣AB);(2)解:分别延长BE、AC交于点H,在△AEB和△AEH中,,∴△AEB≌△AEH(ASA)∴BE=EH,AH=AB=9,∵BE=EH,BF=FC,∴EF=CH=(AH﹣AC)=2.。

中考数学总复习《构造三角形中位线模型解题》专项提升练习题(附答案)

中考数学总复习《构造三角形中位线模型解题》专项提升练习题(附答案)

中考数学总复习《构造三角形中位线模型解题》专项提升练习题(附答案)学校:___________班级:___________姓名:___________考号:___________一、三角形中位线的概念和性质1.连接三角形两边中点的线段叫做三角形的中位线2.三角形中位线定理:三角形的中位线平行于第三遍,且等于第三边的一半3.隐含中点的条件:等腰三角形三线合一(顶角的角平分线底边的中垂线),平行四边形对角线的交点。

例1.如图,点D、E分别为△ABC的边AB、AC的中点,点F在DE的延长线上,CF∥BA,若BC=8,则EF=( ) A.4 B.8 C.5 D.3例2.如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD=BC,∠EPF=136°,则∠EFP的度数是( ) A.68° B.34° C.22° D.44°二、连接两点构造三角形的中位线例3.如图,在四边形ABCD中,∠A=90°,AB=12,AD=5.点M、N分别为线段BC、AB上的动点(含端点,但点M不与点B重合),点E、F分别为DM、MN的中点,则EF的最大值是.4例4.如图1,已知点E ,F ,G ,H 分别是四边形ABCD 的边AB ,BC ,CD ,DA 的中点,根据以下思路可以证明四边形EFGH 是平行四边形:如图2,将图1中的点C 移动至与点E 重合的位置,F ,G ,H 仍是BC ,CD ,DA 的中点,求证:四边形CFGH 是平行四边形.三.已知角平分线+垂直构造中位线例5.如图,AD 为ABC 中BAC ∠的外角平分线,BD AD ⊥于D ,E 为BC 中点5DE =,3AC =则AB 长为( )A .8.5B .8C .7.5D .7例6.如图,在△ABC 中,∠ABC =90°,在边AC 上截取AD =AB ,连接BD ,过点A 作AE ⊥BD 于点E ,F 是边BC 的中点,连接EF.若AB =5,BC =12,求EF 的长度.例7.如图,在△ABC中,已知AB=6,AC=10,AD平分∠BAC,BD⊥AD于点D,点E为BC的中点,求DE的长.四.倍长法构造三角形的中位线例8.如图,在△ABC中,∠ABC=90°,BA=BC,△BEF为等腰直角三角形,∠BEF=90°,M为AF的中点.求证ME=12CF.例9.如图,在△ABC中,∠ABC=90°,AB=BC,BD⊥AC于点D,CE平分∠ACB,交AB于点E,交BD于点F.求证:(1)△BEF是等腰三角形;(2)BD=12(BC+BF).五.已知一边中点,取另一边中点构造三角形的中位线例10.如图,四边形ABCD中,点E,F分别是边AB,CD的中点,且AD=6,BC=10,则线段EF的长可能为( )A.7B.8.5C.9D.10六.已知两边中点,取第三边中点构造三角形的中位线例11.如图,菱形ABCD 的对角线AC BD ,相交于点O .E ,F 分别是AD OC ,的中点,若1207BAD EF ∠=︒=,ABCD 的周长为( )A .8B .16C .3D .3例12.如图,已知四边形ABCD 中AC BD ⊥,AC=6,8BD =点E 、F 分别是边AD 、BC 的中点,连接EF ,则EF 的长是 __.强化训练题一.选择题1.如图 在△ABC 中 AB =4 BC =5 AC =8.点D E F 分别是相应边上的中点 则四边形DFEB 的周长等于( )A .8B .9C .12D .132.如图 △ABC 中 AB =AC =12 BC =10 AD 平分∠BAC 交BC 于点D 点E 为AC 的中点 连接DE 则△CDE 的周长为( )A .11B .17C .18D .163.如图 在ABC 中 45B ∠=︒ 60C ∠=︒ AD BC ⊥于点D 6BD = 若E F 分别为AB BC 的中点 则EF 的长为( )A 2B 6C 6D 34.如图 ABCD 的对角线AC BD 交于点O AE 平分BAD ∠交BC 于点E且60ADC ∠=︒ 12AB BC = 连接OE .下列结论中不成立的是( )A .30CAD ∠=︒B .ABCD S AB AC =⋅ C .OB AB =D .14OE BC =5.如图 四边形ABCD 中 ∠B =90° AB =8 BC =6 点M 是对角线AC 的中点 点N 是AD 边的中点 连结BM MN 若BM =3MN 则线段CD 的长是( )A .53B .3C .103D .56.已知三角形三边长分别为7cm 8cm 9cm 作三条中位线组成一个新的三角形 同样方法作下去 一共做了五个新的三角形 则这五个新三角形的周长之和为( )A .46.5cmB .22.5cmC .23.25cmD .以上都不对7.如图 在ABC 中 AE 平分BAC ∠ BE AE ⊥于点E 点F 是BC 的中点 若10AB = 6AC = 则EF 的长为( )A .2B .3C .4D .58.如图 在四边形ABCD 中 点E F 分别为AD DC 的中点 连接EB BF EF △EBF 的面积为 S 1 .点G 为四边形ABCD 外一点 连接AG BG EG FG 使得AG =BC ∠GAB =∠ABC △EGF 的面积为 S 2 则 S 1 与 S 2 满足的关系是( )A .S 1 = S 2B .2 S 1 =3 S 2C .3 S 1 =4 S 2D .3 S 1 =2 S 29.如图 平行四边形ABCD 中 O 为对角线交点 DP 平分ADC ∠ CP 平分BCD ∠ 7AB = 10AD = 则OP 的长为( )A .1.5B .2C .2.5D .310.如图 ▱ABCD 的顶点A D 分别在直角∠MON 的两边OM ON 上运 动(不与点O 重合) ▱ABCD 的对角线AC BD 相交于点P 连接OP 若OP=5 则▱ABCD 的周长最小值是( )A .20B .25C .10D .15二 填空题11.如图 在平行四边形ABCD 中 E 是CD 的中点 F 是AE 的中点 CF 交BE 于点G 若BE =8 则GE = .12.如图 DE 为△ABC 的中位线 点F 在DE 上 且∠AFC 为直角 若AC =6cm BC =8cm 则DF 的长为 .13.如图已知三角形纸片ABC第1次折叠使点B落在BC边上的点B'处折痕AD交BC于点D;第2次折叠使点A落在点D处折痕MN交AB'于点P.若12BC=则MP与MN的和是_________.14.如图在▱ABCD中AC是对角线∠ACD=90°点E是BC的中点AF平分∠BAC CF⊥AF于点F连接EF.已知AB=5BC=13则EF的长为.15.如图在Rt△ABC中∠ACB=90°AC=BC=6 点D是AC边上的一点且AD=2 以AD为直角边作等腰直角三角形ADE连接BE并取BE的中点F连接CF则CF的长为.16.如图 EF是△ABC的中位线 O是EF上一点且满足OE=2OF.则△ABC的面积与△AOC的面积之比为.17.如图□ABCD的顶点C在等边△BEF的边BF上点E在AB的延长线上 G为DE的中点连接CG.若AD=5 AB=CF=3 则CG的长为.三.解答题18.如图△ABC的中线BE CF相交于G且AB=12 AC=16 BC=20 求GC的长.19.如图在平行四边形ABCD中对角线AC BD、相交于点O点E是边BC中点连接OE并延长至点F使EF OE、.连接BF CF(1)求证:四边形OBFC是平行四边形;(2)求证:OF CD∥.20.如图四边形ABCD为平行四边形 E为AD上的一点连接EB并延长使BF=BE 连接EC并延长使CG=CE连接FG H为FG的中点连接DH(1)求证:四边形AFHD为平行四边形;(2)若CB=CE∠EBC=75°∠DCE=10°求∠DAB的度数.21.如图,点B为AC上一点,分别以AB,BC为边在AC同侧作等边三角形ABD和等边三角形BCE,点P,M,N分别为AC,AD,CE的中点.(1)求证:PM=PN;(2)求∠MPN的度数.22.如图,在△ABC中,AB=AC,AD⊥BC于点D,点P是AD的中点,延长BP交AC于点N,求证:AN=13AC.23.(1)如图1 在四边形ABCD中AB=CD E F分别是AD BC的中点连接FE 并延长分别与BA CD的延长线交于点M N.求证:∠BME=∠CNE;(提示:取BD的中点H连接FH HE作辅助线)(2)如图2 在△ABC中F是BC边的中点D是AC边上一点E是AD的中点直线FE交BA的延长线于点G若AB=DC=2 ∠FEC=45°求FE的长度.24.【发现与证明】如图在四边形ABCD中 E F G H是各边中点对角线AC BD相交于点O I J是AC BD的中点连接EF EH HG GF EI GI EJ FJ IJ GJ IH.结论1:四边形EFGH是平行四边形;结论2:四边形EJGI是平行四边形;结论3:S四边形EFGH =12S四边形ABCD;……(1)请选择其中一个结论加以证明(只需证明一个结论).(2)【探究与应用】(★温馨提示:以下问题可以直接使用上述结论)①如图1 在四边形ABCD中 F H分别为边AB DC的中点连结HF.已知AD=6 BC=4线段HF的取值范围是 .②如图2 在四边形ABCD中点E F G H分别是AB BC CD DA的中点连接EG FH交于点O EG=8cm FH=6cm ∠EOF=60°求S四边形ABCD.答案部分:例1.A ∵点D E 分别为△ABC 的边AB AC 的中点 ∴DE 是△ABC 的中位线 ∴DE ∥BC ,DE =12BC =4.∴DF ∥BC ∵DF ∥BC ,CF ∥BA∴四边形BCFD 是平行四边形 ∴DF =BC =8,∴EF =DF -DE =4.例2.C ∵P 是BD 的中点,E 是AB 的中点 ∴PE =12AD ,同理,PF =12BC ∵AD =BC ,∴PE =PF∴∠EFP =12×(180°-∠EPF )=22°. 故选C.例3.答案 6.5解:如图,连接DN DB∵点E F 分别为DM MN 的中点 ∴EF 是△MDN 的中位线 ∴EF =12DN当N与点B重合时,DN最大,此时EF的值最大∵∠A=90°,AB=12,AD=5∴DB=√AD2+AB2=13,∴EF的最大值为6.5 故答案为6.5.例4.证明如图,连接BD∵C,H分别是AB,DA的中点∴CH是△ABD的中位线BD∴CH∥BD,CH=12BD同理,FG∥BD,FG=12∴CH∥FG,CH=FG∴四边形CFGH是平行四边形.例5.D解:延长BD CA交于点F∠的外角平分线∵AD为ABC中BAC∴FAD BAD∠=∠∵BD AD⊥∴90∠=∠=︒ADF ADB在ABD△和AFD△中FAD BAD AD ADADF ADB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ABD AFD △≌△ ∴AB AF = BD DF = 又E 为BC 中点 5DE = ∴210CF DE == 又3AC =∴7AF CF AC AB =-==. 故选:D .例6.解: 在△ABC 中,∠ABC =90°,AB =5,BC =12 则AC =√AB 2+BC 2=√52+122=13 ∵AD =AB =5∴DC =AC -AD =13-5=8 ∵AD =AB ,AE ⊥BD ,∴BE =ED ∵BF =FC ,∴EF =12DC =4.解:如图,延长BD 交AC 于点F ,∵AD 平分∠BAC ,∴∠BAD =∠CAD .∵BD ⊥AD ∴∠ADB =∠ADF又∵AD =AD ,∴△ADB ≌△ADF (ASA ).∴AF =AB =6,BD =FD .∵AC =10,∴CF =AC -AF =10-6=4.∵E 为BC 的中点,∴DE 是△BCF 的中位线.∴DE =12CF =12×4=2.例8.证明:如图,延长FE 至N ,使EN =EF ,连接BN ,AN ,则ME =12AN . ∵EF =EN ,∠BEF =90°,∴BE 垂直平分FN . ∴BF =BN .∴∠BNF =∠BFN . ∵△BEF 为等腰直角三角形,∠BEF =90°,∴∠BFN =45°.∴∠BNF =45°. ∴∠FBN =90°,即∠FBA +∠ABN =90°.又∠FBA +∠CBF =90° ∴∠CBF =∠ABN .在△BCF 和△BAN 中,∵BF =BN ,∠CBF =∠ABN ,BC =BA∴△BCF ≌△BAN (SAS ).∴CF =AN .∴ME =12AN =12CF .例9.(1)证明:在△ABC 中,∵AB =BC ,∠ABC =90°,∴∠ACB =45°. ∵CE 平分∠ACB ,∴∠ECB =∠ACE =22.5°.∴∠BEF =∠CFD =∠BFE =67.5°.∴BE =BF ,即△BEF 是等腰三角形. (2)解:如图,延长AB 至点M ,使得BM =AB ,连结CM .易知D 是AC 的中点∴BD ∥MC ,BD =12MC .∴∠BFE =∠MCE .由(1)得∠BEF =∠BFE ,BE =BF ,∴∠BEF =∠MCE .∴ME =MC .∵BM =AB =BC ,∴BD =12MC =12ME =12(MB +BE )=12(BC +BF ).例10.A 如图,连接BD ,取BD 的中点H ,连接HF ,HE∵点E ,H 分别是AB ,BD 的中点,∴EH 是△ABD 的中位线,∴EH =12AD =3 同理可得FH =12BC =5,∴EF ≤FH +EH =8,故选A .例11.B 解:取CD 的中点G 连接EG FG点E 为AD 的中点 点F 为OC 的中点12EG AC ∴=EG AC ∥ 12FG OD = //FG OD四边形ABCD 是菱形 120BAD ∠=︒AC BD ∴⊥ 60ADC ∠=︒ 1302ODC ADC ∠=∠=︒EG GF ∴⊥ AD DC AC ==设CD x = 则12EG x = 3FG 7EF =22213()()(7)2x ∴+= 解得4x =4CD ∴=∴菱形ABCD的周长为:44416CD=⨯=故选:B.例12解:如图取AB的中点G连接EG FG∵E F分别是边AD CB的中点∴EG BD∥且118422EG BD==⨯=FG AC且116322FG AC==⨯=∵AC BD⊥∴EG FG⊥∴2222435EF EG FG=++=.故答案为:5.强化训练题一.选择题1.如图在△ABC中AB=4 BC=5 AC=8.点D E F分别是相应边上的中点则四边形DFEB的周长等于()A.8 B.9 C.12 D.13解:∵点D F分别是AB AC的中点∴DF=BC=2.5同理EF=AB=2∴四边形DFEB的周长=EF+FD+DB+BE=9故选:B .2.解:∵AB =AC AD 平分∠BAC ∴BD =DC =BC =5 ∵点E 为AC 的中点∴CE =AC =6 DE =AB =6 ∴△CDE 的周长=CD +CE +DE =17 故选:B . 3.A 解:45B ∠=︒ AD BC ⊥ABD ∴是等腰直角三角形 6AD BD ∴=60C ∠=︒30DAC ∴∠=︒12DC AC ∴=2233AD AC DC DC AC ∴-=36AC =22AC ∴=E F 分别为AB BC 的中点1122222EF AC ∴==⨯=故选:A . 4.C解:四边形ABCD 是平行四边形60ABC ADC ∴∠=∠=︒ 120BAD ∠=︒AE 平分BAD ∠60BAE EAD ∴∠=∠=︒ABE ∴是等边三角形AE AB BE ∴==AB =12BC AE ∴=12BC90BAC ∴∠=︒30CAD ∴∠=︒ 故A 正确; AC AB ⊥∴ABCDSAB AC =⋅ 故B 正确AB =12BC OB =12BDBD BC >AB OB ∴≠ 故C 错误; CE BE = CO OA = OE ∴=12ABOE ∴=14BC 故D 正确. 故选:C . 5.【答案】C6.已知三角形三边长分别为7cm 8cm 9cm 作三条中位线组成一个新的三角形 同样方法作下去 一共做了五个新的三角形 则这五个新三角形的周长之和为( ) A .46.5cmB .22.5cmC .23.25cmD .以上都不对解:由△ABC 三边长分别为7cm 8cm 9cm 三条中位线组成一个新的三角形 可知新三角形与原三角形相似 相似比是1:2 即:后一个三角形的周长都是前一个三角形周长的∵原三角形的周长=7+8+9=24 ∴这个新三角形的周长=×24=12 ∴这个五个新三角形的周长之和=24+×24+×24+×24+×24=23.25故选:C .7.A解:延长AC BE 交于点M∵AE 平分BAC ∠ BE AE ⊥∴90AEB AEM ∠=∠=︒ CAE BAE ∠=∠∵AE AE =∴ABE AME ≌∴10AB AM == BE EM =∵6AC =∴4CM AM AC =-=∵点F 是BC 的中点 BE EM =∴EF 为BCM 中位线 ∴122EF CM ==.故选:A .8.【答案】A解:连接 AC∵∠GAB =∠ABC∴AG ∥BC .又 AG = BC可知四边形 AGBC 是平行四边形∴AC ∥BG点 E F 分别为 AD DC 的中点∴EF 是△ ADC 的中位线∴EF ∥AC∴ EF ∥BG .∴点 B 与点 G 到 EF 的距离相等△EBF 与△ EGF 是同底等高的关系∴ S △ EBF = S △ EGF 即S1=S2故选: A9.A解:如图 延长DP 交BC 于点F四边形ABCD 是平行四边形AD BC ∴∥ OD OB = 7AB CD == 10BC AD ==180ADC BCD ∴∠+∠=︒ ADF CFD ∠=∠ DP 平分ADC ∠ CP 平分BCD ∠ADF CDF ∠=∠∴ FCP DCP ∠=∠90CDP DCP ∴∠+∠=︒ CDF CFD ∠=∠7DC CF ∴== DP PF =OP ∴是DBF 的中位线()()111107 1.5222OP BF BC CF ∴==-=-= 故选:A .10.解:如图 取 AD 的中点 H ,连接 PH , OH∵四边形 ABCD 是平行四边形 ∴AP = PC又∵点 H 是 AD 中点 LAOD =90°∴PH =- AB , OH =- AD∴OH + PH ≥ OP∴AB + AD ≥2OP∴四边形 ABCD 的周长最小值为20故选: A .二.填空题11.解:取 BE 的中点 M 连接 FM , CM∵F 为AE 的中点 M 为 BE 的中点∴MF =AB , FM // AB∵四边形 ABCD 是平行四边形∴DC = AB , DC // AB∵E 为 CD 的中点∴CE =DC∴ CE = FM , CE // FM .∴四边形 EFMC 是平行四边形∴EG = GM∵BM = EM = BE =x8=4∴ EG =x4=2故答案为:212.如图 DE 为△ABC 的中位线 点F 在DE 上 且∠AFC 为直角 若AC =6cmBC =8cm则DF 的长为 1cm .解:∵DE 为△ABC 的中位线∴DE =BC =4(cm )∵∠AFC 为直角 E 为AC 的中点∴FE =AC =3(cm )∴DF =DE ﹣FE =1(cm )故答案为:1cm .13.6解:如图2 由折叠得:AM MD = MN AD ⊥ AD BC ⊥ 连接GD∴GN BC∥GN是AD的垂直平分线∴AG DG=∴GAD GDA∠=∠∵90GBD GAD GDB GDA∠+∠=︒=∠+∠∴GBD GDB∠=∠∴GB GD=∴AG BG=同理可得:AN CN=∴GN是ABC的中位线而12BC=∴162GN BC==∵PM GM=∴6 MP MN GM MN GN+=+==.故答案为:6.14.【答案】7215.解:延长AE BC交于点H∵△ADE是等腰直角三角形∴∠HAC=45°AE=AD=2∴CH=AC=BC AH=AC=6∴EH=AH﹣AE=4∵BC=CH BF=FE∴FC=EH=2故答案为:2.16.【答案】3 (或3:1)】解: EF 是△ ABC 的中位线.. EF / BC , EF = BCOE =20F: OE =BC =BC设点 A 到 BC 的距离为 h则 S △ ABC = BC · h , S △ aoc =OE · h =BC · h =BC · h:△ ABC 的面积与△ AOC 的面积之比=3:1.故选: D .17.【答案】52解答】解:∵四边形 ABCD 是平行四边形∴AD = BC , CD = AB , DC / AB∵AD =5, AB = CF =3.∴CD =3, BC =5∴BF = BC + CF =8∵△ BEF 是等边三角形 G 为 DE 的中点∴BF = BE =8, DG = EG延长 CG 交 BE 于点 H∵DC / AB∴∠CDG=∠HEG在△ DCG 和△ EHG 中∠CDG=∠HEGDG = EG∠DGC =∠ EGH∴△ DCGR △ EHG ( ASA ).∴DC = EH , CG = HG∵ CD =3, BE =8∴HE =3, BH =5∵ LCBH =60°, BC = BH =5∴△CBH 是等边三角形∴CH = BC =5∴CG = CH =52故答案为:52三.解答题18.如图△ABC的中线BE CF相交于G且AB=12 AC=16 BC=20 求GC的长.解:∵AB=12 AC=16 BC=20∴AB2+AC2=BC2∴△ABC是直角三角形∴∠A=90°∵F是AB中点∴AF=6∴CF===2∵中线BE CF相交于G∴G是△ABC重心∴CG:GF=2:1∴CG=.19.(1)证明见解析(2)证明见解析(1)证明:∵点E是边BC中点∴BE CE=又∵EF OE=∴四边形OBFC是平行四边形;(2)证明:∵四边形ABCD是平行四边形对角线AC BD、相交于点O ∴点O是BD的中点又∵点E是边BC中点∴OE是BCD△的中位线∴OE CD即OF CD∥.20.【答案】(1)证明:∵BF=BE CG=CE∴BC为△FEG的中位线FG∴BC//FG BC=12又∵H是FG的中点∴FH=1FG2∴BC=FH .又∵四边形ABCD是平行四边形∴AD//BC AD=BC∴AD//FH AD=FH∴四边形AFHD是平行四边形;(2)解:∵四边形ABCD是平行四边形∴∠DAB=∠DCB∵CE=CB∴∠BEC=∠EBC=75°∴∠BCE=180°−75°−75°=30°∴∠DCB=∠DCE+∠BCE=10°+30°=40°∴∠DAB=40° .21.解:(1)如图,连接CD,AE.由三角形中位线定理可得PM∥12CD,PN∥12AE.∵△ABD和△BCE是等边三角形,∴AB=DB,BE=BC,∠ABD=∠CBE=60°∴∠ABE=∠DBC.∴△ABE≌△DBC,∴AE=DC.∴PM=PN.(2)如图,设PM交AE于F,PN交CD于G,AE交CD于H,AE交BD于Q.由(1)知△ABE≌△DBC,∴∠BAE =∠BDC.又∵∠DQH=∠BQA,∴∠AHD=∠ABD=60°,∴∠FHG=120°.22.证明:如图,取NC的中点H,连接DH过点H作HE∥AD,交BN的延长线于E.∵AB=AC,AD⊥BC,∴D为BC的中点.∵H为NC的中点,∴DH∥BN.又∵PD∥EH,∴四边形PDHE是平行四边形.∴HE=PD.∵P为AD的中点,∴AP=PD. ∴AP=EH.又∵HE∥AD,∴∠PAN=∠EHN,∠APN=∠HEN.∴△APN≌△HEN(ASA).∴AN=NH. ∴AN=NH=HC. ∴AN=13AC.23.(1)证明:连接BD取DB的中点H连接EH FH ∵E H分别是AD BD的中点∴EH∥AB EH=AB∴∠BME=∠HEF∵F H分别是BC BD的中点∴FH∥CD FH=CD∴∠CNE=∠HFE∵AB=CD∴HE=FH∴∠HEF=∠HFE∴∠BME=∠CNE;(2)连接BD取DB的中点H连接EH FH∵E F分别是AD BC的中点∴EH=AB FH=CD FH∥AC∴∠HFE=∠FEC=45°∵AB=CD=2∴HF=HE=1∴∠HEF=∠HFE=45°∴∠EHF=180°﹣∠HFE﹣HEF=90°∴.24.【答案】(1)解:结论1:四边形EFGH是平行四边形;证明:∵在四边形ABCD中 E F G H是各边中点∴EF为∆ABD的中位线∴EF∥BD EF=12BD同理可得GH∥BD GH=12BD∴GH∥EF GH=EF∴四边形EFGH是平行四边形;结论2:四边形EJGI是平行四边形;证明:∵E J G I分别为DA DB BC AC中点∴EJ为∆ABD的中位线∴EJ∥AB EJ=12AB同理可得IG∥AB IG=12AB∴EJ∥IG EJ=IG∴四边形EJGI是平行四边形;结论3:S四边形EFGH=12S四边形ABCD;证明:由结论1证明可得 EF=12BD GH=12BD∴∆AEF的高为∆ADB高的一半∆CHG的高为∆BCD高的一半∴S�AEF=14S�ADB S�CHG=14S�CDB同理:S�DEH=14S�DAC S�BFG=14S�BCA∴S四边形EFGH=S四边形ABCD−S�AEF−S�CHG−S�DEH−S�BFG=12S四边形ABCD;(2)解:①连接AC 取AC的中点E 连接FE HE∵点E F为AC AB的中点∴EF=12BC=2同理:EH=12AD=3第 31 页 共 31 页 ∴EH-EF<FH<EF+EH即1<EH<5故答案为:1<FH<5;②如图所示 连接EFGH 由结论1可得四边形EFGH 为平行四边形如图所示 过点E 作EM ∥FH 交GH 延长线于点M 过点G 作GN ⊥EM∵EF ∥GM EM ∥FH∴四边形FHME 为平行四边形∴FH=EM=6 ∠EOF=∠GEM=60° FE=HM∴∠EGN=30°∴EN=12EG =4∴GN =√EG 2−EN 2=4√3∴S �EGM =12EM ×GN =12√3由图可得S 四边形EFGH =S �EGM =12√3由结论3可得:S 四边形ABCD =2S 四边形EFGH =24√3.。

9.5《三角形的中位线》期末复习优生专题提升训练2020-2021学年苏科版八年级数学 下册

9.5《三角形的中位线》期末复习优生专题提升训练2020-2021学年苏科版八年级数学  下册

2021年苏科版八年级数学第9章《三角形的中位线》期末复习优生专题提升训练(附答案)1.如图,在△ABC中,AB=3,AC=5,AD平分∠BAC,AD⊥BF于点D,点E为BC的中点,连接DE,则DE的长是()A.0.5B.0.75C.1D.22.如图,在四边形ABCD中,点P是对角线BD的中点,点E,F分别是AB,CD的中点,AD=BC,∠PEF=23°,则∠PFE的度数为()A.23°B.25°C.30°D.46°3.如图,△ABC中,AB>AC,AE平分∠BAC,BD⊥AE于D,CE⊥AE于E,F为BC的中点,给出结论:①FD∥AC;②FE=FD;③AB﹣AC=DE;④∠BAC+∠DFE=180°.其中正确的是()A.①②B.①②③C.①②④D.①②③④4.如图,在△ABC中,点D、E、F分别是各边的中点,若△ABC的面积为16cm2,则△DEF的面积是()cm2.A.2B.4C.6D.85.如图,在△ABC中,BC=12,AC=16,∠C=90°,M是AC边上的中点,N是BC边上任意一点,且2CN<BC,若点C关于直线MN的对称点C'恰好落在△ABC的中位线上,则CN=.6.如图,△ABC中,∠A=60°,AC>AB>2,点D,E分别在边AB,AC上,且BD=CE =2,连接DE,点M是DE的中点,点N是BC的中点,线段MN的长为.7.如图,在△ABC中,AD是中线,AE是角平分线,点F在AE上,∠CF A=90°,试判断DF与AB的位置关系,并说明理由.8.如图,△ABC中,AD平分∠BAC,AD⊥BD,E为BC的中点.(1)求证:DE∥AC;(2)若AB=4,AC=6,求DE的长.9.在△ABC中,点M是边BC的中点,AD平分∠BAC,BD⊥AD,BD的延长线交AC于点E,AB=12,AC=20.(1)求证:BD=DE;(2)求DM的长.10.如图,等边△ABC的边长是4,D,E分别为AB,AC的中点,延长BC至点F,使CF =BC,连接CD和EF.(1)求证:DE=CF;(2)求EF的长;(3)求四边形DEFC的面积.11.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC 于点D,已知AB=10,AC=16.(1)求证:BN=DN;(2)求MN的长.12.如图,△ABC中,AB=8,AC=6,AD、AE分别是其角平分线和中线,过点C作CG ⊥AD于F,交AB于G,连接EF,求线段EF的长.13.如图,在△ABC中,AD是高,E、F分别是AB、AC的中点.(1)若四边形AEDF的周长为24,AB=15,求AC的长;(2)求证:EF垂直平分AD.14.探索与证明如图,在△ABC中,BD、CE分别是边AC、AB上的中线,BD与CE相交于点O,M、N分别是BO、CO的中点,顺次连接E、M、N、D四点.(1)求证:EMND是平行四边形;(2)探索:BC边上的中线是否过点O?为什么?15.如图,点D、E是Rt△ABC两直角边AB、AC上的一点,连接BE,已知点F、G、H 分别是DE、BE、BC的中点.(1)求∠FGH度数;(2)连CD,取CD中点M,连接GM,若BD=8,CE=6,求GM的长.16.如图,在四边形ABCD中,AC、BD相交于点O,E、F是AD、BC的中点,EF分别交AC、BD于M、N,且OM=ON.求证:AC=BD.17.如图1,在四边形ABCD中,AB=CD,E,F分别是BC,AD的中点,连接EF并延长,分别与BA,CD的延长线交于点M,N,则∠BME=∠CNE(不需证明).小明的思路是:在图1中,连接BD,取BD的中点H,连接HE,HF,根据三角形中位线定理和平行线性质,可证得∠BME=∠CNE.问题:如图2,在△ABC中,AC>AB,D点在AC上,AB=CD,E,F分别是BC,AD 的中点,连接EF并延长,与BA的延长线交于点G,若∠EFC=60°,连接GD,判断△AGD的形状并证明.18.如图1,BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别为F、G,连接FG,延长AF、AG,与直线BC相交于M、N.(1)试说明:FG=(AB+BC+AC);(2)如图2,若BD、CE分别是△ABC的内角平分线,则线段FG与△ABC三边又有怎样的数量关系?请写出你的猜想;(3)如图3,若BD为△ABC的内角平分线,CE为△ABC的外角平分线,则线段FG与△ABC三边的数量关系是.19.如图,AD为△ABC的中线,BE为△ABD的中线.(1)在△BED中作BD边上的高,垂足为F;(2)若△ABC的面积为20,BD=5.①△ABD的面积为,②求△BDE中BD边上的高EF的长;(3)过点E作EG∥BC,交AC于点G,连接EC、DG且相交于点O,若S△ABC=2m,又S△COD=n,求S△GOC.(用含m、n的代数式表示)20.在△ABC中,AC=BC,∠ACB=90°,点D为AC的中点.(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连接CF,过点F作FH⊥FC,交直线AB于点H.判断FH与FC的数量关系并加以证明;(2)如图2,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.21.已知:如图,在△ABC中,AD平分∠BAC,CN⊥AD于E交AB于N,F是AC的中点,FE的延长线交BC于M.试判断BM=MC的正确性.如果正确,请给出证明过程;若不正确,请说明理由.22.如图,在▱ABCD中,E,F分别是AD、BC上的点,且DE=CF,BE和AF的交点为M,CE和DF的交点为N,求证:MN∥AD,MN=AD.23.如下图,已知BE、CD分别是△ABC的角平分线,并且AE⊥BE于E点,AD⊥DC于D点.求证:(1)DE∥BC;(2).参考答案1.解:∵在△ABC中,AD平分∠BAC,AD⊥BF,AB=3,∴点D是BF的中点,且AB=AF=3.∵AC=5,∴FC=AC﹣AF=5﹣3=2.又∵点E为BC的中点,∴DE是△BFC的中位线,∴DE=FC==1.故选:C.2.解:在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,∴FP,PE分别是△CDB与△DAB的中位线,∴PF=BC,PE=AD,∵AD=BC,∴PF=PE,故△EPF是等腰三角形.∵∠PEF=23°,∴∠PEF=∠PFE=23°.故选:A.3.解:延长CE交AB于G,延长BD交AC延长线于H,∵AE平分∠GAC,AE⊥GC,∴AG=AC,GE=CE,同理可得,AB=AH,BD=HD,∵BF=CF,BD=HD,∴DF∥CH,即DF∥AC,故①正确,∴DF=CH,∵GE=CE,BF=CF,∴EF=BG,∵GB=AB﹣AG=AH﹣AC=CH,即GB=CH,∴GB=CH,即EF=DF,故②正确,∴AB﹣AC=AB﹣AG=BG,过G作GI⊥BH于I,∵∠GED=∠EDI=∠GID=90°,∴四边形GIDE是矩形,∴GI=ED,∴BG>GI=ED,∴AB﹣AC>DE,故③错误;∵EF∥BG,DF∥HC,∴∠FED=∠BAD,∠FDE=∠HAD,∴∠FED+∠FDE=∠BAD+∠HAD=∠BAC,∵∠FED+∠FDE+∠EFD=180°,∴∠BAC+∠EFD=180°,故④正确;故选:C.4.解:∵点D、F分别是AB,AC的中点,∴DF∥BC,DF=BC,∴DF∥BE,∵E是BC的中点,∴BE=BC,∴DF=BE,∴四边形BEFD是平行四边形,∴BD=EF,在△BDE和△FED中,,∴△BDE≌△FED(SSS),同理可证△DAF≌△FED,△EFC≌△FED,即△BDE≌△DAF≌△EFC≌△FED,∴S△DEF=S△ABC=×16=4(cm2),故选:B.5.解:在△ABC中,BC=12,AC=l6,∠C=90°,则由勾股定理知AB===20.取BC、AB的中点H、G,连接MH、HG、MG.如图1中,当点C′落在MH上时,设NC=NC′=x,由题意可知:MC=MC′=8,MH=10,HC′=2,HN=6﹣x,在Rt△HNC′中,∵HN2=HC′2+NC′2,∴(6﹣x)2=x2+22,解得x=.如图2中,当点C′落在GH上时,设NC=NC′=x,在Rt△GMC′中,MG=CH=6,MC=MC′=8,∴GC′=2,∵∠NHC'=∠C'GM=90°,∠NC'M=90°,∴∠HNC'+∠HC'N=∠GC'M+∠HC'N=90°,∴∠HNC'=∠CGC'M,∴x=.如图3中,当点C′落在直线GM上时,易证四边形MCNC′是正方形,可得CN=CM =4.∴C'M>GM,此时点C′在中位线GM的延长线上,不符合题意.综上所述,满足条件的线段CN的长为或.故答案为:或.6.解:如图,作CH∥AB,连接DN,延长DN交CH于H,连接EH,作CJ⊥EH于J.∵BD∥CH,∴∠B=∠NCH,∵BN=CN,∠DNB=∠KNC,∵△DNB≌△HNC(ASA),∴BD=CH,DN=NH,∵BD=EC=2,∴EC=CH=2,∵∠A+∠ACH=180°,∠A=60°,∴∠ECH=120°,∵CJ⊥EH,∴EJ=JH=,∴EH=2EJ=2,∵DM=ME,DN=NH,∴MN=EH=.故答案为.7.解:DF∥AB.理由如下:如图,延长CF交AB于点G,∵AE是角平分线,∴∠GAF=∠CAF,在△AGF和△ACF中,∴△AGF≌△ACF(ASA),∴GF=CF,即点F是GC的中点,∵AD是△ABC的中线,∴点D是BC的中点∴DF是△BCG的中位线,∴DF∥AB.8.(1)证明:延长BD交AC于H,在△ADB和△ADH中,,∴△ADB≌△ADH,∴BD=HD,又E为BC的中点.∴DE∥AC;(2)解:∵△ADB≌△ADH,∴AH=AB=4,∴CH=AC﹣AH=2,∵BD=HD,又E为BC的中点,∴DE=CH=1.9.(1)证明:∵AD平分∠BAC,∴∠BAD=∠DAE.∵AD⊥BD,∴∠ADB=∠ADE=90°.在△ADB与△ADE中,∴△ADB≌△ADE,∴BD=DE.(2)∵△ADB≌△ADE,∴AE=AB=12,∴EC=AC﹣AE=8.∵M是BC的中点,BD=DE,∴DM=EC=4.10.解:(1)在△ABC中,∵D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴DE=BC,∵CF=BC,∴DE=CF.(2)∵AC=BC,AD=BD,∴CD⊥AB,∵BC=4,BD=2,∴CD==2,∵DE∥CF,DE=CF,∴四边形DEFC是平行四边形,∴EF=CD=2.(3)过点D作DH⊥BC于H.∵∠DHC=90°,∠DCB=30°,∴DH=DC=,∵DE=CF=2,∴S四边形DEFC=CF•DH=2×=2.11.证明:(1)∵AN平分∠BAC∴∠1=∠2,∵BN⊥AN∴∠ANB=∠AND,在△ABN和△ADN中,,∴△ABN≌△ADN(ASA)∴BN=DN;(2)∵△ABN≌△ADN∴AD=AB=10,DN=NB,∴CD=AC﹣AD=16﹣10=6,又∵点M是BC中点,∴MN是△BDC的中位线,∴MN=CD=3.12.解:在△AGF和△ACF中,,∴△AGF≌△ACF(ASA),∴AG=AC=6,GF=CF,则BG=AB﹣AG=8﹣6=2.又∵BE=CE,∴EF是△BCG的中位线,∴EF=BG=1.13.(1)解:∵AD是高,E、F分别是AB、AC的中点,∴DE=AE=AB,DF=AF=AC,∴AE+DE=AB=15,AF+DF=AC,∵四边形AEDF的周长为24,AB=15,∴AC=24﹣15=9;(2)证明:∵DE=AE,DF=AF,∴点E、F在线段AD的垂直平分线上,∴EF垂直平分AD.14.(1)证明:△ABC的边AC、AB上的中线BD、CE相交于点O,M、N分别是BO、CO 的中点,∴ED∥BC且ED=BC,MN∥BC且MN=BC,∴ED∥MN且ED=MN,∴四边形MNDE是平行四边形.(2)BC边上的中线过点O,理由如下:作BC边上的中线AF,交BD于M,连接DF,∵BD、AF是边AC、BC上的中线,∴DF∥BA,DF=BA.∴BD=3DM,∵BO=BD,∴O和M重合,即BC边上的中线一定过点O.15.解:(1)∵F、G、H分别是DE、BE、BC的中点,∴FG∥DB,GH∥EC.∴∠DBE=∠FGE,∠EGH=∠AEG.∠FGH=∠FGE+∠EGH=∠ABE+∠BEA=180°﹣∠A=180°﹣90°=90°.(2)如图所示:连接FM、HM.∵M、H分别是BC和DC的中点,∴MH∥BD,MH=.同理:GF∥BD,GF=.∴四边形FGHM为平行四边形.∵G、H、M分别是BE、BC、DC的中点,∴GH==3,,由(1)可知:∠FGH=90°,∴四边形FGHM为矩形.∴∠GHM=90°.∴GM==5.16.证明:取AB和CD的中点分别为G、H,连接EG、GF、FH、EH,则EH∥AC,EH=AC,HF∥BD,FH=BD,∴∠3=∠2,∠1=∠4,∵OM=ON,∴∠1=∠2,同理∠EFH=∠GFE=∠1=∠2,∴∠4=∠EFH,∴EH=HF,∵EH=AC,FH=BD,∴AC=BD.17.解:判断△AGD是直角三角形.证明:如图连接BD,取BD的中点H,连接HF、HE,∵F是AD的中点,∴HF∥AB,HF=AB,∴∠1=∠3,同理,HE∥CD,HE=CD,∴∠2=∠EFC,∵AB=CD,∴HF=HE,∴∠1=∠2,∵∠EFC=60°,∴∠3=∠EFC=∠AFG=60°,∴△AGF为等边三角形,∵AF=FD,∴GF=FD,∴∠FGD=∠FDG=30°,∴∠AGD=90°,即△AGD是直角三角形.18.解:(1)∵BD⊥AF,在△ABF和△MBF中,∴△ABF≌△MBF(ASA)∴MB=AB∴AF=MF,同理:CN=AC,AG=NG,∴FG是△AMN的中位线∴FG=MN,=(MB+BC+CN),=(AB+BC+AC).(2)图(2)中,FG=(AB+AC﹣BC)解:如图(2),延长AF、AG,与直线BC相交于M、N,∵AF⊥BD,∠ABF=∠MBF,∴∠BAF=∠BMF,在△ABF和△MBF中∵,∴△ABF≌△MBF(ASA)∴MB=AB,AF=MF,同理:CN=AC,AG=NG∴FG=MN,=(BM+CN﹣BC),=(AB+AC﹣BC),答:线段FG与△ABC三边的数量关系是FG=(AB+AC﹣BC).(3)解:FG=(AC+BC﹣AB),理由是:∵AF⊥BD,∠ABF=∠MBF,∴∠BAF=∠BMF,在△ABF和△MBF中∵,∴△ABF≌△MBF(ASA)∴MB=AB,AF=MF,同理:CN=AC,AG=NG∴FG=MN,=(CN+BC﹣BM),=(AC+BC﹣AB).故答案为:FG=(AC+BC﹣AB).19.解:(1)作EF⊥BD垂足为F,(2)①∵AD为△ABC的中线,∴S△ABD=S△ABC,∵△ABC的面积为20,∴△ABD的面积为10;②∵BE为△ABD的中线,∴S△BDE=S△ABD=5,∵BD=5,∴EF的长=2;③∵EG∥BC,BE为△ABD的中线,∴EG是△ACD的中位线,∴DG是△ACD的中线,∴S△BDE=S△CDG,S△BDE=S△CDG=S△ABD=S△ABC=,∴S△GDC=,又∵S△COD=n,∴S△GOC=S△GDC﹣S△COD=.20.解:(1)FH与FC的数量关系是:FH=FC.证明如下:延长DF交AB于点G,由题意,知∠EDF=∠ACB=90°,DE=DF,∴DG∥CB,∵点D为AC的中点,∴点G为AB的中点,且,∴DG为△ABC的中位线,∴.∵AC=BC,∴DC=DG,∴DC﹣DE=DG﹣DF,即EC=FG.∵∠EDF=90°,FH⊥FC,∴∠1+∠CFD=90°,∠2+∠CFD=90°,∴∠1=∠2.∵△DEF与△ADG都是等腰直角三角形,∴∠DEF=∠DGA=45°,∴∠CEF=∠FGH=135°,∴△CEF≌△FGH,∴CF=FH.(2)FH与FC仍然相等.理由:由题意可得出:DF=DE,∴∠DFE=∠DEF=45°,∵AC=BC,∴∠A=∠CBA=45°,∵DF∥BC,∴∠CBA=∠FGB=45°,∴∠FGH=∠CEF=45°,∵点D为AC的中点,DF∥BC,∴DG=BC,DC=AC,∴DG=DC,∴EC=GF,∵∠DFC=∠FCB,∴∠GFH=∠FCE,在△FCE和△HFG中,∴△FCE≌△HFG(ASA),∴HF=FC.21.解:结论BM=MC正确.证明过程如下:∵AD平分∠BAC,∴∠NAE=∠CAE.∵CE⊥AD,∴∠AEN=∠AEC=90°.∵AE=AE,∴△ANE≌△ACE.∴NE=CE.∵F为AC的中点,∴AF=CF.∴EF∥AB.∵AF=CF,∴BM=MC.22.证明:连接EF,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵DE=CF,∴AE=BF.∴四边形ABFE和四边形CDEF都是平行四边形.∴BM=ME,CN=NE.∴MN是△BCE的中位线.∴MN∥AD,MN=AD.23.证明:(1)延长AD、AE,交BC于F、G;∵BE⊥AG,∴∠AEB=∠BEG=90°;∵BE平分∠ABG,∴∠ABE=∠GBE;∴∠BAE=∠BGE;∴△ABG是等腰三角形;∴AB=BG,E是AG中点;同理可得:AC=CF,D是AF中点;∴DE是△AFG的中位线;∴DE∥BC.(2)由(1)知DE是△AFG的中位线,∴DE=FG;∵FG=BG+CF﹣BC,且AB=BG,AC=CF;∴FG=AB+AC﹣BC,即DE=(AB+AC﹣BC).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年08月17日三角形的中位线一.选择题(共10小题)1.(2016•顺义区一模)如图,为测量池塘岸边A、B两点之间的距离,小亮在池塘的一侧选取一点O,测得OA、OB的中点D、E之间的距离是14米,则A、B两点之间的距离是()A.18 米B.24米C.28米D.30米2.(2016•南充)如图,在Rt△ABC中,∠A=30°,BC=1,点D,E分别是直角边BC,AC 的中点,则DE的长为()A.1 B.2 C.D.1+3.(2016•广西)如图,在△ABC中,AB=4,BC=6,DE、DF是△ABC的中位线,则四边形BEDF的周长是()A.5 B.7 C.8 D.104.(2016•桐乡市一模)如图,若DE是△ABC的中位线,则S△ADE:S△ABC=()A.1:B.1:2 C.1:3 D.1:45.(2016•深圳校级二模)如图,在△ABC中,AB=BC=10,BD是∠ABC的平分线,E是AB边的中点.则DE的长是()A.6 B.5 C.4 D.36.(2016•湖里区模拟)在△ABC中,若点D为AB中点,点E是AC上一点,则下列条件能判断线段DE一定为△ABC中位线的是()A.DE⊥AC B.CE=2AEC.=1 D.=7.(2016•东平县一模)如图,在△ABC中,D,E分别是AB,AC的中点,AC=12,F是DE上一点,连接AF,CF,DF=1.若∠AFC=90°,则BC的长度为()A.12 B.13 C.14 D.158.(2016•薛城区模拟)如图,在四边形ABCD中,E,F分别为DC、AB的中点,G是AC 的中点,则EF与AD+CB的关系是()A.2EF=AD+BC B.2EF>AD+BC C.2EF<AD+BC D.不确定9.(2016•葫芦岛)如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=4,则BF的长为()A.4 B.8 C.2D.410.(2016春•滕州市期末)如图,四边形ABCD中,∠A=90°,AB=8,AD=6,点M,N 分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为()A.8 B.6 C.4 D.5二.填空题(共8小题)11.(2016•黄石模拟)如图,O为跷跷板AB的中点,支柱OC与地面MN垂直,垂足为点C,且OC=50cm,当跷跷板的一端B着地时,另一端A离地面的高度为cm.12.(2016•凉山州)如图,△ABC的面积为12cm2,点D、E分别是AB、AC边的中点,则梯形DBCE的面积为cm2.13.(2016•南京)如图,AB、CD相交于点O,OC=2,OD=3,AC∥BD,EF是△ODB的中位线,且EF=2,则AC的长为.14.(2016春•江阴市校级月考)如图,在△ABC中,M是BC边的中点,AP平分∠A,BP ⊥AP于点P、若AB=12,AC=22,则MP的长为.15.(2016•牡丹区校级模拟)如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=10,AC=6,则DF的长为.16.(2016春•邹城市校级期中)如图,D,E,F分别是三角形ABC各边的中点,AG是高,如果ED=5,那么GF的长为.17.(2016•大庆)如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n个图形中共有三角形的个数为.18.(2016春•咸丰县校级月考)已知等边△A1B1C1的边长为1,△A1B1C1的三条中位线组成△A2B2C2,△A2B2C2的三条中位线又组成△A3B3C3,…,以此类推,得到△A n B n C n,则△A n B n C n的边长为.(其中n为正整数)三.解答题(共12小题)19.(2016•广东)如图,已知△ABC中,D为AB的中点.(1)请用尺规作图法作边AC的中点E,并连结DE(保留作图痕迹,不要求写作法);(2)在(1)的条件下,若DE=4,求BC的长.20.(2015秋•乳山市期末)如图,在△ABC中,AD是BC边上的中线,点F在AC上,AF=FC,AD与BF交于点E.求证:点E是AD的中点.21.(2016•淄博)如图,已知△ABC,AD平分∠BAC交BC于点D,BC的中点为M,ME ∥AD,交BA的延长线于点E,交AC于点F.(1)求证:AE=AF;(2)求证:BE=(AB+AC).22.(2016春•梅河口市校级月考)如图,在四边形ABCD中,AB=DC,P是对角线AC的中点,M是AD的中点,N是BC的中点.(1)若AB=6,求PM的长;(2)若∠PMN=20°,求∠MPN的度数.23.(2015秋•太康县期中)如图,M是△ABC的边BC的中点,AN平分∠BAC,且BN⊥AN,垂足为N,且AB=6,BC=10,MN=1.5,求△ABC的周长.24.(2013秋•海陵区期中)如图,四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.(1)请判断四边形EFGH的形状?并说明为什么.(2)若使四边形EFGH为正方形,那么四边形ABCD的对角线应具有怎样的性质?(3)在(2)的条件下,若EF=2,求四边形ABCD的面积.25.(2014春•太仓市期中)△ABC中E是AB的中点,CD平分∠ACB,AD⊥CD与点D,求证:DE=(BC﹣AC).26.(2016•北京)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.27.(2014•丹阳市校级模拟)如图,在四边形ABCD中,对角线AC、BD交于点O,E、F 分别是AB、CD的中点,且AC=BD.求证:OM=ON.28.(2015春•汉阳区期中)(1)叙述三角形中位线定理,并运用平行四边形的知识证明;(2)运用三角形中位线的知识解决如下问题:如图,在四边形ABCD中,AD∥BC,E、F分别是AB,CD的中点,求证:EF=(AD+BC)29.(2013秋•江山市校级月考)如图,已知四边形ABCD中,AB=DC,E、F分别为AD 与BC的中点,连结EF与BA的延长线相交于N,与CD的延长线相交于M.求证:∠BNF=∠CMF.30.(2014春•金坛市校级月考)(1)请你在△ABC中做一条线段,把△ABC分成面积相等的两部分.(2)请你按照(1)的方法把四边形ABCD分成面积相等的两部分.(3)请你观察下图,尝试在梯形ABCD中做一条线段,把梯形ABCD分成面积相等的两部分.2016年08月17日三角形的中位线参考答案与试题解析一.选择题(共10小题)1.(2016•顺义区一模)如图,为测量池塘岸边A、B两点之间的距离,小亮在池塘的一侧选取一点O,测得OA、OB的中点D、E之间的距离是14米,则A、B两点之间的距离是()A.18 米B.24米C.28米D.30米【考点】三角形中位线定理.2.(2016•南充)如图,在Rt△ABC中,∠A=30°,BC=1,点D,E分别是直角边BC,AC 的中点,则DE的长为()A.1 B.2 C.D.1+【考点】三角形中位线定理;含30度角的直角三角形.3.(2016•广西)如图,在△ABC中,AB=4,BC=6,DE、DF是△ABC的中位线,则四边形BEDF的周长是()A.5 B.7 C.8 D.10【考点】三角形中位线定理.4.(2016•桐乡市一模)如图,若DE是△ABC的中位线,则S△ADE:S△ABC=()A.1:B.1:2 C.1:3 D.1:4【考点】三角形中位线定理.5.(2016•深圳校级二模)如图,在△ABC中,AB=BC=10,BD是∠ABC的平分线,E是AB边的中点.则DE的长是()A.6 B.5 C.4 D.3【考点】三角形中位线定理;等腰三角形的性质.6.(2016•湖里区模拟)在△ABC中,若点D为AB中点,点E是AC上一点,则下列条件能判断线段DE一定为△ABC中位线的是()A.DE⊥AC B.CE=2AEC.=1 D.=【考点】三角形中位线定理.7.(2016•东平县一模)如图,在△ABC中,D,E分别是AB,AC的中点,AC=12,F是DE上一点,连接AF,CF,DF=1.若∠AFC=90°,则BC的长度为()A.12 B.13 C.14 D.15【考点】三角形中位线定理;等腰三角形的判定与性质;直角三角形斜边上的中线.8.(2016•薛城区模拟)如图,在四边形ABCD中,E,F分别为DC、AB的中点,G是AC 的中点,则EF与AD+CB的关系是()A.2EF=AD+BC B.2EF>AD+BC C.2EF<AD+BC D.不确定【考点】三角形中位线定理;三角形三边关系.9.(2016•葫芦岛)如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=4,则BF的长为()A.4 B.8 C.2D.4【考点】三角形中位线定理;含30度角的直角三角形;直角三角形斜边上的中线.10.(2016春•滕州市期末)如图,四边形ABCD中,∠A=90°,AB=8,AD=6,点M,N 分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为()A.8 B.6 C.4 D.5【考点】三角形中位线定理.二.填空题(共8小题)11.(2016•黄石模拟)如图,O为跷跷板AB的中点,支柱OC与地面MN垂直,垂足为点C,且OC=50cm,当跷跷板的一端B着地时,另一端A离地面的高度为100cm.【考点】三角形中位线定理.12.(2016•凉山州)如图,△ABC的面积为12cm2,点D、E分别是AB、AC边的中点,则梯形DBCE的面积为9cm2.【考点】三角形中位线定理.13.(2016•南京)如图,AB、CD相交于点O,OC=2,OD=3,AC∥BD,EF是△ODB的中位线,且EF=2,则AC的长为.【考点】三角形中位线定理.14.(2016春•江阴市校级月考)如图,在△ABC中,M是BC边的中点,AP平分∠A,BP ⊥AP于点P、若AB=12,AC=22,则MP的长为5.【考点】三角形中位线定理.15.(2016•牡丹区校级模拟)如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=10,AC=6,则DF的长为2.【考点】三角形中位线定理;等腰三角形的判定与性质.16.(2016春•邹城市校级期中)如图,D,E,F分别是三角形ABC各边的中点,AG是高,如果ED=5,那么GF的长为5.【考点】三角形中位线定理;直角三角形斜边上的中线.17.(2016•大庆)如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n个图形中共有三角形的个数为4n﹣3.【考点】三角形中位线定理;规律型:图形的变化类.18.(2016春•咸丰县校级月考)已知等边△A1B1C1的边长为1,△A1B1C1的三条中位线组成△A2B2C2,△A2B2C2的三条中位线又组成△A3B3C3,…,以此类推,得到△A n B n C n,则△A n B n C n的边长为.(其中n为正整数)【考点】三角形中位线定理.三.解答题(共12小题)19.(2016•广东)如图,已知△ABC中,D为AB的中点.(1)请用尺规作图法作边AC的中点E,并连结DE(保留作图痕迹,不要求写作法);(2)在(1)的条件下,若DE=4,求BC的长.【考点】三角形中位线定理;作图—基本作图.20.(2015秋•乳山市期末)如图,在△ABC中,AD是BC边上的中线,点F在AC上,AF=FC,AD与BF交于点E.求证:点E是AD的中点.【考点】三角形中位线定理;全等三角形的判定与性质.21.(2016•淄博)如图,已知△ABC,AD平分∠BAC交BC于点D,BC的中点为M,ME ∥AD,交BA的延长线于点E,交AC于点F.(1)求证:AE=AF;(2)求证:BE=(AB+AC).【考点】三角形中位线定理;等腰三角形的判定与性质.22.(2016春•梅河口市校级月考)如图,在四边形ABCD中,AB=DC,P是对角线AC的中点,M是AD的中点,N是BC的中点.(1)若AB=6,求PM的长;(2)若∠PMN=20°,求∠MPN的度数.【考点】三角形中位线定理;等腰三角形的判定与性质.23.(2015秋•太康县期中)如图,M是△ABC的边BC的中点,AN平分∠BAC,且BN ⊥AN,垂足为N,且AB=6,BC=10,MN=1.5,求△ABC的周长.【考点】三角形中位线定理;等腰梯形的性质.24.(2013秋•海陵区期中)如图,四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.(1)请判断四边形EFGH的形状?并说明为什么.(2)若使四边形EFGH为正方形,那么四边形ABCD的对角线应具有怎样的性质?(3)在(2)的条件下,若EF=2,求四边形ABCD的面积.【考点】三角形中位线定理.25.(2014春•太仓市期中)△ABC中E是AB的中点,CD平分∠ACB,AD⊥CD与点D,求证:DE=(BC﹣AC).【考点】三角形中位线定理.26.(2016•北京)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.【考点】三角形中位线定理;直角三角形斜边上的中线;勾股定理.27.(2014•丹阳市校级模拟)如图,在四边形ABCD中,对角线AC、BD交于点O,E、F 分别是AB、CD的中点,且AC=BD.求证:OM=ON.【考点】三角形中位线定理;平行线的性质;等腰三角形的判定与性质.28.(2015春•汉阳区期中)(1)叙述三角形中位线定理,并运用平行四边形的知识证明;(2)运用三角形中位线的知识解决如下问题:如图,在四边形ABCD中,AD∥BC,E、F分别是AB,CD的中点,求证:EF=(AD+BC)【考点】三角形中位线定理;梯形中位线定理.29.(2013秋•江山市校级月考)如图,已知四边形ABCD中,AB=DC,E、F分别为AD 与BC的中点,连结EF与BA的延长线相交于N,与CD的延长线相交于M.求证:∠BNF=∠CMF.【考点】三角形中位线定理.30.(2014春•金坛市校级月考)(1)请你在△ABC中做一条线段,把△ABC分成面积相等的两部分.(2)请你按照(1)的方法把四边形ABCD分成面积相等的两部分.(3)请你观察下图,尝试在梯形ABCD中做一条线段,把梯形ABCD分成面积相等的两部分.【考点】三角形中位线定理.。

相关文档
最新文档