初中数学解题技巧(史上最全)

合集下载

九年级数学解题方法十技巧

九年级数学解题方法十技巧

九年级数学解题方法十技巧
1. 理解问题:在解决数学问题之前,要先读懂题目,理解问题所要求的内容和解决的方法。

2. 给出有序的步骤:将问题分解为一系列有序的步骤,然后逐步解决。

这样可以避免混淆,更容易找到正确的答案。

3. 画图解决问题:有些问题用图形表示会更直观,可以画图帮助理解和解决问题。

4. 列方程求解:将问题用代数方程表示,然后通过求解方程来解决问题。

5. 利用类比和模型:将问题与已知或熟悉的问题进行类比,然后利用类似的模型或方法来解决新问题。

6. 运用逻辑推理:在问题中运用逻辑思考和推理,根据已知条件和问题要求,得出解决问题的方法或结论。

7. 刻意练习:通过大量练习不同类型的题目,提高解题的技巧和能力。

8. 问题分析与求关键:将问题分解为更小的子问题,然后关注问题中最关键的部分来解决。

9. 反向思考:尝试从问题的解决方法中逆向思考或反向推导,找到解决问题的不同方法。

10. 注重检查和复查:在解题过程中要反复检查和复查答案,确保结果的准确性,特别是在多步骤解题中更为重要。

21个数学解题技巧

21个数学解题技巧

21个数学解题技巧一、代数部分1. 代入法的妙处- 就像给数学式子找个替身一样。

如果有方程,比如y = 2x+1,又知道x = 3,那直接把x = 3代入方程,就像把钥匙插进锁里,“咔哒”一下,y的值就出来了,y=2×3 + 1=7,简单又直接。

2. 配方法的魔法- 这就像给代数式做个造型。

比如说x^2+6x + 5,要把它变成完全平方式。

先看x^2+6x,6x的一半是3x,那就在式子后面加上3^2再减去3^2,就变成(x + 3)^2-9+5=(x + 3)^2-4。

这样就可以轻松地求最值或者解方程啦。

3. 因式分解的窍门- 因式分解就像把一个大的数学“蛋糕”切成小块。

对于二次三项式ax^2+bx + c,如果a = 1,找两个数m和n,使得m + n=b且mn = c,那x^2+bx + c=(x + m)(x + n)。

比如x^2+5x+6,m = 2,n = 3,就可以分解成(x + 2)(x+3)。

4. 换元法的巧思- 这就像是给数学式子换件“衣服”。

假如有个式子(x^2+1)^2-3(x^2+1)+2 = 0,看起来很复杂,那就设t=x^2+1,式子就变成t^2-3t + 2 = 0,这就是个简单的二次方程啦,解出t后再把t=x^2+1代回去求出x。

5. 比例性质的活用- 比例就像数学里的“跷跷板”。

如果(a)/(b)=(c)/(d),那么ad = bc。

比如说(x)/(3)=(5)/(x),根据这个性质就得到x^2=15,然后就能求出x=±√(15)啦。

6. 绝对值的处理- 绝对值就像给数字戴了个“安全帽”,里面的数不管正负,出来都是非负的。

如果| x| = 3,那x可能是3或者-3。

要是解| x - 2|=5,就想x - 2 = 5或者x - 2=-5,这样就可以求出x = 7或者x=-3。

7. 方程组的消元术- 解方程组就像在玩消消乐。

对于二元一次方程组2x + 3y=8 3x - 2y=-1,可以通过乘以适当的数让两个方程中某个未知数的系数相同或者相反,然后相加或者相减就把这个未知数消掉了。

初中数学答题的技巧总结

初中数学答题的技巧总结

初中数学答题的技巧总结初中数学答题的技巧总结1. 观察与实验( 1 )观察法:有目的有计划的通过视觉直观的发现数学对象的规律、性质和解决问题的途径。

例如化简经整体观察可知:无法通分,只能单个处理,因此可进行分母有理化,得到结论。

例如北京版数学八年级上15 册p81 页的图表请同学们做的是观察图形、发现规律,填写表格。

就是一种观察归纳的方法。

( 2 )实验法:实验法是有目的的、模拟的创设一些有利于观察的数学对象,通过观察研究将复杂的问题直观化、简单化。

它具有直观性强,特征清晰,同时可以试探解法、检验结论的重要优势。

例如求三角形内角和时用量的方法进行试验发现规律。

通过撕纸的方法进行实验,使三角形内角和转为平角得出180 0 的结论。

发现规律在进行证明问题等同于知道了目的地在寻求证明的途径就容易得多了,同时在实验的过程中发现平行线的的性质,内错角同位角分别相等的转化方法,即发现证明的途径。

当三角形动的时候可看出三个角的值在变化,但和不变为180 0 的重要结论2. 比较与分类( 1 )比较法是确定事物共同点和不同点的思维方法。

在数学上两类数学对象必须有一定的关系才好比较。

我们常比较两类数学对象的相同点、相异点或者是同异综合比较。

例如比较一次函数的图像性质时,常采用比较法( 2 )分类的方法分类是在比较的基础上,依据数学对象的性质的异同,把相同性质的对象归入一类,不同性质的对象归为不同类的'思维方法。

如上图中一次函数的k 在不等于零的情况下的分类是大于零和小于零体现了不重不漏的原则。

如实数的分类是有理数和无理数等3 .特殊与一般( 1 )特殊化的方法特殊化的方法是从给定的区域内缩小范围,甚至缩小到一个特殊的值、特殊的点、特殊的图形等情况,再去考虑问题的解答和合理性。

例如无论k 取何值,直线y=kx-(k-2) 过定点_________分析:令k=0, 得 y=2 代入求得 x=1 得定点为( 1 , 2 )例如: 2 -(2k+1) -2 -(2k-1) +2 -2k 的值为()(a) 2 -2k (b) 2 -(2k-1) (c) -2 -(2k+1) (d) 0分析令 k=0, 得原式 = 2 -1 -2 +1=-2 -1 发现了 (a) (b) (d) ,所以排除了后选(c)( 2 )一般化的方法波利亚在《怎样解题》一书中这样说“普遍化(一般化)就从考虑一个对象过渡到包含该对象的一个集合;后者从考虑一个较小的集合过渡到一个包含该较小集合的更大的集合” “更普遍的问题可能更易于求解”从具体问题中有时需要跳出来看问题就更易于解决,也就是我们平常常说的公式法求解例如:求方程5x2 -4x-12=0 的解,求根公式就易于求解对不能因式分解的一元二次方程优势会更突出。

初中数学解题技巧大全

初中数学解题技巧大全

初中数学解题技巧大全数学是一门需要掌握解题技巧的学科。

在初中阶段,学生需要逐渐掌握各种数学解题技巧,以便能够有效地解决各种数学题目。

本篇文章将为大家介绍一些在初中数学中常用的解题技巧。

1. 反证法反证法是一种常用的解题思路,适用于多个数学领域,如代数、几何等。

它通过假设要证明的结论不成立,然后推导出矛盾的结论,从而证明了原命题的正确性。

在解题时,可以先假设结论不成立,然后按照相反的思路进行证明。

2. 分析归纳法分析归纳法是一种递推推理方法,适用于证明一些具有规律性的数学命题。

它的基本思路是通过对一些特殊情况进行分析,然后总结出一般性的规律,再用归纳的方式推广到更一般的情况。

在解题时,可以先从特例入手,找出规律,然后用归纳法证明。

3. 逆向思维逆向思维是一种倒推的解题方法,适用于解决一些难题。

它的思路是从所求结果出发,逆向推导出已知条件或者中间步骤,从而获得解答。

在解题时,可以先设想出最终结果,然后逆向思考,推导出初值或者递推关系。

4. 分数拆分法分数拆分法是一种常用的解题技巧,在解决一些复杂分式相关的题目时非常实用。

它的思路是将一个复杂的分数拆分成多个简单的分数之和或差。

在解题时,可以找到分子和分母的公因式,然后根据分数的性质进行拆分操作,最后再进行合并化简。

5. 数列思想数列思想是一种广泛运用于初中数学中的解题方法,适用于解决关于数列的各种问题。

它的思路是将一个问题转化为数列相关的问题,通过研究数列的性质和规律来解答。

在解题时,可以先求出数列的通项公式或递推公式,然后根据问题要求进行变形计算。

6. 图形转化法图形转化法是一种常见的几何问题解题技巧,适用于解决一些与图形相关的题目。

它的思路是将几何问题转化为代数问题或者利用几何性质进行等价变形。

在解题时,可以通过引入辅助线、相似三角形、平行四边形等手段,将原问题转化为更易处理的几何问题或者代数问题。

7. 逻辑推理法逻辑推理法是一种根据已知条件进行推理的方法,适用于解决一些条件推理或者概率相关的题目。

初中数学解题技巧(史上最全)

初中数学解题技巧(史上最全)

目录一选择填空题解题技巧(一)二选择填空题解题技巧(二)三初中数学常用十大解题技巧举例四数学思想在初中数学解题中的应用选择题与填空题解题技巧(一)选择题和填空题是中考中必考的题目,主要考查对概念、基础知识的理解、掌握及其应用.填空题所占的比例较大,是学生得分的重要来源.近几年,随着中考命题的创新、改革,相继推出了一些题意新颖、构思精巧、具有一定难度的新题型.这就要求同学切实抓好基础知识的掌握,强化训练,提高解题的能力,才能在中考中减少失误,有的放矢,从容应对.解题规律:要想迅速、正确地解选择题、填空题,除了具有准确计算能力、严密的推理能力外,还要有解选择题、填空题的方法与技巧.常用方法有以下几种:(1)直接推演法:直接从命题给出的条件出发,运用概念,公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法.(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代人条件中去验证,找出正确答案.此法称为验证法(也称代入法).当遇到定量命题时,常用此法.(3)特值法:用合适的特殊元素(如数或图形)代人题设条件或结论中去,从而获得解答.这种方法叫特殊元素法.(4)排除、筛选法;对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法.(5)图解法:借助于符合题设条件的图形或图像的性质、特点来判断,作出正确的选择称为图解法.图解法是解选择题常用方法之一.(6)分析法:直接通过对选择题的条件和结论,作详尽地分析、归纳和判断,从而选出正确的结果,称为分析法.(7)整体代入法:把某一代数式进行化简,然后并不求出某个字母的取值,而是直接把化简的结果作为一个整体代入。

【典例剖析】1.(直接推演法)下列命题中,真命题的个数为( )①对角线互相垂直平分且相等的四边形是正方形,②如果四边形的两条对角线互相垂直,那么它的面积等于两条对角线长的积的一半,③在一个圆中,如果弦相等,那么所对的圆周角相等,④已知两圆半径分别为5,3,圆心距为2,那么两圆内切( )A .1B .2C .3D .4 2.(整体代入法)已知抛物线21y x x =--与x 轴的一个交点为(0)m ,,则代数式22008m m -+的值为( ) A .2006 B .2007 C .2008 D .20093.(图解法)已知二次函数c bx ax y ++=2的图象过点A (1,2),B (3,2),C (5,7).若点M (-2,y 1),N (-1,y 2),K (8,y 3)也在二次函数c bx ax y ++=2的图象上,则下列结论正确的是 ( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 1<y 3<y 24.(特值法)如图所示是二次函数2122y x =-+的图象在x 轴上方的y一部分,对于这段图象与x 轴所围成的阴影部分的面积,你认为与其最.接近的值是( ) A .4 B .163 C .2π D .85.(排除、筛选法)已知:二次函数()220y ax bx a b a =+++≠的图像为下列图像之一,则a 的值为( )A .-1B . 1C . -3D . -46.(图解法)如图,在直角梯形ABCD 中,DC ∥AB ,∠A=90°,AB=28cm ,DC=24cm ,AD=4cm ,点M 从点D 出发,以1cm/s 的速度向点C 运动,点N 从点B 同时出发,以2cm/s 的速度向点A 运动,当其中一个动点到达端点停止运动时,另一个动点也随之停止运动.则四边形AMND 的面积y (cm 2)与两动点运动的时间t (s )的函数图象大致是( )7.(分析法)已知α为锐角,则m =sin α+cos α的值( )A .m >1B .m =1C .m <1D .m ≥18.(验证法:)下列命题:①若0a b c ++=,则240b ac -≥;②若b a c >+,则一元二次方程20ax bx c ++=有两个不相等的实数根;③若23b a c =+,则一元二次方程20ax bx c ++=有两个不相等的实数根;④若240b ac ->,则二次函数的图像与坐标轴的公共点的个数是2或3.其中正确的是( ).A.只有①②③ B.只有①③④ C.只有①④ D. 只有②③④.9.(直接推理法)如图,菱形ABCD (图1)与菱形EFGH (图2)的形状、大小完全相同.ww (1)请从下列序号中选择正确选项的序号填写;①点E F G H ,,,;②点G F E H ,,,;③点E H G F ,,,;④点G H E F ,,,.如果图1经过一次平移后得到图2,那么点A B C D ,,,对应点分别是 ;如果图1经过一次轴对称后得到图2,那么点A B C D ,,,对应点分别是 ; 如果图1经过一次旋转后得到图2,那么点A B C D ,,,对应点分别是 ;(2)①图1,图2关于点O 成中心对称,请画出对称中心(保留画图痕迹,不写画法); ②写出两个图形成中心对称的一条..性质: .(可以结合所画图形叙述) 10.(图象信息法)绍兴黄酒是中国名酒之一.某黄酒厂的瓶酒车间先将散装黄酒灌装成瓶装黄酒,再将瓶装黄酒装箱出车间,该车间有灌装、装箱生产线共26条, 每条灌装、装箱生产线的生产流量分别如图1、2所示. 某日8:00~11:00,车间内的生产线全部投入生产,图3表示该时段内未装箱的瓶装黄酒存量变化情况,则灌装生产线有 条.11. ( 直接计算法) 如图, 大圆O 的半径OC 是小圆1O 的直径, 且有OC 垂直于圆O 的直径AB . 圆1O 的切线AD 交OC 的延长线于点E , 切点为D . 已知圆1O 的半径为r ,则=1AO _______ ; =DE ________12.(分析法)如图所示,直线12l l ⊥,垂足为点O ,A 、B 是直线1l 上的两点,且OB=2,AB=2.直线1l 绕点O 按逆时针方向旋转,旋转角度为α(0180α<<)。

初中数学解题技巧整理(史上最全)

初中数学解题技巧整理(史上最全)

初中数学解题技巧(史上最全)目录一选择填空题解题技巧(一)二选择填空题解题技巧(二)三初中数学常用十大解题技巧举例四数学思想在初中数学解题中的应用选择题与填空题解题技巧(一)选择题和填空题是中考中必考的题目,主要考查对概念、基础知识的理解、掌握及其应用.填空题所占的比例较大,是学生得分的重要来源.近几年,随着中考命题的创新、改革,相继推出了一些题意新颖、构思精巧、具有一定难度的新题型.这就要求同学切实抓好基础知识的掌握,强化训练,提高解题的能力,才能在中考中减少失误,有的放矢,从容应对.解题规律:要想迅速、正确地解选择题、填空题,除了具有准确计算能力、严密的推理能力外,还要有解选择题、填空题的方法与技巧.常用方法有以下几种:(1)直接推演法:直接从命题给出的条件出发,运用概念,公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法.(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代人条件中去验证,找出正确答案.此法称为验证法(也称代入法).当遇到定量命题时,常用此法.(3)特值法:用合适的特殊元素(如数或图形)代人题设条件或结论中去,从而获得解答.这种方法叫特殊元素法.(4)排除、筛选法;对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法.(5)图解法:借助于符合题设条件的图形或图像的性质、特点来判断,作出正确的选择称为图解法.图解法是解选择题常用方法之一.(6)分析法:直接通过对选择题的条件和结论,作详尽地分析、归纳和判断,从而选出正确的结果,称为分析法.(7)整体代入法:把某一代数式进行化简,然后并不求出某个字母的取值,而是直接把化简的结果作为一个整体代入。

【典例剖析】1.(直接推演法)下列命题中,真命题的个数为( )①对角线互相垂直平分且相等的四边形是正方形,②如果四边形的两条对角线互相垂直,那么它的面积等于两条对角线长的积的一半,③在一个圆中,如果弦相等,那么所对的圆周角相等,④已知两圆半径分别为5,3,圆心距为2,那么两圆内切( )A .1B .2C .3D .42.(整体代入法)已知抛物线21y x x =--与x 轴的一个交点为(0)m ,,则代数式22008m m -+的值为( ) A .2006 B .2007 C .2008 D .20093.(图解法)已知二次函数c bx ax y ++=2的图象过点A (1,2),B (3,2),C (5,7).若点M (-2,y 1),N (-1,y 2),K (8,y 3)也在二次函数c bx ax y ++=2的图象上,则下列结论正确的是 ( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 1<y 3<y 24.(特值法)如图所示是二次函数2122y x =-+的图象在x 轴上方的一部分,对于这段图象与x 轴所围成的阴影部分的面积,你认为与其最.接近的值是( )A .4B .163C .2πD .85.(排除、筛选法)已知:二次函数()220y ax bx a b a =+++≠的图像为下列图像之一,则a 的值为( )A .-1B . 1C . -3D . -46.(图解法)如图,在直角梯形ABCD 中,DC ∥AB,∠A=90°,AB=28cm,DC=24cm,AD=4cm,点M 从点D 出发,以1cm/s 的速度向点C 运动,点N 从点B 同时出发,以2cm/s 的速度向点A 运动,当其中一个动点到达端点停止运动时,另一个动点也随之停止运动.则四边形AMND 的面积y (cm 2)与两动点运动的时间t (s )的函数图象大致是( )7.(分析法)已知α为锐角,则m =sin α+cos α的值( )A .m >1B .m =1C .m <1D .m ≥18.(验证法:)下列命题:①若0a b c ++=,则240b ac -≥;②若b a c >+,则一元二次方程20ax bx c ++=有两个不相等的实数根;③若23b a c =+,则一元二次方程20ax bx c ++=有两个不相等的实数根;④若240b ac ->,则二次函数的图像与坐标轴的公共点的个数是2或3.其中正确的是( ).A.只有①②③ B.只有①③④ C.只有①④ D. 只有②③④.9.(直接推理法)如图,菱形ABCD (图1)与菱形EFGH (图2)的形状、大小完全相同.ww (1)请从下列序号中选择正确选项的序号填写;①点E F G H ,,,;②点G F E H ,,,;③点E H G F ,,,;④点G H E F ,,,.如果图1经过一次平移后得到图2,那么点A B C D ,,,对应点分别是 ;如果图1经过一次轴对称后得到图2,那么点A B C D ,,,对应点分别是 ; 如果图1经过一次旋转后得到图2,那么点A B C D ,,,对应点分别是 ;(2)①图1,图2关于点O 成中心对称,请画出对称中心(保留画图痕迹,不写画法); ②写出两个图形成中心对称的一条..性质: .(可以结合所画图形叙述) 10.(图象信息法)绍兴黄酒是中国名酒之一.某黄酒厂的瓶酒车间先将散装黄酒灌装成瓶装黄酒,再将瓶装黄酒装箱出车间,该车间有灌装、装箱生产线共26条, 每条灌装、装箱生产线的生产流量分别如图1、2所示. 某日8:00~11:00,车间内的生产线全部投入生产,图3表示该时段内未装箱的瓶装黄酒存量变化情况,则灌装生产线有 条.11. ( 直接计算法) 如图, 大圆O 的半径OC 是小圆1O 的直径, 且有OC 垂直于圆O 的直径AB . 圆1O 的切线AD 交OC 的延长线于点E , 切点为D . 已知圆1O 的半径为r ,则=1AO _______ ; =DE ________12.(分析法)如图所示,直线12l l ⊥,垂足为点O,A 、B 是直线1l 上的两点,且OB=2,AB=2.直线1l 绕点O 按逆时针方向旋转,旋转角度为α(0180α<<)。

初中数学解题方法和技巧(附常见的6种方法)

初中数学解题方法和技巧(附常见的6种方法)

初中数学解题方法和技巧(附常见的6种
方法)
初中数学的解题方法和技巧是初中数学研究中至关重要的一环。

以下是常见的6种解题方法和技巧:
1. 理清思路,逐步分析:在解题时,首先需要理清思路,逐步
分析问题,找到解决问题的方法和步骤。

2. 画图辅助解答:在解答数学题时,画图是非常有用的方法。

通过画图,可以更清晰地理解问题,并且可以发现一些隐藏的规律
和关系。

3. 正确理解题目中的各种术语和符号:理解和正确运用数学中
的术语和符号是解题的关键。

在解题时,需要认真阅读题目,并准
确地理解其中的各种术语和符号。

4. 打破常规,尝试新方法:在解题时,有时候需要打破常规,
尝试一些新的方法。

这样可以激发自己的思维,发现一些不同的解
题思路。

5. 掌握基本公式和定理:掌握数学中的基本公式和定理是解题的前提。

只有掌握了基本公式和定理,才能更好地解题。

6. 练、练、再练:练是掌握解题方法和技巧的重要途径。

只有通过大量的练,才能更加熟练地掌握各种解题方法和技巧,提高自己的数学解题能力。

以上是初中数学解题方法和技巧的常见6种方法,希望对初中数学学习者有所帮助。

初中数学解题技巧大全

初中数学解题技巧大全

初中数学解题技巧大全数学是一门需要理解和应用的学科,对于初中生来说,掌握一些基本的解题技巧是非常重要的。

本文将介绍一些在初中数学中常见的解题技巧,帮助学生更好地理解和解决数学问题。

1. 理清问题:在解决任何数学问题之前,首先要仔细阅读并理解题目的要求。

确定问题所需要求解的内容,将问题分解为更容易解决的部分,列出已知和未知的条件等。

2. 勾股定理:在解决与直角三角形有关的问题时,我们可以使用勾股定理。

该定理指出:在直角三角形中,直角边的平方等于斜边两边平方的和。

使用这个定理,我们可以求解直角三角形的边长或判断一个三角形是否是直角三角形。

3. 分数的运算:当进行分数的加减乘除运算时,常常会遇到需要化简分数的情况。

可以使用约分的方法将分子和分母的公因数约去,以得到最简分数。

同时,也要注意将分数转化为小数形式,以方便计算和比较大小。

4. 百分数与比例:当涉及到百分数和比例的计算时,可以通过将百分数转化为小数,或者通过分数的形式来进行计算。

此外,还可以使用比例的性质来解决与比例有关的问题,如已知两个比例相等,可以通过交叉乘积等方法求解未知数。

5. 代数方程:代数方程是初中数学中的重要概念,通过代数方程,我们可以利用字母来表示未知数,并通过方程的性质来求解未知数的值。

当解决代数方程时,可以使用如距离速度时间公式、面积和周长公式等数学模型辅助解题。

6. 图表和图形:对于涉及到图表和图形的问题,我们需要仔细观察并理解图形的含义和数据的变化。

可以绘制辅助图表,如柱形图、线形图等,以帮助分析数据的规律和趋势。

7. 几何图形的性质:在解决几何图形的问题时,需要掌握各种几何图形的性质。

如长方形两对边相等、平行四边形对角线互相平分、三角形内角和等于180度等。

了解这些性质可以帮助我们快速解决与几何图形有关的问题。

8. 应用题解题思路:应用题通常需要将数学知识应用于实际生活中的问题。

在解决应用题时,可以进行逻辑分析,找到问题的关键信息并用数学的方式表达出来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学选择题、填空题解题技巧(完美版)选择题目在初中数学试题中所占的比重不是很大,但是又不能失去这些分数,还要保证这些分数全部得到。

因此,要特别掌握初中数学选择题的答题技巧,帮助我们更好的答题,选择填空题与大题有所不同,只求正确结论,不用遵循步骤。

我们从日常的做题过程中得出以下答题技巧,跟同学们分享一下。

1.排除选项法:选择题因其答案是四选一,必然只有一个正确答案,那么我们就可以采用排除法,从四个选项中排除掉易于判断是错误的答案,那么留下的一个自然就是正确的答案。

2.赋予特殊值法:即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。

用特殊值法解题要注意所选取的值要符合条件,且易于计算。

3.通过猜想、测量的方法,直接观察或得出结果:这类方法在近年来的初中题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。

4、直接求解法:有些选择题本身就是由一些填空题,判断题,解答题改编而来的,因此往往可采用直接法,直接由从题目的条件出发,通过正确的运算或推理,直接求得结论,再与选择项对照来确定选择项。

我们在做解答题时大部分都是采用这种方法。

如:商场促销活动中,将标价为200元的商品,在打8折的基础上,再打8折销售,现该商品的售价是( )A 、160元 B、128元 C 、120元 D、 88元5、数形结合法:解决与图形或图像有关的选择题,常常要运用数形结合的思想方法,有时还要综合运用其他方法。

6、代入法:将选择支代入题干或题代入选择支进行检验,然后作出判断。

7、观察法:观察题干及选择支特点,区别各选择支差异及相互关系作出选择。

8、枚举法:列举所有可能的情况,然后作出正确的判断。

例如,把一张面值10元的人民币换成零钱,现有足够面值为2元,1元的人民币,换法有( )(A)5种(B)6种(C)8种(D)10种。

分析:如果设面值2元的人民币x张,1元的人民币y元,不难列出方程,此方程的非负整数解有6对,故选B.9、待定系数法:要求某个函数关系式,可先假设待定系数,然后根据题意列出方程(组),通过解方程(组),求得待定系数,从而确定函数关系式,这种方法叫待定系数法。

10、不完全归纳法:当某个数学问题涉及到相关多乃至无穷多的情形,头绪纷乱很难下手时,行之有效的方法是通过对若干简单情形进行考查,从中找出一般规律,求得问题的解决。

以上是我们给同学们介绍的初中数学选择题的答题技巧,希望同学们认真掌握,选择题的分数一定要拿下。

初中数学答题技巧有以上十种,能全部掌握的最好;不能的话,建议同学们选择集中适合自己的初中数学选择题做题方法。

初中填空题解法大全一.数学填空题的特点:与选择题同属客观性试题的填空题,具有客观性试题的所有特点,即题目短小精干,考查目标集中明确,答案唯一正确,答卷方式简便,评分客观公正等。

但是它又有本身的特点,即没有备选答案可供选择,这就避免了选择项所起的暗示或干扰的作用,及考生存在的瞎估乱猜的侥幸心理,从这个角度看,它能够比较真实地考查出学生的真正水平。

考查内容多是“双基”方面,知识复盖面广。

但在考查同样内容时,难度一般比择题略大。

二.主要题型:初中填空题主要题型一是定量型填空题,二是定性型填空题,前者主要考查计算能力的计算题,同时也考查考生对题目中所涉及到数学公式的掌握的熟练程度,后者考查考生对重要的数学概念、定理和性质等数学基础知识的理解和熟练程度。

当然这两类填空题也是互相渗透的,对于具体知识的理解和熟练程度只不过是考查有所侧重而已。

填空题一般是一道题填一个空格,当然个别省市也有例外。

初中南京出了四道类似上题的填空题。

这类有递进层次的试题,实际上是考查解题的几个主要步骤。

初中江西省还出了一道“先阅读,后填空”的试题,它首先列举了30名学生的数学成绩,给出频率分布表,然后要求考生回答六小道填空题,这也可以说是一种新题型。

这种先阅读一段短文,在理解的基础上,要求解答有关的问题,是近年悄然兴起的阅读理解题。

它不仅考查了学生阅读理解和整理知识的能力,同时提醒考生平时要克服读书囫囵吞枣、不求甚解的不良习惯。

这种新题型的出现,无疑给填空题较寂静的湖面投了一个小石子。

三.基本解法:一、直接法:例1 如图,点C 在线段AB 的延长线上,︒=∠15DAC ,︒=∠110DB C ,则D ∠的度数是_____________分析:由题设知︒=∠15DAC ︒=∠110DB C ,利用三角形的一个外角等于和它不相邻的两个内角的和知识,通过计算可得出D ∠=︒95.二、特例法: 例2 已知ABC △中,60A ∠=,ABC ∠,ACB ∠的平分线交于点O ,则BOC ∠的度数为 ( )分析:此题已知条件中就是ABC △中,60A ∠=说明只要满足此条件的三角形都一定能够成立。

故不妨令ABC △为等边三角形,马上得出BOC ∠=120。

例3、填空题:已知a<0,那么,点P(-a2-2,2-a)关于x 轴的对称点是在第_______象限.解:设a=-1,则P{-3,3}关于x 轴的对称点是 {-3,-3}在第三象限,所以点P(-a^2-2,2-a)关于x 轴的对称点是在第三象限.例4、无论m 为任何实数,二次函数y=x2+(2-m)x+m 的图像都经过的点是 _______.解:因为m 可以为任何实数,所以不妨设m=2,则y=x ^2+2,再设m=0,则y=x ^2+2x 解方程组解得 所以二次函数y=x ^2+(2-m)x+m 的图像都经过的点是(1,3).三、数形结合法:数缺形时少直观,形缺数时难入微。

"数学中大量数的问题后面都隐含着形的信息,图形的特征上也体现着数的关系。

我们要将抽象、复杂的数量关系,通过形的形象、直观揭示出来,以达到"形帮数"的目的;同时我们又要运用数的规律、数值的计算,来寻找处理形的方法,来达到"数促形"的目的。

对于一些含有几何背景的填空题,若能数中思形,以形助数,则往往可以简捷地解决问题,得出正确的结果。

例6、 在直线l 上依次摆放着七个正方形(如图所示)。

已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,,则S1+S2+S3+S4=_______。

解:四个正方形的面积依次是S1、S2、S3、S4,可设它们的边长分别为a 、b 、c 、d ,由直角三角形全等可得A B CD解得a^2+b^2+c^2+d^2=4,则S1+S2+S3+S4=4.四、猜想法:例5 用同样大小的黑色棋子按图所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 枚(用含n 的代数式表示).分析:从第1个图中有4枚棋子4=3×1+1,从第2个图中有7枚棋子7=3×2+1, 从第3个图中有10枚棋子10=3×3+1,从而猜想:第n 个图中有棋子3n+1枚.五、整体法:例5 如果x+y=-4,x-y=8,那么代数式x2-y2的值是 c 分析:若直接由x+y=-4,x-y=8解得x ,y 的值,再代入求值,则过程稍显复杂,且易出错,而采用整体代换法,则过程简洁,妙不可言.分析:x2-y2=(x+y )(x-y )=-4×8=-32已知53=-=-c b b a ,1222=++c b a ,则ca bc ab ++的值等于________.分析:运用完全平方公式,得222)()()(a c c b b a -+-+-=2)(222c b a ++-2)(ca bc ab ++, 即)(ca bc ab ++=)(222c b a ++-21[222)()()(a c c b b a -+-+-].∵ 53=-=-c b b a ,56)()(-=-+-=-a b b c a c ,1222=++c b a ,∴ )(ca bc ab ++=1-21[2)53(+2)53(+2)56(-]=-252.六、构造法:例6 已知反比例函数的图象经过点(m ,2)和(-2,3)则m的值为 .分析:采用构造法求解.由题意,构造反比例函数的解析式为x k =y ,因为它过(-2,3)所以把x =-2,y =3代入x k =y 得k=-6. 解析式为x6-=y 而另一点(m,2)也在反比例函数的图像上,所以把x =m ,y =2代入x 6-=y 得m=-3. 七、图解法:例7如图为二次函数y=ax2+bx +c 的图象,在下列说法中:①ac <0; ②方程ax2+bx +c=0的根是x1= -1, x2= 3③a +b +c >0 ④当x >1时,y 随x 的增大而增大。

正确的说法有_____________。

(把正确的答案的序号都填在横线上)分析:本题借助图解法来求 ①利用图像中抛物线开口向上可知a >0,与y 轴负半轴相交可知c <0,所以ac <0.②图像中抛物线与x 轴交点的横坐标为-1,3可知方程ax2+bx +c=0的根是x1= -1, x2= 3 ③从图中可知抛物线上横坐标为1的点 (1,a +b +c )在第四象限内所以a +b +c <0 ④从与x 轴两交点的横坐第1个图 第2个图 第3个图 …标为-1,3可知抛物线的对称轴为x=1且开口向上,所以当x>1时y随x的增大而增大。

所以正确的说法是:①②④八、等价转化法:通过"化复杂为简单、化陌生为熟悉",将问题等价地转化成便于解决的问题,从而得出正确的结果。

例8、如图10,在△ ABC中,AB=7,AC=11,点M是BC的中点, AD是∠BAC 的平分线,MF∥AD,则FC 的长为_________.解:如图,设点N是AC的中点,连接MN,则MN∥AB.又MF∥AD,所以,所以.因此例9、如图6,在中,E为斜边AB上一点,AE=2,EB=1,四边形DEFC为正方形,则阴影部分的面积为________.解:将直角三角形EFB绕E点,按逆时针方向旋转,因为CDEF是正方形,所以EF和ED重合,B点落在CD上,阴影部分的面积转化为直角三角形ABE的面积,因为AE=2,EB=1,所以阴影部分的面积为1/2*2*1=1.九、观察法:例11一组按规律排列的式子:2 b a-,5 3b a,8 3 b a-,11 4ba,…(0ab≠),其中第7个式子是,第n个式子是(n为正整数).分析:通过观察已有的四个式子,发现这些式子前面的符号一负一正连续出现,也就是序号为奇数时负,序号为偶数时正。

同时式子中的分母a的指数都是连续的正整数,分子中的b的指数为同个式子中a的指数的3倍小1,通过观察得出第7个式子是207ba-,第n个式子是31(1)nnnba--。

相关文档
最新文档