125.北师大版九年级数学上册3.1 第2课时 概率与游戏的综合运用-导学案

合集下载

最新北师大版九年级数学上册:3.2.2-概率与游戏的综合运用教案(1)

最新北师大版九年级数学上册:3.2.2-概率与游戏的综合运用教案(1)

第2课时 概率与游戏的综合运用1.能判断某事件的每个结果出现的可能性是否相等;2.能将不等可能随机事件转化为等可能随机事件,求其发生的概率.(重点、难点)一、情景导入为活跃联欢晚会的气氛,组织者设计了以下转盘游戏:A 、B 两个带指针的转盘分别被分成三个面积相等的扇形,转盘A 上的数字分别是1,6,8,转盘B 上的数字分别是4,5,7(两个转盘除表面数字不同外,其他完全相同).每次选择2名同学分别拨动A 、B 两个转盘上的指针,使之产生旋转,指针停止后所指数字较大的一方为获胜者,负者则表演一个节目线上,则重转一次)二、合作探究探究点一:用表格或树状图求“配紫色”概率用如图所示的两个转盘进行“配紫色”游戏,配得紫色的概率是多少?解析:由图可知,转动A 转盘时会出现三种可能的结果,但转出红色的可能性大些;转动B 转盘时会出现两种可能的结果,但转出蓝色的可能性大些.由于这几种结果发生的可能性不等,所以不能直接用树状图或列表法表示试验出现的所有可能结果,而是要先将其转化.由图可知A 转盘中红色区域是白色或蓝色的2倍,因此可将红色区域2等分.同理,可将B 转盘中的蓝色区域2等分,从而将其转化为等可能性试验后,再用表格或树状图进行列举求解.解:将A 转盘中“红”区域2等分,B 转盘“蓝”区域2等分后列表如下:能结果,由于红色和蓝色在一起配成了紫色,所以能配成紫色的有5种结果,所以P (紫色)=512.方法总结:(1)在一些试验中,包含的几种结果发生的可能性不等时,应先通过转化将其转化为有限等可能性试验,再利用树状图或表格来求其发生的概率.(2)在不等可能性试验转化为有限等可能性试验时,要抓住各种结果之间的联系——“倍、分”关系,根据它们之间的联系采用合适的方法.探究点二:概率与游戏的综合运用王铮擅长球类运动,课外活动时,足球队、篮球队都力邀他到自己的阵营,王铮左右为难,最后决定通过掷硬币来确定.游戏规则如下:连续抛掷硬币三次,如果两次正面朝上一次正面朝下,则王铮加入足球阵营;如果两次反面朝上,一次反面朝下,则王铮加入篮球阵营.(1)用画树状图的方法表示三次抛掷硬币的所有结果;(2)这个游戏规则对两个球队是否公平?为什么?解:(1)根据题意画出树状图,如图.(2)这个游戏规则对两个球队公平.理由如下:两次正面朝上一次正面朝下有3种结果,正正反,正反正,反正正;两次反面朝上一次反面朝下有3种结果,正反反,反正反,反反正.所以P (王铮去足球队)=P (王铮去篮球队)=38.方法总结:判断游戏是否公平这类问题,实际是比较两个事件概率大小的问题,因此判断之前,先要计算两事件发生的概率的大小.三、板书设计概率与游戏的综合运用⎩⎨⎧配紫色判断游戏公平性经历实验、画图、列表等活动,学生在具体情境中分析事件,计算其发生的概率.渗透数形结合、分类讨论思想,提高分析问题和解决问题的能力.通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯.。

3.1第2课时 利用概率判断游戏的公平性++课件-2024-2025学年北师大版数学九年级上册

3.1第2课时 利用概率判断游戏的公平性++课件-2024-2025学年北师大版数学九年级上册

相同,那么小凡获胜;如果两人手势不同,那么按照“石头胜剪
刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者.
假设小明和小颖每次出这三种手势的可能性相同,你认为这
个游戏对三人公平吗?
探 解:因为小明和小颖每次出这三种手势的可能性相同,所以可以

与 利用树状图列出所有可能出现的结果:
应 用
探 或者列表如下:
探 学 方法 究 当某次试验涉及三个(或更多个)因素或三步及以上操作时,

应 用画树状图法求概率.

课 [本课时认知逻辑]

小 结
概率相等
与 利用概 借助列表或
检 率判断 画树状图 计算游戏双 判断 游戏公平
测 游戏的 公平性
方获胜的概率
游戏不公平
概率不等
课 [检测]

小 1.不透明盒子里有3张形状、大小、质地完全相同的卡片,
因为38 < 58,所以这个游戏对双方不公平.
谢 谢 观 看!
检 测
次数字之和大于5,则小颖胜,否则小丽胜,这个游戏对双方公
平吗?请说明理由.
解:这个游戏对双方不公平.理由:列表如下.
课 堂 小
第二次

1
2
3
4

第一次

1
2
3
4
5

2
3
4
5
6

3
4
5
6
ห้องสมุดไป่ตู้
7
4
5
6
7
8
共有16种等可能的结果,其中两次数字之和大于5的结果有6种,
故小颖获胜的概率为 6
16

北师大版九年级上册数学 第2课时 概率与游戏的综合应用导学案

北师大版九年级上册数学      第2课时  概率与游戏的综合应用导学案

第2课时 概率与游戏的综合应用一、读一读:1、学习目标:经历利用树状图和列表法求出概率并解决问题的过程,提高应用知识解决问题的能力。

2、认真阅读课本65页—67页,思考课本中提出的问题。

二、试一试:1.小颖为学校联欢会设计了一个“配紫色”游戏:下面是两个可以自由转动的转盘,每个转盘被分成相等的几个扇形.游戏规则是:游戏者同时转动两个转盘,如果转盘A 转出了红色,转盘B 转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色.(1)分别利用树状图或列表的方法表示游戏者所有可能出现的结果. (2)游戏者获胜的概率是多少?2.利用图所示的转盘进行“配紫色”游戏. 小颖制作了下面的树状图, 并据此求出游戏者获胜的概率是12。

小亮则先把左边转盘的红色区域等分成2份,分别记作“红色1”“红色2”,然后制作了下表,据此求出游戏者获胜的概率也是12.你认为谁做得对?说说你的理由.归纳总结:你认为用画树状图和列表的方法求概率时应该注意些什么?_______________________________________________________________________________红色 蓝色 红色1 (红1,红) (红1,蓝) 红色2 (红2,红) (红2,蓝) 蓝色(蓝,红)(蓝,蓝)开始红蓝红 蓝红蓝(红,蓝)(蓝,红)(蓝,蓝)(红,红)例题:一个盒子中装有两个红球、两个白球和一个蓝球,这些球除颜色外都相同。

从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,求两次摸到的球的颜色能配成紫色的概率。

四、练一练1.利用如图所示的转盘进行“配紫色”游戏。

游戏规则:连续转动两次转盘A,若两次转盘转出的出的颜色能配成紫色,小明得1分,若两次转出颜色都是红色,则小亮得1分.你认为游戏对双方公平吗?写出解答过程说明理由。

2.游戏者同时转动右边的两个转盘进行““配紫色游戏,若要使游戏者获胜的概率为110,转盘B不动,转盘A应该如何设计?并写出解答过程说明理由。

北师大版数学九上3.1 第2课时 概率与游戏的综合运用

北师大版数学九上3.1 第2课时 概率与游戏的综合运用
B盘 A盘
红色
(蓝,红)
蓝色
(蓝,红) 蓝
120°
蓝色 红1色 红2色
红2
(红1,红)(红1,蓝) (红2,红)(红2,蓝)
红1
配成紫色的情况有:(红1,蓝),(红2,蓝),(蓝,红)3种.
所以配成紫色的概率P =
1 2
.
小颖的做法不正确.因为右边的转盘中红色部分
和蓝色部分的面积不相同,因而指针落在这两个区域
的可能性不同.
小亮的做法是解决这类问题的一种常用方法. 问题2:用树状图和列表的方法求概率时应注意些什么? 用树状图和列表的方法求概率时应注意各种结果
出现的可能性务必相同.
例1:一个盒子中装有两个红球,两个白球和一个蓝球,
这些球出颜色外都相同了.从中随机摸出一个球,记下颜
色后放回,再从中随机摸出一个球,求两次摸到的球得 颜色能配成紫色的概率. 解:现将两个红球分别记作“红1”“红2”,两个白 球分别记作“白1”“白2”,然后列表如下.
2
( 2, 1)
( 2, 2)
( 2, 3 )
总共有6种结果,每种结果出现的可能性相同,而 所摸球上的数字与转盘转出的数字之和为2的结果 只有一种:(1,1),因此游戏者获胜的概率为 .
1 2
5.甲、乙、丙三个盒中分别装有大小、形状、质地 相同的小球若干,甲盒中装有2个小球,分别写有字 母A和B;乙盒中装有3个小球,分别写有字母C、D 和E;丙盒中装有2个小球,分别写有字母H和I;现 要从3个盒中各随机取出1个小球.

120°



A盘
B盘
1 问题1:下面是小颖和小亮的解答过程,两人结果都是 , 2
你认为谁对?

九年级数学上册第三章概率的进一步认识1用树状图或表格求概率第2课时概率与游戏的综合应用教案北师大版

九年级数学上册第三章概率的进一步认识1用树状图或表格求概率第2课时概率与游戏的综合应用教案北师大版
教学步骤与流程
一、自主学习,感受新知
“配紫色”游戏:小颖为学校联欢会设计了一个“配紫色”游戏:下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形.游戏者同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色.
(1)利用树状图或列表的方法表示游戏者所有可能出现的结果.
第2课时用树状图和列表法求概率的过程,在活动中进一步发展学生的合作交流意识及反思的习惯.
2、鼓励学生思维的多样性,提高应用所学知识解决问题的能力.
重点、难点
1、借助于树状图、列表法计算随机事件的概率。
2、在利用树状图或者列表法求概率时,各种情况出现可能性不同时的情况处理。
总共有25种可能的结果,每种结果出现的可能性相同,能配成紫色的共4种
(红1,蓝)(红2,蓝)(蓝,红1)(蓝,红2),所以P(能配成紫色)=
四、分层提高,完善新知
1.用如图所示的两个转盘做“配紫色”游戏,每个转盘都被分成三个面积相等的三个扇形.请求出配成紫色的概率是多少?
2.设计两个转盘做“配紫色”游戏,使游戏者获胜的概率为
(2)游戏者获胜的概率是多少?
二、合作交流,探求新知
游戏2:如果把转盘变成如下图所示的转盘进行“配紫色”游戏.
(1)利用树状图或列表的方法表示游戏者所有可能出现的结果.
(2)游戏者获胜的概率是多少?
三、典型例题,应用新知
例2、一个盒子中有两个红球,两个白球和一个蓝球,这些球除颜色外其它都相同,从中随机摸出一球,记下颜色后放回,再从中随机摸出一球。求两次摸到的球的颜色能配成紫色的概率.分析:把两个红球记为红1、红2;两个白球记为白1、白2.则列表格如下:
五、课堂小结,回顾新知

新北师版初中数学九年级上册3.2第2课时概率与游戏的综合运用1公开课优质课教学设计

新北师版初中数学九年级上册3.2第2课时概率与游戏的综合运用1公开课优质课教学设计

第2课时 概率与游戏的综合运用1.能判断某事件的每个结果出现的可能性是否相等;2.能将不等可能随机事件转化为等可能随机事件,求其发生的概率.(重点、难点)一、情景导入为活跃联欢晚会的气氛,组织者设计了以下转盘游戏:A 、B 两个带指针的转盘分别被分成三个面积相等的扇形,转盘A 上的数字分别是1,6,8,转盘B 上的数字分别是4,5,7(两个转盘除表面数字不同外,其他完全相同).每次选择2名同学分别拨动A 、B 两个转盘上的指针,使之产生旋转,指针停止后所指数字较大的一方为获胜者,负者则表演一个节目(若箭头恰好停留在分界线上,则重转一次).作为游戏者,你会选择哪个装置呢?并请说明理由.二、合作探究探究点一:用表格或树状图求“配紫色”概率 用如图所示的两个转盘进行“配紫色”游戏,配得紫色的概率是多少?解析:由图可知,转动A 转盘时会出现三种可能的结果,但转出红色的可能性大些;转动B 转盘时会出现两种可能的结果,但转出蓝色的可能性大些.由于这几种结果发生的可能性不等,所以不能直接用树状图或列表法表示试验出现的所有可能结果,而是要先将其转化.由图可知A 转盘中红色区域是白色或蓝色的2倍,因此可将红色区域2等分.同理,可将B 转盘中的蓝色区域2等分,从而将其转化为等可能性试验后,再用表格或树状图进行列举求解.解:将A 转盘中“红”区域2等分,B 转盘“蓝”区域2等分后列表如下:(红2,蓝2)从表中可知该试验共有12种等可能结果,由于红色和蓝色在一起配成了紫色,所以能配成紫色的有5种结果,所以P(紫色)=512.方法总结:(1)在一些试验中,包含的几种结果发生的可能性不等时,应先通过转化将其转化为有限等可能性试验,再利用树状图或表格来求其发生的概率.(2)在不等可能性试验转化为有限等可能性试验时,要抓住各种结果之间的联系——“倍、分”关系,根据它们之间的联系采用合适的方法.探究点二:概率与游戏的综合运用王铮擅长球类运动,课外活动时,足球队、篮球队都力邀他到自己的阵营,王铮左右为难,最后决定通过掷硬币来确定.游戏规则如下:连续抛掷硬币三次,如果两次正面朝上一次正面朝下,则王铮加入足球阵营;如果两次反面朝上,一次反面朝下,则王铮加入篮球阵营.(1)用画树状图的方法表示三次抛掷硬币的所有结果;(2)这个游戏规则对两个球队是否公平?为什么?解:(1)根据题意画出树状图,如图.(2)这个游戏规则对两个球队公平.理由如下:两次正面朝上一次正面朝下有3种结果,正正反,正反正,反正正;两次反面朝上一次反面朝下有3种结果,正反反,反正反,反反正.所以P(王铮去足球队)=P(王铮去篮球队)=38.方法总结:判断游戏是否公平这类问题,实际是比较两个事件概率大小的问题,因此判断之前,先要计算两事件发生的概率的大小.三、板书设计概率与游戏的综合运用⎩⎨⎧配紫色判断游戏公平性经历实验、画图、列表等活动,学生在具体情境中分析事件,计算其发生的概率.渗透数形结合、分类讨论思想,提高分析问题和解决问题的能力.通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯.。

北师大版九年级数学上册第三章《概率的进一步认识》概率与游戏的综合运用教案

北师大版九年级数学上册第三章《概率的进一步认识》概率与游戏的综合运用教案

第2课时概率与游戏的综合运用教案1.能判断某事件的每个结果出现的可能性是否相等;2.能将不等可能随机事件转化为等可能随机事件,求其发生的概率.(重点、难点)一、情景导入为活跃联欢晚会的气氛,组织者设计了以下转盘游戏:A、B两个带指针的转盘分别被分成三个面积相等的扇形,转盘A上的数字分别是1,6,8,转盘B上的数字分别是4,5,7(两个转盘除表面数字不同外,其他完全相同).每次选择2名同学分别拨动A、B两个转盘上的指针,使之产生旋转,指针停止后所指数字较大的一方为获胜者,负者则表演一个节目(若箭头恰好停留在分界线上,则重转一次).作为游戏者,你会选择哪个装置呢?并请说明理由.二、合作探究探究点一:用表格或树状图求“配紫色”概率用如图所示的两个转盘进行“配紫色”游戏,配得紫色的概率是多少?解析:由图可知,转动A转盘时会出现三种可能的结果,但转出红色的可能性大些;转动B转盘时会出现两种可能的结果,但转出蓝色的可能性大些.由于这几种结果发生的可能性不等,所以不能直接用树状图或列表法表示试验出现的所有可能结果,而是要先将其转化.由图可知A转盘中红色区域是白色或蓝色的2倍,因此可将红色区域2等分.同理,可将B转盘中的蓝色区域2等分,从而将其转化为等可能性试验后,再用表格或树状图进行列举求解.解:将A转盘中“红”区域2等分,B转盘“蓝”区域2等分后列表如下:转盘A 转盘B白 蓝 红1 红2 红 (白,红) (蓝,红) (红1,红) (红2,红) 蓝1 (白,蓝1) (蓝,蓝1) (红1,蓝1) (红2,蓝1) 蓝2(白,蓝2)(蓝,蓝2)(红1,蓝2)(红2,蓝2)从表中可知该试验共有12种等可能结果,由于红色和蓝色在一起配成了紫色,所以能配成紫色的有5种结果,所以P (紫色)=512.方法总结:(1)在一些试验中,包含的几种结果发生的可能性不等时,应先通过转化将其转化为有限等可能性试验,再利用树状图或表格来求其发生的概率.(2)在不等可能性试验转化为有限等可能性试验时,要抓住各种结果之间的联系——“倍、分”关系,根据它们之间的联系采用合适的方法.探究点二:概率与游戏的综合运用王铮擅长球类运动,课外活动时,足球队、篮球队都力邀他到自己的阵营,王铮左右为难,最后决定通过掷硬币来确定.游戏规则如下:连续抛掷硬币三次,如果两次正面朝上一次正面朝下,则王铮加入足球阵营;如果两次反面朝上,一次反面朝下,则王铮加入篮球阵营.(1)用画树状图的方法表示三次抛掷硬币的所有结果; (2)这个游戏规则对两个球队是否公平?为什么? 解:(1)根据题意画出树状图,如图.(2)这个游戏规则对两个球队公平.理由如下:两次正面朝上一次正面朝下有3种结果,正正反,正反正,反正正; 两次反面朝上一次反面朝下有3种结果,正反反,反正反,反反正. 所以P (王铮去足球队)=P (王铮去篮球队)=38.方法总结:判断游戏是否公平这类问题,实际是比较两个事件概率大小的问题,因此判断之前,先要计算两事件发生的概率的大小.三、板书设计概率与游戏的综合运用⎩⎨⎧配紫色判断游戏公平性经历实验、画图、列表等活动,学生在具体情境中分析事件,计算其发生的概率.渗透数形结合、分类讨论思想,提高分析问题和解决问题的能力.通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯.第2课时 概率与游戏的综合运用教案教学目标1、经历利用树状图和列表法求概率的过程,在活动中进一步发展学生的合作交流意识及反思的习惯.2、鼓励学生思维的多样性,提高应用所学知识解决问题的能力.重点、难点1、借助于树状图、列表法计算随机事件的概率。

最新北师大版九年级上册数学导学案(全册共)

最新北师大版九年级上册数学导学案(全册共)

最新北师大版九年级上册数学导学案(全册共119页)目录第一章特殊平行四边形1.1菱形的性质与判定第1课时菱形的性质第2课时菱形的判定1.2矩形的性质与判定第1课时矩形的性质第2课时矩形的判定1.3正方形的性质与判定第1课时正方形的性质第2课时正方形的判定第二章一元二次方程2.1 认识一元二次方程第1课时一元二次方程第2课时一元二次方程的解及其估算2.2 用配方法求解一元二次方程第1课时用配方法求解简单的一元二次方程第2课时用配方法求解较复杂的一元二次方程2.3 用公式法求解一元二次方程第1课时用公式法求解一元二次方程第2课时利用一元二次方程解决面积问题2.4 用因式分解法求解一元二次方程2.5一元二次方程的根与系数的关系2.6 应用一元二次方程第1课时几何问题及数字问题与一元二次方程第2课时第三章概率的进一步认识3.1 用树状图或表格求概率第1课时用树状图或表格求概率第2课时概率与游戏的综合运用3.2 用频率估计概率第四章图形的相似4.1 成比例线段第1课时线段的比和成比例线段第2课时比例的性质4.2 平行线分线段成比例4.3 相似多边形4.4 探索三角形相似的条件第1课时利用两角判定三角形相似第2课时利用两边及夹角判定三角形相似第3课时利用三边判定三角形相似第4课时黄金分割4.5 相似三角形判定定理的证明4.6 利用相似三角形测高4.7 相似三角形的性质第1课时相似三角形中的对应线段之比第2课时相似三角形的周长和面积之比4.8 图形的位似第1课时位似多边形及其性质第2课时平面直角坐标系中的位似变换第五章投影与视图5.1 投影第1课时投影的概念与中心投影第2课时平行投影与正投影5.2 视图第1课时简单图形的三视图第2课时复杂图形的三视图第六章反比例函数6.1 反比例函数6.2 反比例函数的图象与性质第1课时反比例函数的图象第2课时反比例函数的性质第一章 特殊平行四边形1.1 菱形的性质与判定第1课时 菱形的性质学习目标:①通过折、剪纸张的方法,探索菱形独特的性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时 概率与游戏的综合运用
学习目标:
1.经历利用树状图和列表法求出概率并解决问题的过程。

2.提高应用知识解决问题的能力。

1.小颖为学校联欢会设计了一个“配紫色”游戏:下面是两个可以自由转动的转盘,每个转盘被分成相等
的几个扇形.游戏规则是:游戏者同时转动两个转盘,如果转盘A 转出了红色,转盘B 转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色.
(1)分别利用树状图或列表的方法表示游戏者所有可能出现的结果. (2)游戏者获胜的概率是多少?
2.利用图所示的转盘进行“配紫色”游戏. 小颖制作了下面的树状图, 并据此求出游戏者获胜的概率是1
2。

小亮则先把左边转盘的红色区域等分成2份,分别记作“红色1”“红色2”,然后制作了下表,据此求出游戏者获胜的概率也是1
2
.你认为谁做得对?说说你的理由.
红色 蓝色 红色1 (红1,红) (红1,蓝) 红色2 (红2,红) (红2,蓝) 蓝色
(蓝,红)
(蓝,蓝)
开始


红 蓝


(红,蓝)
(蓝,红)
(蓝,蓝)
(红,红)
归纳总结:你认为用画树状图和列表的方法求概率时应该注意些什么?
_______________________________________________________________________________ 例:一个盒子中装有两个红球、两个白球和一个蓝球,这些球除颜色外都相同。

从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,求两次摸到的球的颜色能配成紫色的概率。

1.利用如图所示的转盘进行“配紫色”游戏。

游戏规则:连续转动两次转盘A,若两次转盘转出的出的颜色能配成紫色,小明得1分,若两次转出颜色都是红色,则小亮得1分.你认为游戏对双方公平吗?写出解答过程说明理由。

2.游戏者同时转动右边的两个转盘进行““配紫色
游戏,若要使游戏者获胜的概率为
1
10
,转盘B不动,
转盘A应该如何设计?并写出解答过程说明理由。

初中数学公式大全
1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
B A
B A
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12 两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理三角形两边的和大于第三边
16 推论三角形两边的差小于第三边
17 三角形内角和定理三角形三个内角的和等于180 °
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形
21 平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形
22 平行四边形判定定理 3 对角线互相平分的四边形是平行四边形
23 平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形
24 矩形性质定理 1 矩形的四个角都是直角
25 矩形性质定理 2 矩形的对角线相等
26 矩形判定定理 1 有三个角是直角的四边形是矩形
27 矩形判定定理 2 对角线相等的平行四边形是矩形
28 菱形性质定理 1 菱形的四条边都相等
29 菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
30 菱形面积= 对角线乘积的一半,即S= (a×b )÷2
31 菱形判定定理1 四边都相等的四边形是菱形
32 菱形判定定理2 对角线互相垂直的平行四边形是菱形
33 正方形性质定理1 正方形的四个角都是直角,四条边都相等
34 正方形性质定理2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
35 定理1 关于中心对称的两个图形是全等的
36 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
37 逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
38 等腰梯形性质定理等腰梯形在同一底上的两个角相等。

相关文档
最新文档