新课标高中数学教案书

合集下载

高中数学教案【优秀10篇】

高中数学教案【优秀10篇】

高中数学教案【优秀10篇】高中数学课教案篇一一、教学目标【知识与技能】在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径,掌握方程x+y+Dx+Ey+F=0表示圆的条件。

【过程与方法】通过对方程x+y+Dx+Ey+F=0表示圆的的条件的探究,学生探索发现及分析解决问题的实际能力得到提高。

【情感态度与价值观】渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。

二、教学重难点【重点】掌握圆的一般方程,以及用待定系数法求圆的一般方程。

【难点】二元二次方程与圆的一般方程及标准圆方程的`关系。

三、教学过程(一)复习旧知,引出课题1、复习圆的标准方程,圆心、半径。

2、提问已知圆心为(1,—2)、半径为2的圆的方程是什么?高中数学教案篇二教材分析:前面已学习了向量的概念及向量的线性运算,这里引入一种新的向量运算——向量的数量积。

教科书以物体受力做功为背景引入向量数量积的概念,既使向量数量积运算与学生已有知识建立了联系,又使学生看到向量数量积与向量模的大小及夹角有关,同时与前面的向量运算不同,其计算结果不是向量而是数量。

在定义了数量积的概念后,进一步探究了两个向量夹角对数量积符号的影响;然后由投影的概念得出了数量积的几何意义;并由数量积的定义推导出一些数量积的重要性质;最后“探究”研究了运算律。

教学目标:(一)知识与技能1.掌握数量积的定义、重要性质及运算律;2.能应用数量积的重要性质及运算律解决问题;3.了解用平面向量数量积可以解决长度、角度、垂直共线等问题,为下节课灵活运用平面向量数量积解决问题打好基础。

(二)过程与方法以物体受力做功为背景引入向量数量积的概念,从数与形两方面引导学生对向量数量积定义进行探究,通过例题分析,使学生明确向量的数量积与数的乘法的联系与区别。

(三)情感、态度与价值观创设适当的问题情境,从物理学中“功”这个概念引入课题,开始就激发学生的学习兴趣,让学生容易切入课题,培养学生用数学的意识,加强数学与其它学科及生活实践的联系。

人教B版新课标高中数学必修一教案 《基本不等式》

人教B版新课标高中数学必修一教案 《基本不等式》

《基本不等式2a b ab +≤(第1课时)》教学设计“基本不等式” 是必修5的重点内容,它是在系统学习了不等关系和不等式性质,掌握了不等式性质的基础上对不等式的进一步研究,同时也是为了以后学习选修教材中关于不等式及其证明方法等内容作铺垫,起着承上启下的作用.利用基本不等式求最值在实际问题中应用广泛.同时本节知识又渗透了数形结合、化归等重要数学思想,有利于培养学生良好的思维品质.1.学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;2.通过实例探究抽象基本不等式;3.通过本节的学习,体会数学来源于生活,提高学习数学的兴趣.【教学重点】2a bab +≤的证明过程; 【教学难点】 a bab +≤等号成立条件 1.课题导入 2a bab +≤的几何背景: 如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客.你能在这个图案中找出一些相等关系或不等关系吗?教师引导学生从面积的关系去找相等关系或不等关系.【设计意图】由北京召开的第24界国际数学家大会的会标引出新课,使数学贴近实际,来源于生活.◆ 教学过程◆ 教学重难点◆◆ 教学目标◆ 教材分析2.讲授新课1.探究图形中的不等关系将图中的“风车”抽象成如图,在正方形ABCD 中右个全等的直角三角形.设直角三角形的两条直角边长为a ,b 那么正方形的边长为22a b +.这样,4个直角三角形的面积的和是2ab ,正方形的面积为22a b +.由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:222a b ab +≥.当直角三角形变为等腰直角三角形,即a =b 时,正方形EFGH 缩为一个点,这时有222a b ab +=.2.得到结论:一般的,如果)""(2R,,22号时取当且仅当那么==≥+∈b a ab b a b a 3.思考证明:你能给出它的证明吗? 证明:因为 222)(2b a ab b a -=-+当22,()0,,()0,a b a b a b a b ≠->=-=时当时所以,0)(2≥-b a ,即.2)(22ab b a ≥+4.(1)从几何图形的面积关系认识基本不等式2a bab +≤特别的,如果a >0,b >0,我们用分别代替a 、b ,可得2a b ab +≥,通常我们把上式写作:(a>0,b>0)2a bab +≤ (2)从不等式的性质推导基本不等式2a bab +≤用分析法证明:要证2a bab +≥ (1) 只要证 a +b ≥ (2) 要证(2),只要证 a +b - ≥0 (3) 要证(3),只要证 ( - )2(4) 显然,(4)是成立的.当且仅当a =b 时,(4)中的等号成立. (3)理解基本不等式2a bab +≤的几何意义 探究:在右图中,AB 是圆的直径,点C 是AB 上的一点,AC =a ,BC =b .过点C 作垂直于AB 的弦DE ,连接AD 、BD .你能利用这个图形得出基本不等式2a bab +≤的几何解释吗?易证Rt △A CD ∽Rt △D CB ,那么CD 2=CA ·CB 即CD =ab . 这个圆的半径为2b a +,显然,它大于或等于CD ,即ab ba ≥+2,其中当且仅当点C 与圆心重合,即a =b 时,等号成立.因此:基本不等式2a bab +≤几何意义是“半径不小于半弦” 评述:1.如果把2ba +看作是正数a 、b 的等差中项,ab 看作是正数a 、b 的等比中项,那么该定理可以叙述为:两个正数的等差中项不小于它们的等比中项.2. 在数学中,我们称2ba +为a 、b 的算术平均数,称ab 为a 、b 的几何平均数.本节定理还可叙述为:两个正数的算术平均数不小于它们的几何平均数.【设计意图】老师引导,学生自主探究得到结论并证明,锻炼了学生的自主研究能力和研究问题的逻辑分析能力.[补充例题]例1 已知x 、y 都是正数,求证: (1)yxx y +≥2; (2)(x +y )(x 2+y 2)(x 3+y 3)≥8x 3y 3. 分析:在运用定理:ab ba ≥+2时,注意条件a 、b 均为正数,结合不等式的性质(把握好每条性质成立的条件),进行变形.解:∵x ,y 都是正数 ∴y x >0,xy>0,x 2>0,y 2>0,x 3>0,y 3>0 (1)xyy x x y y x ⋅≥+2=2即x y y x +≥2.(2)x +y ≥2xy >0 x 2+y 2≥222y x >0 x 3+y 3≥233yx>0∴(x +y )(x 2+y 2)(x 3+y 3)≥2xy ·222y x ·233y x =8x 3y 3 即(x +y )(x 2+y 2)(x 3+y 3)≥8x 3y 3. 【设计意图】例题讲解,学以致用. 3.随堂练习1.已知a 、b 、c 都是正数,求证 (a +b )(b +c )(c +a )≥8abc 分析:对于此类题目,选择定理:ab ba ≥+2(a >0,b >0)灵活变形,可求得结果.解:∵a ,b ,c 都是正数 ∴a +b ≥2ab >0 b +c ≥2bc >0 c +a ≥2ac >0∴(a +b )(b +c )(c +a )≥2ab ·2bc ·2ac =8abc 即(a +b )(b +c )(c +a )≥8abc . 【设计意图】讲练结合,熟悉新知. 4.课时小结本节课,我们学习了重要不等式a 2+b 2≥2ab ;两正数a 、b 的算术平均数(2ba +),几何平均数(ab )及它们的关系(2ba +≥ab ).它们成立的条件不同,前者只要求a 、b 都是实数,而后者要求a 、b 都是正数.它们既是不等式变形的基本工具,又是求函数最值的重要工具(下一节我们将学习它们的应用).我们还可以用它们下面的等价变形来解决问题:ab ≤222b a +,ab ≤(2b a +)2【设计意图】课时小结,内化知识.本次课通过实例探究抽象基本不等式;由北京召开的第24界国际数学家大会的会标情境引入,贴近生活,贴近数学,能让学生体会数学来源于生活,提高学习数学的兴趣.《基本不等式2a bab +≤(第2课时)》教学设计“基本不等式” 是必修5的重点内容,它是在系统学习了不等关系和不等式性质,掌握了不等式性质的基础上对不等式的进一步研究,同时也是为了以后学习选修教材中关于不等式及其证明方法等内容作铺垫,起着承上启下的作用.利用基本不等式求最值在实际问题中应用广泛.同时本节知识又渗透了数形结合、化归等重要数学思想,有利于培养学生良好的思维品质.1.2a bab +≤;会应用此不等式求某些函数的最值;能够解决一些简单的实际问题2.2a bab +≤,并会用此定理求某些函数的最大、最小值.3.引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德.教学重点2a bab +≤的应用 教学难点a bab +≤求最大值、最小值. 1.课题导入◆ 教学过程◆ 教学重难点 ◆◆ 教学目标◆ 教材分析1.重要不等式:如果)""(2R,,22号时取当且仅当那么==≥+∈b a ab b a b a 2.基本不等式:如果a ,b 是正数,那么).""(2号时取当且仅当==≥+b a ab ba 我们称b a ba ,2为+的算术平均数,称b a ab ,为的几何平均数 ab b a ab b a ≥+≥+2222和成立的条件是不同的:前者只要求a ,b 都是实数,而后者要求a ,b 都是正数.【设计意图】复习引入. 2.讲授新课例1(1)用篱笆围成一个面积为100m 2的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短.最短的篱笆是多少?(2)段长为36 m 的篱笆围成一个一边靠墙的矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?解:(1)设矩形菜园的长为x m ,宽为y m ,则xy =100,篱笆的长为2(x +y ) m .由2x yxy +≥ 可得 2100x y +≥ 2()40x y +≥.等号当且仅当x =y 时成立,此时x =y =10. 因此,这个矩形的长、宽都为10m 时,所用的篱笆最短,最短的篱笆是40m . (2)解法一:设矩形菜园的宽为x m ,则长为(36-2x )m ,其中0<x <21,其面积S =x (36-2x )=21·2x (36-2x )≤2122236236()28x x +-=当且仅当2x =36-2x ,即x =9时菜园面积最大,即菜园长9m ,宽为9 m 时菜园面积最大为81 m 2解法二:设矩形菜园的长为x m .,宽为y m ,则2(x +y )=36, x +y =18,矩形菜园的面积为xy m 2.由18922x y+≤==,可得81xy≤当且仅当x=y,即x=y=9时,等号成立.因此,这个矩形的长、宽都为9m时,菜园的面积最大,最大面积是81m2归纳:1.两个正数的和为定值时,它们的积有最大值,即若a,b∈R+,且a+b=M,M为定值,则ab≤42M,等号当且仅当a=b时成立.2.两个正数的积为定值时,它们的和有最小值,即若a,b∈R+,且ab=P,P为定值,则a+b≥2P,等号当且仅当a=b时成立.例2 某工厂要建造一个长方体无盖贮水池,其容积为4800m3,深为3m,如果池底每1m2的造价为150元,池壁每1m2的造价为120元,问怎样设计水池能使总造价最低,最低总造价是多少元?分析:此题首先需要由实际问题向数学问题转化,即建立函数关系式,然后求函数的最值,其中用到了均值不等式定理.解:设水池底面一边的长度为xm,水池的总造价为l元,根据题意,得)1600(720240000xxl++=29760040272024000016002720240000=⨯⨯+=⋅⨯+≥xx当.2976000,40,1600有最小值时即lxxx==因此,当水池的底面是边长为40m的正方形时,水池的总造价最低,最低总造价是297600元评述:此题既是不等式性质在实际中的应用,应注意数学语言的应用即函数解析式的建立,又是不等式性质在求最值中的应用,应注意不等式性质的适用条件.归纳:用均值不等式解决此类问题时,应按如下步骤进行:(1)先理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数; (2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题; (3)在定义域内,求出函数的最大值或最小值; (4)正确写出答案.【设计意图】 讲解例题,熟悉方法. 3.随堂练习1.已知x ≠0,当x 取什么值时,x 2+281x的值最小?最小值是多少? 2.课本练习.【设计意图】讲练结合,巩固新知. 4.课时小结本节课我们用两个正数的算术平均数与几何平均数的关系顺利解决了函数的一些最值问题.在用均值不等式求函数的最值,是值得重视的一种方法,但在具体求解时,应注意考查下列三个条件:(1)函数的解析式中,各项均为正数;(2)函数的解析式中,含变数的各项的和或积必须有一个为定值;(3)函数的解析式中,含变数的各项均相等,取得最值即用均值不等式求某些函数的最值时,应具备三个条件:一正二定三取等.【设计意图】课时小结,内化知识.本次课通过两个例题的研究,2a b+≤,并会用此定理求某些函数的最大、最小值.引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德.《基本不等式2a b +≤(第3课时)》教学设计“基本不等式” 是必修5的重点内容,它是在系统学习了不等关系和不等式性质,掌握了不等式性质的基础上对不等式的进一步研究,同时也是为了以后学习选修教材中关于不等式及其证明方法等内容作铺垫,起着承上启下的作用.利用基本不等式求最值在实际问题中应用广泛.同时本节知识又渗透了数形结合、化归等重要数学思想,有利于培养学生良好的思维品质.1.2a bab +≤;会用此不等式证明不等式,会应用此不等式求某些函数的最值,能够解决一些简单的实际问题;2.2a bab +≤,并会用此定理求某些函数的最大、最小值.3.引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德.教学重点2a bab +≤,会用此不等式证明不等式,会用此不等式求某些函数的最值教学难点利用此不等式求函数的最大、最小值.1.课题导入1.基本不等式:如果a ,b 是正数,那么).""(2号时取当且仅当==≥+b a ab ba 22a bab +≤求最大(小)值的步骤. 【设计意图】复习引入. 2.讲授新课1)利用基本不等式证明不等式例1 已知m >0,求证24624m m+≥. [思维切入]因为m >0,所以可把24m和6m 分别看作基本不等式中的a 和b , 直接利用基本不等式.◆ 教学过程◆ 教学重难点 ◆◆ 教学目标[证明]因为 m >0,,由基本不等式得246221224m m +≥==⨯= 当且仅当24m=6m ,即m =2时,取等号. 规律技巧总结 注意:m >0这一前提条件和246m m⨯=144为定值的前提条件. 【设计意图】例题讲解,利用基本不等式证明不等式,熟练使用基本不等式.3.随堂练习1[思维拓展1] 已知a ,b ,c ,d 都是正数,求证()()4ab cd ac bd abcd ++≥.[思维拓展2] 求证22222()()()a b c d ac bd ++≥+.例2 求证:473a a +≥-. [思维切入] 由于不等式左边含有字母a ,右边无字母,直接使用基本不等式,无法约掉字母a ,而左边44(3)333a a a a +=+-+--.这样变形后,在用基本不等式即可得证.[证明]443(3)333733a a a +=+-+≥==-- 当且仅当43a -=a -3即a =5时,等号成立. 规律技巧总结 通过加减项的方法配凑成基本不等式的形式.2)利用不等式求最值例3 (1) 若x >0,求9()4f x x x =+的最小值; (2)若x <0,求9()4f x x x =+的最大值.[思维切入]本题(1)x >0和94x x⨯=36两个前提条件;(2)中x <0,可以用-x >0来转化.解(1)因为 x >0 由基本不等式得9()412f x x x =+≥==,当且仅当94x x =即x =32时, 9()4f x x x=+取最小值12. (2)因为 x <0, 所以 -x >0, 由基本不等式得:99()(4)(4)()12f x x x x x -=-+=-+-≥==, 所以 ()12f x ≤. 当且仅当94x x -=-即x =-32时, 9()4f x x x =+取得最大-12.规律技巧总结 利用基本不等式求最值时,个项必须为正数,若为负数,则添负号变正. 随堂练习2[思维拓展1] 求9()45f x x x =+-(x >5)的最小值.[思维拓展2] 若x >0,y >0,且281x y+=,求xy 的最小值. 【设计意图】讲练结合,巩固新知.4.课时小结2a b +≤证明不等式和求函数的最大、最小值. 【设计意图】总结基本不等式在某些方面的运用,锻炼学生自我总结的能力.5.评价设计1.证明:22222a b a b ++≥+2.若1->x ,则x 为何值时11++x x 有最小值,最小值为几? 【设计意图】将课堂知识延伸至课外,在巩固知识的同时,锻炼了学生的自主学习能力.本次课是一次常规的习题课,复习知识、举例运用、学生练习、课外练习,从而达到巩固知识的效果.其实这次课还是可以采用老师引导,学生分组讨论研究,得到结果,得到解题方法,从而让学生体验自主研究题目,得到结论的乐趣.。

最新版-高中数学必修一教案【优秀4篇】

最新版-高中数学必修一教案【优秀4篇】

高中数学必修一教案【优秀4篇】高中数学必修一教案篇一重点难点教学:1.正确理解映射的概念;2.函数相等的两个条件;3.求函数的定义域和值域。

一。

教学过程:1. 使学生熟练掌握函数的概念和映射的定义;2. 使学生能够根据已知条件求出函数的定义域和值域;3. 使学生掌握函数的三种表示方法。

二。

教学内容:1.函数的定义设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数()fx和它对应,那么称:fAB为从集合A到集合B 的一个函数(function),记作:(),yfxxA其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合{()|}fxxA叫值域(range)。

显然,值域是集合B的子集。

注意:① “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.2.构成函数的三要素定义域、对应关系和值域。

3.映射的定义设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。

4. 区间及写法:设a、b是两个实数,且a(1) 满足不等式axb的实数x的集合叫做闭区间,表示为[a,b];(2) 满足不等式axb的实数x的集合叫做开区间,表示为(a,b);5.函数的三种表示方法①解析法②列表法③图像法高中数学必修一教案篇二一、教学目标1、知识与技能(1)理解对数的概念,了解对数与指数的关系;(2)能够进行指数式与对数式的互化;(3)理解对数的性质,掌握以上知识并培养类比、分析、归纳能力;2、过程与方法3、情感态度与价值观(1)通过本节的学习体验数学的严谨性,培养细心观察、认真分析分析、严谨认真的良好思维习惯和不断探求新知识的精神;(2)感知从具体到抽象、从特殊到一般、从感性到理性认知过程;(3)体验数学的科学功能、符号功能和工具功能,培养直觉观察、探索发现、科学论证的良好的数学思维品质、二、教学重点、难点教学重点(1)对数的定义;(2)指数式与对数式的互化;教学难点(1)对数概念的理解;(2)对数性质的理解;三、教学过程:四、归纳总结:1、对数的概念一般地,如果函数ax=n(a0且a≠1)那么数x叫做以a为底n的对数,记作x=logan,其中a叫做对数的底数,n叫做真数。

高中数学教案教学设计10篇

高中数学教案教学设计10篇

高中数学教案教学设计10篇高中数学教案教学设计篇1一、教材分析1、教材地位和作用:二面角是我们日常生活中经常见到的、很普通的一个空间图形。

“二面角”是人教版《数学》第二册(下B)中9.7的内容。

它是在学生学过两条异面直线所成的角、直线和平面所成角、又要重点研究的一种空间的角,它是为了研究两个平面的垂直而提出的一个概念,也是学生进一步研究多面体的基础。

因此,它起着承上启下的作用。

通过本节课的学习还对学生系统地掌握直线和平面的知识乃至于创新能力的培养都具有十分重要的意义。

2、教学目标:知识目标:(1)正确理解二面角及其平面角的概念,并能初步运用它们解决实际问题。

(2)进一步培养学生把空间问题转化为平面问题的化归思想。

能力目标:(1)突出对类比、直觉、发散等探索性思维的培养,从而提高学生的创新能力。

(2)通过对图形的观察、分析、比较和操作来强化学生的动手操作能力。

德育目标:(1)使学生认识到数学知识来自实践,并服务于实践,增强学生应用数学的意识(2)通过揭示线线、线面、面面之间的内在联系,进一步培养学生联系的辩证唯物主义观点。

情感目标:在平等的教学氛围中,通过学生之间、师生之间的交流、合作和评价,拉近学生之间、师生之间的情感距离。

3、重点、难点:重点:“二面角”和“二面角的平面角”的概念难点:“二面角的平面角”概念的形成过程二、教法分析1、教学方法:在引入课题时,我采用多媒体、实物演示法,在新课探究中采用问题启导、活动探究和类比发现法,在形成技能时以训练法、探究研讨法为主。

2、教学控制与调节的措施:本节课由于充分运用了多媒体和实物教具,预计学生对二面角及二面角平面角的概念能够理解,根据学生及教学的实际情况,估计二面角的具体求法一节课内完成有一定的困难,所以将其放在下节课。

3、教学手段:教学手段的现代化有利于提高课堂效益,有利于创新人才的培养,根据本节课的教学需要,确定利用多媒体课件来辅助教学;此外,为加强直观教学,还要预先做好一些二面角的模型。

高中数学新教材第二册全套教案

高中数学新教材第二册全套教案

通过物理量路程与 位移引入向量概念, 提高学生的解决问 题、分析问题的能 力。
注意:数量只有大小,是一个代数量,可以进行代数运算、能比较大 小;向量具有大小和方向这双重要素,由于方向不能比较大小,故向 量不能比较大小.
练习:下列量不是向量的是(

(1)质量 (2) 速度 (3) 位移 (4)力 (5)加速度
1.有向线段的定义
问题、概括能力。
在线段 AB 的两个端点中,规定一个顺序,假设 A 为起点,B 为终
点,就说线段 AB 具有方向,具有方向的
a
B
线段叫做有向线段.
如图,以 A 为起点、B 为终点的有向线段 A(起点)
(终点)
记作 AB .
线段 AB 的长度也叫做有向线段 AB 的长度,记作 | AB | .
【解析】 只有④中物理学中的加速度既有大小又有方向是向 量,①②③错误.④正确.
【答案】 B
2.在下列判断中,正确的是( )
①长度为 0 的向量都是零向量;
②零向量的方向都是相同的;
③单位向量的长度都相等;
④单位向量都是同方向;
⑤任意向量与零向量都共线.
A.①②③B.②③④ C.①②⑤ D.①③⑤
【解析】 由定义知①正确,②由于零向量的方向是任意的,故 两个零向量的方向是否相同不确定,故不正确.显然③、⑤正确,④ 不正确,故选 D.
课程目标
学科素养
A. 了解向量的实际背景,理解平面向量 的概念和向量的几何表示;
B. 掌握向量的模、零向量、单位向量、 平行向量、相等向量、共线向量等概念;
1.数学抽象:平面向量的概念; 2.逻辑推理:区分平行向量、相等向量和共线向量; 3.直观想象:向量的几何表示;

高中数学教案设计(精选12篇)

高中数学教案设计(精选12篇)

高中数学教案设计(精选12篇)高中数学教学设计篇一一、指导思想与理论依据数学是一门培养人的思维,发展人的思维的重要学科。

因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。

所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。

因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。

在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。

二、教材分析三角函数的诱导公式是普通高中课程标准实验教科书(人教A版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六).本节是第一课时,教学内容为公式(二)、(三)、(四).教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角与、、终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四).同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。

为此本节内容在三角函数中占有非常重要的地位。

三、学情分析本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容。

四、教学目标(1).基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;(2).能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;(3).创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;(4).个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观。

高中数学的教学设计5篇

高中数学的教学设计5篇

高中数学的教学设计5篇高中数学的教学设计5篇作为一位杰出的教职工,常常要根据教学需要编写教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。

教学设计应该怎么写才好呢?下面是小编帮大家整理的高中数学的教学设计5篇,欢迎大家借鉴与参考,希望对大家有所帮助。

高中数学的教学设计5篇1教学目标1.明确等差数列的定义.2.掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题3.培养学生观察、归纳能力.教学重点1.等差数列的概念;2.等差数列的通项公式教学难点等差数列“等差”特点的理解、把握和应用教具准备投影片1张教学过程(I)复习回顾师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。

这两个公式从不同的角度反映数列的特点,下面看一些例子。

(放投影片)(Ⅱ)讲授新课师:看这些数列有什么共同的特点?1,2,3,4,5,6; ①10,8,6,4,2,…; ②生:积极思考,找上述数列共同特点。

对于数列①(1≤n≤6);(2≤n≤6)对于数列②-2n(n≥1)(n≥2)对于数列③(n≥1)(n≥2)共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。

师:也就是说,这些数列均具有相邻两项之差“相等”的特点。

具有这种特点的数列,我们把它叫做等差数。

一、定义:等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。

如:上述3个数列都是等差数列,它们的公差依次是1,-2 。

二、等差数列的通项公式师:等差数列定义是由一数列相邻两项之间关系而得。

若一等差数列的首项是,公差是d,则据其定义可得:若将这n-1个等式相加,则可得:即:即:即:……由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。

如数列①(1≤n≤6)数列②:(n≥1)数列③:(n≥1)由上述关系还可得:即:则:=如:三、例题讲解例1:(1)求等差数列8,5,2…的第20项(2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立解之得n=100,即-401是这个数列的第100项。

人教A版新课标高中数学必修一教案 《基本不等式》

人教A版新课标高中数学必修一教案 《基本不等式》

《2.2基本不等式2a b +≤》 教材分析:“基本不等式” 是必修1的重点内容,它是在系统学习了不等关系和不等式性质,掌握了不等式性质的基础上对不等式的进一步研究,同时也是为了以后学习选修教材中关于不等式及其证明方法等内容作铺垫,起着承上启下的作用.利用基本不等式求最值在实际问题中应用广泛.同时本节知识又渗透了数形结合、化归等重要数学思想,有利于培养学生良好的思维品质.教学目标【知识与技能】1.学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;2.2a b+≤;会应用此不等式求某些函数的最值;能够解决一些简单的实际问题 【过程与方法】通过实例探究抽象基本不等式; 【情感、态度与价值观】通过本节的学习,体会数学来源于生活,提高学习数学的兴趣.教学重难点【教学重点】2a b+的证明过程; 【教学难点】 1.2a b+≤等号成立条件; 2.2a b+≤求最大值、最小值.教学过程1.课题导入前面我们利用完全平方公式得出了一类重要不等式:一般地,∀a,b ∈R ,有a 2+b 2≥2ab ,当且仅当a =b 时,等号成立特别地,如果a >0,b >0,我们用√a ,√b 分别代替上式中的a ,b ,可得√ab ≤a+b 2①当且仅当a =b 时,等号成立.通常称不等式(1)为基本不等式(basic inequality ).其中,a+b 2叫做正数a ,b 的算术平均数,√ab 叫做正数a ,b 的几何平均数.基本不等式表明:两个正数的算术平均数不小于它们的几何平均数.思考: 上面通过考察a 2+b 2=2ab 的特殊情形获得了基本不等式,能否直接利用不等式的性质推导出基本不等式呢?下面我们来分析一下.2.讲授新课1)2a b+≤特别的,如果a >0,b >0,我们用分别代替a 、b ,可得a b +≥,(a>0,b>0)2a b+≤2)2a b+≤ 用分析法证明:要证2a b+≥ (1) 只要证 a +b ≥ (2) 要证(2),只要证 a +b - ≥0 (3)要证(3),只要证 ( - )2≥0 (4) 显然,(4)是成立的.当且仅当a =b 时,(4)中的等号成立.探究1: 在右图中,AB 是圆的直径,点C 是AB 上的一点,AC =a ,BC =b .过点C 作垂直于AB 的弦DE ,连接AD 、BD .你能利用这个图形得出基本不等式2a bab +≤的几何解释吗? 易证Rt △A CD ∽Rt △D CB ,那么CD 2=CA ·CB 即CD =ab .这个圆的半径为2ba +,显然,它大于或等于CD ,即ab ba ≥+2,其中当且仅当点C 与圆心重合,即a =b 时,等号成立. 因此:基本不等式2a bab +≤几何意义是“半径不小于半弦” 评述:1.如果把2ba +看作是正数a 、b 的等差中项,ab 看作是正数a 、b 的等比中项,那么该定理可以叙述为:两个正数的等差中项不小于它们的等比中项.2. 在数学中,我们称2ba +为a 、b 的算术平均数,称ab 为a 、b 的几何平均数.本节定理还可叙述为:两个正数的算术平均数不小于它们的几何平均数.【设计意图】老师引导,学生自主探究得到结论并证明,锻炼了学生的自主研究能力和研究问题的逻辑分析能力.例1 已知x >0,求x +1x 的最小值.分析:求x +1x 的最小值,就是要求一个y 0(=x 0+1x ),使∀x >0,都有x +1x ≥y .观察x +1x ,发现x ∙1x =1.联系基本不等式,可以利用正数x 和1x 的算术平均数与几何平均数的关系得到y 0=2. 解:因为x >0,所以x +1x ≥2√x ∙1x =2当且仅当x = 1x,即x 2=1,x =1时,等号成立,因此所求的最小值为2.在本题的解答中,我们不仅明确了∀x >0,有x +1x ≥2,而且给出了“当且仅当x =1x ,即=1,x =1时,等号成立”,这是为了说明2是x +1x(x >0)的一个取值,想一想,当y 0<2时,x +1x=y 0成立吗?这时能说y .是x +1x (x >0)的最小值吗?例2 已知x ,y 都是正数,求证:(1)如果积xy 等于定值P ,那么当x =y 时,和x +y 有最小值2√P ; (2)如果和x +y 等于定值S ,那么当x =y 时,积xy 有最大值14S 2.证明:因为x ,y 都是正数,所以x+y 2≥√xy .(1)当积xy 等于定值P 时,x+y 2≥√P ,所以x +y ≥2√P ,当且仅当x =y 时,上式等号成立.于是,当x =y 时,和x +y 有最小值2√P . (2)当和x +y 等于定值S 时,√xy ≤S2,所以xy ≤14S 2,当且仅当x =y 时,上式等号成立.于是,当x =y 时,积xy 有最大值14S 2.例3 (1)用篱笆围一个面积为100m 2的矩形菜园,当这个矩形的边长为多少时,所用篱笆最短?最短篱笆的长度是多少?(2)用一段长为36m 的篱笆围成一个矩形菜园,当这个矩形的边长为多少时,菜园的面积最大?最大面积是多少?分析:(1)矩形菜园的面积是矩形的两邻边之积,于是问题转化为:矩形的邻边之积为定值,边长多大时周长最短.(2)矩形菜园的周长是矩形两邻边之和的2倍,于是问题转化为:矩形的邻边之和为定值,边长多大时面积最大.解:设矩形菜园的相邻两条边的长分别为xm,ym,篱笆的长度为2(x+y)m.(1)由已知得xy=100.由x+y2≥√xy,可得x+y≥2√xy=20,所以2(x+y)≥40,当且仅当x=y=10时,上式等号成立因此,当这个矩形菜园是边长为10m的正方形时,所用篱笆最短,最短篱笆的长度为40m.(2)由已知得2(x+y)=36,矩形菜园的面积为xy m2.由√xy≤x+y2=182=9,可得xy≤81,当且仅当x=y=9时,上式等号成立.因此,当这个矩形菜园是边长为9m的正方形时,菜园的面积最大,最大面积是81m2. 例4某工厂要建造一个长方体形无盖贮水池,其容积为4800m2,深为3m.如果池底每平方米的造价为150元,池壁每平方米的造价为120元,那么怎样设计水池能使总造价最低?最低总造价是多少?分析:贮水池呈长方体形,它的高是3m,池底的边长没有确定.如果池底的边长确定了,那么水池的总造价也就确定了.因此,应当考察池底的边长取什么值时,水池的总造价最低.解:设贮水池池底的相邻两条边的边长分别为xm ,ym ,水池的总造价为2元.根据题意,有z =150×48003+120(2×3x +2×3y )=240000+720(x +y ).由容积为4800m 3,可得3xy =4800,因此xy =1600.所以z ≥240000+720×2√xy ,当x =y =40时,上式等号成立,此时z =297600.所以,将贮水池的池底设计成边长为40m 的正方形时总造价最低,最低总造价是297600元. 【设计意图】例题讲解,学以致用. 3.随堂练习1.已知a 、b 、c 都是正数,求证:(a +b )(b +c )(c +a )≥8abc 分析:对于此类题目,选择定理:ab ba ≥+2(a >0,b >0)灵活变形,可求得结果. 解:∵a ,b ,c 都是正数 ∴a +b ≥2√ab >0 b +c ≥2√bc >0 c +a ≥2√ca >0∴(a +b )(b +c )(c +a )≥2√ab ·2√bc ·2√ca =8abc 即(a +b )(b +c )(c +a )≥8abc . 【设计意图】讲练结合,熟悉新知. 4.课时小结本节课,我们学习了重要不等式a 2+b 2≥2ab ;两正数a 、b 的算术平均数(a+b 2),几何平均数(√ab )及它们的关系(a+b 2≥√ab ).它们成立的条件不同,前者只要求a 、b 都是实数,而后者要求a 、b 都是正数.它们既是不等式变形的基本工具,又是求函数最值的重要工具(下一节我们将学习它们的应用).我们还可以用它们下面的等价变形来解决问题:ab ≤a2+b22,ab≤(a+b2)2.我们用两个正数的算术平均数与几何平均数的关系顺利解决了函数的一些最值问题.在用均值不等式求函数的最值,是值得重视的一种方法,但在具体求解时,应注意考查下列三个条件:(1)函数的解析式中,各项均为正数;(2)函数的解析式中,含变数的各项的和或积必须有一个为定值;(3)函数的解析式中,含变数的各项均相等,取得最值即用均值不等式求某些函数的最值时,应具备三个条件:一正二定三取等.教学反思:略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新课标高中数学教案书学是最能体现一个人的思维能力,判断能力、反应敏捷能力和聪明程度的学科。

数学直接影响着国民的基本素质和生活质量,良好的数学修养将为人的一生可持续发展奠定基础,一起看看新课标高中数学教案书!欢迎查阅!新课标高中数学教案书1高中一年级的新同学们,当你们踏进高中校门,漫步在优美的校园时,看见老师严谨而热心的教学和师兄、师姐深切的关怀时,我想你们会暗暗决心:争取学好高中阶段的各门学科。

在新的高考制度3+综合普遍吹散全国大地之时,代表人们基本素质的3科中,数学是最能体现一个人的思维能力,判断能力、反应敏捷能力和聪明程度的学科。

数学直接影响着国民的基本素质和生活质量,良好的数学修养将为人的一生可持续发展奠定基础,高中阶段则应可能充分反映学习者对数学的不同需求,使每个学生都能学习适合他们自己的数学。

一、高中数学课的设置高中数学内容丰富,知识面广泛,高一年级上学期学习第一册(上):第一章集合与简易逻辑;第二章函数;第三章数列。

高一年级下学期学习第一册(下):第四章三角函数;第五章平面向量。

高二年级上学期学习第二册(上):第六章不等式;第七章直线和圆的方程;第八章圆锥曲线方程。

高二年级下学期学习第二册(下):第九章直线、平面、简单几何体;第十章排列、组合和概率。

高二结束将有数学会考。

高三年级文科生学习第三册(选修1):第一章统计;第二章极限与导数。

高三年级理科生学习第三册(选修2):第一章概率与统计;第二章极限;第三章导数;第四章复数。

高三还将进行全面复习,并有重要的高考。

二、初中数学与高中数学的差异。

1、知识差异。

初中数学知识少、浅、难度容易、知识面笮。

高中数学知识广泛,将对初中的数学知识推广和引伸,也是对初中数学知识的完善。

如:初中学习的角的概念只是0-1800范围内的,但实际当中也有7200和-300等角,为此,高中将把角的概念推广到任意角,可表示包括正、负在内的所有大小角。

又如:高中要学习《立体几何》(第九章直线、平面、简单几何体),将在三维空间中求角和距离等。

还将学习排列组合知识,以便解决排队方法种数等问题。

如:①三个人排成一行,有几种排队方法,(=6种);②四人进行乒乓球双打比赛,有几种比赛场次?(答:=3种)高中将学习统计这些排列的数学方法。

初中中对一个负数开平方无意义,但在高中规定了i2=--1,就使-1的平方根为±i.即可把数的概念进行推广,使数的概念扩大到复数范围等。

这些知识同学们在以后的学习中将逐渐学习到。

2、学习方法的差异。

(1)初中课堂教学量小、知识简单,通过教师课堂教慢的速度,争取让全面同学理解知识点和解题方法,课后老师布置作业,然后通过大量的课堂内、外练习、课外指导达到对知识的反反复复理解,直到学生掌握。

而高中数学的学习随着课程开设多(有九们课学生同时学习),每天至少上六节课,自习时间三节课,这样各科学习时间将大大减少,而教师布置课外题量相对初中减少,这样集中数学学习的时间相对比初中少,数学教师将相初中那样监督每个学生的作业和课外练习,就能达到相初中那样把知识让每个学生掌握后再进行新课。

(2)模仿与创新的区别。

初中学生模仿做题,他们模仿老师思维推理教多,而高中模仿做题、思维学生有,但随着知识的难度大和知识面广泛,学生不能全部模仿,即就是学生全部模仿训练做题,也不能开拓学生自我思维能力,学生的数学成绩也只能是一般程度。

现在高考数学考察,旨在考察学生能力,避免学生高分低能,避免定势思维,提倡创新思维和培养学生的创造能力培养。

初中学生大量地模仿使学生带来了不利的思维定势,对高中学生带来了保守的、僵化的思想,封闭了学生的丰富反对创造精神。

如学生在解决:比较a与2a的大小时要不就错、要不就答不全面。

大多数学生不会分类讨论。

3、学生自学能力的差异初中学生自学那能力低,大凡考试中所用的解题方法和数学思想,在初中教师基本上已反复训练,老师把学生要学生自己高度深刻理解的问题,都集中表现在他的耐心的讲解和大量的训练中,而且学生的听课只需要熟记结论就可以做题(不全是),学生不需自学。

但高中的知识面广,知识要全部要教师训练完高考中的习题类型是不可能的,只有通过较少的、较典型的一两道例题讲解去融会贯通这一类型习题,如果不自学、不靠大量的阅读理解,将会使学生失去一类型习题的解法。

另外,科学在不断的发展,考试在不断的改革,高考也随着全面的改革不断的深入,数学题型的开发在不断的多样化,近年来提出了应用型题、探索型题和开放型题,只有靠学生的自学去深刻理解和创新才能适应现代科学的发展。

其实,自学能力的提高也是一个人生活的需要,他从一个方面也代表了一个人的素养,人的一生只有18---24年时间是有导师的学习,其后半生,最精彩的人生是人在一生学习,靠的自学最终达到了自强。

4、思维习惯上的差异初中学生由于学习数学知识的范围小,知识层次低,知识面笮,对实际问题的思维受到了局限,就几几何来说,我们都接触的是现实生活中三维空间,但初中只学了平面几何,那么就不能对三维空间进行严格的逻辑思维和判断。

代数中数的范围只限定在实数中思维,就不能深刻的解决方程根的类型等。

高中数学知识的多元化和广泛性,将会使学生全面、细致、深刻、严密的分析和解决问题。

也将培养学生高素质思维。

提高学生的思维递进性。

5、定量与变量的差异初中数学中,题目、已知和结论用常数给出的较多,一般地,答案是常数和定量。

学生在分析问题时,大多是按定量来分析问题,这样的思维和问题的解决过程,只能片面地、局限地解决问题,在高中数学学习中我们将会大量地、广泛地应用代数的可变性去探索问题的普遍性和特殊性。

如:求解一元二次方程时我们采用对方程ax2+bx+c=0(a≠0)的求解,讨论它是否有根和有根时的所有根的情形,使学生很快的掌握了对所有一元二次方程的解法。

另外,在高中学习中我们还会通过对变量的分析,探索出分析、解决问题的思路和解题所用的数学思想。

三、如何学好高中数学良好的开端是成功的一半,高中数学课即将开始与初中知识有联系,但比初中数学知识系统。

高一数学中我们将学习函数,函数是高中数学的重点,它在高中数学中是起着提纲的作用,它融汇在整个高中数学知识中,其中有数学中重要的数学思想方法;如:函数与方程思想、数形结合思想等,它也是高考的重点,近年来,高考压轴题都以函数题为考察方法的。

高考题中与函数思想方法有关的习题占整个试题的60%以上。

1、有良好的学习兴趣两千多年前孔子说过:知之者不如好之者,好之者不如乐之者。

意思说,干一件事,知道它,了解它不如爱好它,爱好它不如乐在其中。

好和乐就是愿意学,喜欢学,这就是兴趣。

兴趣是的老师,有兴趣才能产生爱好,爱好它就要去实践它,达到乐在其中,有兴趣才会形成学习的主动性和积极性。

在数学学习中,我们把这种从自发的感性的乐趣出发上升为自觉的理性的认识过程,这自然会变为立志学好数学,成为数学学习的成功者。

那么如何才能建立好的学习数学兴趣呢?(1)课前预习,对所学知识产生疑问,产生好奇心。

(2)听课中要配合老师讲课,满足感官的兴奋性。

听课中重点解决预习中疑问,把老师课堂的提问、停顿、教具和模型的演示都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力。

(3)思考问题注意归纳,挖掘你学习的潜力。

(4)听课中注意老师讲解时的数学思想,多问为什么要这样思考,这样的方法怎样是产生的?(5)把概念回归自然。

所有学科都是从实际问题中产生归纳的,数学概念也回归于现实生活,如角的概念、至交坐标系的产生、极坐标系的产生都是从实际生活中抽象出来的。

只有回归现实才能使对概念的理解切实可靠,在应用概念判断、推理时会准确。

2、建立良好的学习数学习惯。

习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。

建立良好的学习数学习惯,会使自己学习感到有序而轻松。

高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。

学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。

另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。

3、有意识培养自己的各方面能力数学能力包括:逻辑推理能力、抽象思维能力、计算能力、空间想象能力和分析解决问题能力共五大能力。

这些能力是在不同的数学学习环境中得到培养的。

在平时学习中要注意开发不同的学习场所,参与一切有益的学习实践活动,如数学第二课堂、数学竞赛、智力竞赛等活动。

平时注意观察,比如,空间想象能力是通过实例净化思维,把空间中的实体高度抽象在大脑中,并在大脑中进行分析推理。

其它能力的培养都必须学习、理解、训练、应用中得到发展。

特别是,教师为了培养这些能力,会精心设计智力课和智力问题比如对习题的解答时的一题多解、举一反三的训练归类,应用模型、电脑等多媒体教学等,都是为数学能力的培养开设的好课型,在这些课型中,学生务必要用全身心投入、全方位智力参与,最终达到自己各方面能力的全面发展。

四、其它注意事项1、注意化归转化思想学习。

人们学习过程就是用掌握的知识去理解、解决未知知识。

数学学习过程都是用旧知识引出和解决新问题,当新的知识掌握后再利用它去解决更新知识。

初中知识是基础,如果能把新知识用旧知识解答,你就有了化归转化思想了。

可见,学习就是不断地化归转化,不断地继承和发展更新旧知识。

2、学会数学教材的数学思想方法。

数学教材是采用蕴含披露的方式将数学思想溶于数学知识体系中,因此,适时对数学思想作出归纳、概括是十分必要的。

概括数学思想一般可分为两步进行:一是揭示数学思想内容规律,即将数学对象其具有的属性或关系抽取出来,二是明确数学思想方法知识的联系,抽取解决全体的框架。

实施这两步的措施可在课堂的听讲和课外的自学中进行。

课堂学习是数学学习的主战场。

课堂中教师通过讲解、分解教材中的数学思想和进行数学技能地训练,使高中学生学习所得到丰富的数学知识,教师组织的科研活动,使教材中的数学概念、定理、原理得到程度的理解、挖掘。

如初中学习的相反数概念教学中,教师的课堂教学往往有以下理解:①从定义角度求3、-5的相反数,相反数是的数是_____.②从数轴角度理解:什么样的两点表示数是互为相反数的。

(关于原点对称的点)③从绝对值角度理解:绝对值_______的两个数是互为相反数的。

④相加为零的两个数互为相反数吗?这些不同角度的教学会开阔学生思维,提高思维品质。

望同学们把握好课堂这个学习的主战场。

五、学数学的几个建议。

1、记数学笔记,特别是对概念理解的不同侧面和数学规律,教师为备战高考而加的课外知识。

2、建立数学纠错本。

把平时容易出现错误的知识或推理记载下来,以防再犯。

争取做到:找错、析错、改错、防错。

相关文档
最新文档