电致发光及场致发光器件(OLED).

合集下载

电致发光

电致发光

5个阶段。
有机电致发光过程通常包括以下5个阶段。
1) 载流子的注入:在外加电场作用下,电子和空穴分别从

阴极和阳极注入到夹在电极之间的有机功能薄膜层。
2) 载流子的迁移:注入的电子和空穴分别从电子传输层和

空穴传输层向发光层迁移。
3) 载流子的复合:电子和空穴结合产生激子。
4) 激子的迁移:激子在电场作用下迁移,将能量传递给发
2)发光强度
发光强度的单位是cd·m-2,表示每平方 米的发光强度。发光强度一般用亮度计 来测量,通过测量被测表面的像在光电 池表面所产生的照度即可获得,因为这 个像面照度正比于物体亮度,且不随物 体距离的变化而变化。
3)发光效率
有机EL的发光效率可以用量子效率、功率效率和流明 效率三种方法表示。量子效率ηq是指输出的光子数Nf 与注入的电子空穴对数Nx之比。

光分子,并激发电子从基态跃迁到激发态。
5) 电致发光:激发态能量通过辐射失活,产生光子,释放

能量。
评价OLED的一些主要参数
一般来讲,有机EL发光材料及器件的性 能可以从发光性能和电学性能两方面来 评价。发光性能主要包括发射光谱、发 光亮度、发光效率、发光色度和寿命; 电学性能主要包括电流与电压的关系、 发光亮度与电压的关系等。这些都是衡 量有机EL材料和器件性能的重要参数, 对于发光的基础理论研究和技术应用极 为重要。
更加独特的是,OLED产品可实现软屏。
OLED还有工作温度范围宽、低压驱动、 工艺简单、成本低等优点。
在制造上,由于采用有机材料,可以通 过有机合成方法获得,与无机材料相比 较,不仅不耗费自然资源,而且还可以 通过合成新的更好性能的有机材料,使 OLED的性能不断地向前发展。

几种显示技术的比较

几种显示技术的比较

几种常见显示技术的比较平板显示器件包括液晶显示器件(LCD)、等离子体显示器件(PDP)、发光二极管显示器件(LED),场发射显示器件(FED )、表面传导发射显示器件(SED )、无机电致发光器件(IOEL)、有机电致发光器件(OLED ) 等。

下面就其中的几种做简要的介绍。

1、液晶显示器件(LCD )液晶显示器件是液晶应用的主体,发展很快。

液晶显示器的优缺点:(1)结构和产品体积。

传统显示器由十使用CRT,必须通过电子枪发射电子束到屏幕,因而显像管的管颈不能做得很短,当屏幕增加时也必然增大整个显示器的体积。

液晶显示器通过显示屏上的电极控制液晶分子状态来达到显示目的,即使屏幕加大,它的体积也不会成正比的增加(只增加尺寸不增加厚度所以不少产品提供了壁挂功能,可以让使用者更节省空间),而且重量上比相同显示面积的传统CRT显示器要轻得多。

同时液晶显示器由十功耗只在十电极和驱动IC上,因而耗电量比传统CRT显示器也要小得多。

(2)辐射和电磁波干扰。

传统CRT显示器由十采用电子枪发射电子束,在打到屏幕上后会产生辐射,尽管现有产品在技术上有很大的提高,把辐射损害降到最小,但不可能根除。

在这一点上,液晶显示器具有先天的优势,它根本没有辐射可言。

至十电磁波的干扰,液晶显示器只有来自驱动电路的少量电磁波,只要将外壳严格密封即可排除电磁波外泄,而传统CRT显示器为了散热,不得不将外壳钻上散热孔,所以电磁波干扰就不可避免了。

所以液晶显示器也被称为冷显示器或环保显示器。

(3)平面直角和分辨率。

液晶显示器一开始就使用纯平面的玻璃板,其平面直角的显示效果比传统显示器看起来好得多。

不过在分辨率上,液晶显示器理论上可提供更高的分辨率,但实际显示效果却差得多。

而传统显示器在较好显卡的支持下达到完美的显示效果。

(4)显示品质。

传统显示器的显示屏幕采用荧光粉,通过电子束打击荧光粉显示,因而显示的明亮度比液晶的透光式显示(以口光灯为光源)更为明亮,在可视角度上也比液晶显示器要好得多。

电致发光的原理

电致发光的原理

电致发光的原理电致发光(Electroluminescence,简称EL)是一种通过电场激发材料来发光的现象,它是一种重要的发光原理,被广泛应用于发光二极管(LED)、有机发光二极管(OLED)等光电器件中。

电致发光的原理是通过外加电压使材料内部的电子和空穴复合而产生光辐射,下面我们就来详细了解一下电致发光的原理。

首先,我们需要了解的是电子和空穴的概念。

在半导体材料中,电子和空穴是载流子的两种形式。

当半导体材料被激发时,电子会跃迁到导带中,留下一个空穴,这个空穴可以被看作是一个正电荷。

当电子和空穴再次结合时,就会产生能量释放,这种能量释放就是光辐射。

其次,电致发光的原理与材料的能隙密切相关。

能隙是指固体中价带和导带之间的能量差,当电子从价带跃迁到导带时,就需要克服这个能隙。

在电致发光的材料中,能隙的大小决定了电子和空穴复合时释放的光的波长。

通常情况下,能隙越小的材料释放的光的波长越长,能隙越大的材料释放的光的波长越短。

另外,电致发光的原理还与材料的内部结构有关。

在一些特殊的材料中,当外加电压作用于材料时,会在材料内部形成电子和空穴的复合区域,这个复合区域就是发光的源头。

通过合理设计材料的内部结构,可以实现高效的电致发光效果。

此外,电致发光的原理还与外加电压的大小和频率有关。

在实际的电致发光器件中,外加电压的大小和频率会直接影响电子和空穴的复合速率,从而影响发光的亮度和稳定性。

因此,合理控制外加电压是实现稳定、高效电致发光的关键。

总的来说,电致发光的原理是通过外加电压激发半导体材料内部的电子和空穴复合而产生光辐射。

这一原理已被广泛应用于LED、OLED等光电器件中,为人们的生活和工作带来了诸多便利。

随着材料科学和电子技术的不断发展,相信电致发光技术将会有更广阔的应用前景。

oled发光原理

oled发光原理

oled发光原理OLED是指在电场驱动下,通过载流子注入和复合导致发光的现象。

其原理是用ITO玻璃透明电极和金属电极分别作为器件的阳极和阴极,在一定电压驱动下,电子和空穴分别从阴极和阳极注入到电子和空穴传输层,然后分别迁移到发光层,相遇形成激子使发光分子激发,后者经过辐射后发出可见光。

辐射光可从ITO 一侧观察到,金属电极膜同时也起了反射层的作用。

OLED的工作原理是:在一定电场驱动下,电子和空穴分别从阴极和阳极注入到电子传输层和空穴传输层,并在发光层中相遇,形成的激子最终导致可见光的发射。

(二)OLED器件特点1、全固态器件,可实现柔软显示2、工艺简单,成本低3、高亮度,低能耗4、使用温度范围广,抗震能力强5、响应速度快,动态画面质量高6、主动发光,无视角问题7、重量轻,厚度薄有机发光显示技术由非常薄的有机材料涂层和玻璃基板构成。

当有电荷通过时这些有机材料就会发光。

OLED发光的颜色取决于有机发光层的材料,故厂商可由改变发光层的材料而得到所需之颜色。

有源阵列有机发光显示屏具有内置的电子电路系统因此每个像素都由一个对应的电路独立驱动。

OLED具备有构造简单、自发光不需背光源、对比度高、厚度薄、视角广、反应速度快、可用于挠曲性面板、使用温度范围广等优点,技术提供了浏览照片和视频的最佳方式而且对相机的设计造成的限制较少。

要理解OLED的自发光,就必须不得不提到LCD。

LCD跟OLED 是目前主流的两种显示技术,LCD依靠LED/CCFL背光源发光,而OLED则是主动发光。

可以形象理解为OLED屏幕每个像素点都是一个小灯泡,而LCD则是百叶窗后面放几个大灯泡。

LCD可以在几百上千个分区内进行控光,而OLED相当于拥有几百万、甚至上千万的像素级灯管,控光能力当然不是一个数量级。

OLED是指有机发光二极管,或称为有机电致发光器件。

原理很简单,人们很早就发现将某种有机材料(小分子的或者聚合物的)夹在正负电极之间,当施加电压并有电流流过时,该有机材料就会发光,当选择不同的有机材料,就会获得不同的发光色,从而可以制作彩色显示屏。

OLED有机电致发光材料与器件

OLED有机电致发光材料与器件

1、有机材料中载流子输运(纵波、孤子)P16~P17与无机半导体或单晶材料不同的是,有机半导体中并没有延续的能带,有机半导体的结构中都会有去定域化的π电子,这些电子比较自由,但也只被局限在分子之内,因此,跳跃式的理论最常被用来说明电荷在有机分子间传递的现象,即在一电场的驱动下,电子在被激发或被注入至分子的LUMO能级后,经由跳跃至另一分子的LUMO能级,以达到传递的目的。

需要特别指出的是,电荷并不只是简单地以电子或空穴存在于这些有机分子中,而是带电荷的位置会伴随化学键长和结构而变形。

因此,一个电子或空穴加上变形区形成一个单位一起移动,此单位称为极化子。

有机半导体由于电子或空穴的移动往往伴随着结构的变形(核的运动),所以有机半导体中的自由电子或空穴的迁移率一般比无机半导体或金属中的低。

2、OLED结构(从能级匹配分析)P27~P29发光层(EML)、电子/空穴输运层(E/HTL)、阻隔层(BL)、电子/空穴注入层(E/HIL)、激子幽禁层(ECL)激子:在光跃迁过程中,被激发到导带中的电子和在价带中的空穴由于库仑相互作用,将形成一个束缚态,称为~。

而激子的复合导致发光。

淬灭:在这里,淬灭是指在荧光过程中,光子产生的数量在很短的时间内衰减或者消失。

PS:空穴阻隔是因为阻隔层的HOMO能级比发光层高,因此在EML和BL间会产生很大的能垒,空穴的传递会被阻挡在发光层与阻隔层的界面,增加了空穴在界面的浓度,如此可增加电子、空穴在发光层发生复合的几率。

而这些阻隔层的三重态激发态的能隙也要比发光层大,才可防止能量转移至电子输运层而消光。

3、OLED发光原理(主发光、掺杂、主客体关系)P23、P14步骤一:当施加一正向外加偏压,空穴和电子克服界面能垒后,经由阳极和阴极注入,分别进入空穴输运层(HTL)的HOMO能级和电子输运层(ETL)的LUMO能级;步骤二:电荷在外部电场的驱动下,传递至空穴输运层和电子输运层的界面,因为界面的能级差,使得界面会有电荷的累积;步骤三:当电子、空穴在有发光特性的有机物质内复合,形成处于激发态的激子,此激发态在一般的环境中是不稳定的,能量将以光或热的形式释放出来而回到稳定态的基态,因此电致发光是一个电流驱动的现象。

物体发光的原理

物体发光的原理

物体发光的原理人们常常能够看到许多物体在黑暗中发出明亮的光芒,比如夜空中的星星、照明灯、手机屏幕等。

这些物体之所以能够发光,是因为它们利用了不同的物理原理。

下面将介绍几种常见的物体发光原理。

一、热辐射发光原理热辐射发光是指物体在高温下发出的光。

根据普朗克辐射定律,发光物体的光谱分布与温度有关。

当物体被加热到足够高的温度时,其分子和原子会发生跃迁,从而释放出能量,形成不同波长的光。

这就是我们常见的热辐射发光原理。

例如,太阳是一个典型的热辐射发光体。

太阳表面的温度约为6000摄氏度,高温使得太阳表面的氢、氦等气体分子和原子发生激发和跃迁,从而释放出大量的能量,形成各种波长的光线。

这些光线经过大气层的折射和散射,最终到达我们的眼睛,让我们看到明亮的阳光。

二、荧光发光原理荧光发光是指物体在特定条件下吸收光能后,再以较长的波长发射出光。

荧光物质通常是一种具有特殊结构的化合物,其分子内部存在能级跃迁的现象。

当荧光物质受到紫外线或可见光的激发时,其分子内部的电子会跃迁到高能级态,然后再返回到低能级态,释放出能量,形成荧光。

例如,我们常见的荧光灯就利用了荧光物质的发光原理。

荧光灯的内部涂有荧光粉,当电流通过荧光灯管时,电流激发荧光粉,使其发出可见光。

荧光灯的光谱主要集中在可见光范围内,因此能够有效地照明。

三、电致发光原理电致发光是指物体在电场或电流的作用下发出光。

这种发光原理主要应用于发光二极管(LED)和有机发光二极管(OLED)等器件中。

LED是一种能够将电能直接转化为光能的器件。

当电流通过LED器件时,电子和空穴在半导体材料中复合,释放出能量,产生光子,从而发出光。

LED的发光颜色由材料的能带结构决定。

OLED是一种利用有机材料的发光原理制造的器件。

当电流通过OLED器件时,有机材料中的电子和空穴复合,释放出能量,形成发光。

OLED具有自发光、色彩鲜艳、对比度高等特点,被广泛应用于显示器、电视屏幕等领域。

电致发光及场致发光器件OLED

电致发光及场致发光器件OLED
其他设备仪器仪表、手机、手表、电子钟、 LCD模块、笔记本电脑显示器等方面获得 应用。也作为交通安全标志,公司标志, 出口通道等发光指示牌上的发光显示器件。
5.3、OLED
图5.3 柯达L633数码相机显示屏
❖ 有机发光显示器(OLED)又称有机EL,是以有 机薄膜作为发光体的自发光显示器件。
❖ 它是固体自发光器件,可适应恶劣工作环境;它 响应时间短、发光效率高、视角宽、对比度高; 它可在5V~10V的低电压下工作,功耗低,工艺简 单;制造成本低、有机发光材料众多、覆盖发光 光谱从红外到紫外,适合全彩色显示;价廉、易 于大规模生产;OLED的生产更近似于精细化工 产品,可在塑料、树脂等不同的材质上生产,产 品的机械性能好,不仅可以制造出笔记本电脑、 台式机适用的显示器,还有可能创造出墙壁大小 的屏幕、可以弯曲折叠的屏幕。人们预言,随着 规模量产的到来,OLED可以比LCD成本低20%。
▪ 低能电致发光是指某些高电导荧光粉在低能电 子注入时的激励发光现象。
5.1、高场交流电致发光显示
图5.1 ACEL结构图
❖ 交流电致发光显示是目前高场电致发光显示的主 流。ACEL结构如图5.1所示。
❖ 它是将电致发光粉ZnS:CuCl或(ZnCd)S:CuBr 混合在环氧树脂和氰乙基醣的混合物的有机介质 中,两端夹有电极,其中一个为透明电极。另一 个是真空蒸镀铝或银电极,构成一个EL。
图5.2 ACTFEL结构示意图 1金属电极;2绝缘层;3发光层;4绝缘层;5透明电极;玻璃衬底
❖ACTFEL优点是寿命长(大于2万小时), 亮度高,工作温度宽(-55℃~+125℃), 缺点是只有掺Mn的发光效率高,且为橙黄 色,对全色显示要求三基色研制高效的发 光材料是当今研究的课题。EL器件目前已 被应用在背光源照明上,在汽车、飞机及

OLED有机电致发光材料与器件

OLED有机电致发光材料与器件

OLED有机电致发光材料与器件摘要本文概述了OLED的发展简史,并简单介绍了OLED有机电致发光器件的基本结构与发光机理。

此外,还对比了OLED与PLED,这两种系列材料只是材料特性和成膜方法不同,本质上却无异。

相较于LCD,OLED具有很大优势,但仍面临寿命短等技术瓶颈。

随着研发力度的加大,其技术瓶颈将会被逐渐解决,可以预见在未来的显示市场,OLED必将是绝对主流产品。

关键词:有机电致发光器件;OLED显示器OLED (Organic Light Emitting Device)全名叫做有机电致发光器件,是指有机半导体材料和发光材料在电场驱动下,通过载流子注入和复合导致发光的现象。

其原理是用ITO透明电极和金属电极分别作为器件的阳极和阴极,在一定电压驱动下,电子和空穴分别从阴极和阳极注入到电子和空穴传输层,电子和空穴分别经过电子和空穴传输层迁移到发光层,并在发光层中相遇,形成激子并使发光分子激发,后者经过辐射弛豫而发出可见光。

辐射光可从ITO一侧观察到,金属电极膜同时也起了反射层的作用。

根据这种发光原理而制成显示器被称为有机发光显示器,也叫OLED显示器[1]。

1.OLED有机电致发光显示器件的发展简史1963年New York University的Pope[2]等第一次发现有机材料单晶蒽的电致发光现象。

1982年Vincett[3]的研究小组制备出厚度0.6 蒽的薄膜,并观测到电致发光。

1987年Kodak公司的邓青云等采用了夹层式的多层器件结构,开创了有机电致发光的新的时代[4]。

1990年,英国剑桥大学Cavendish实验室的Burroghes[5]等人首次采用共轭聚合物聚对苯撑乙烯(PPV,polyphenylene vinylene)制作了高分子发光二极管,简化了制备工艺,开辟了发光器件的又一个新领域—聚合物薄膜电致发光器件。

1997年,Princeton Univ. Forrest S R的小组发现磷光的有机电致发光材料,使得有机电致发光器件的内量子效率可能到达100%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

场致发光(EL)按激光发过程的不同分为二大类:
(1)注入式电致发光:直接由装在晶体上的电 极注入电子和空穴,当电子与空穴在晶体内再复 合时,以光的形式释放出多余的能量。注入式电 致发光的基本结构是结型二极管(LED); (2)本征型电致发光:又分为高场电致发光与 低能电致发光。其中高场电致发光是荧光粉中的 电子或由电极注入的电子在外加强电场的作用下 在晶体内部加速,碰接发光中心并使其激发或离 化,电子在回复到基态时辐射发光。
高场电致发光的机制存在许多有趣的物理 问题,最近仍在不断的探讨,它与EL材料 中的电子在高电场下作用下的加速产生热 电子,热电子碰撞ZnS格使之离化产生电子 空穴对,当电子重新被这些离化的施主和 受主俘获时,产生复合发光,也可以通过 热电子直接碰撞发光中心发光(如ZnS基质 发光材料中的施主-受主对,或掺杂的Mn2+, 或一些三价稀土离子),电子空穴对的复 合能量也可以直接传递给发光中心而发光。
2、高场薄膜电致发光(TFEL)
目前的ACTFEL多采用双绝缘层ZnS:Mn薄 膜结构。器件由三层组成,如图2所示。 器件由三层组成,发光层夹在两绝缘层间, 起消除漏电流与避免击穿的作用。 掺不同杂质则发不同的光,其中掺Mn的发 光效率最高,加200V,5000Hz电压时,亮 度高达5000cd/m2。 ACTFEL具有记忆效应,通常室内光照度下, 记忆可维持几分钟,在黑暗中可保持十几 个小时。
3、OLED
图3 柯达L633数码相机显示屏
有机发光显示器(OLED)又称有机EL,是以有 机薄膜作为发光体的自发光显示器件。 它是固体自发光器件,可适应恶劣工作环境;它 响应时间短、发光效率高、视角宽、对比度高; 它可在5V~10V的低电压下工作,功耗低,工艺简 单;制造成本低、有机发光材料众多、覆盖发光 光谱从红外到紫外,适合全彩色显示;价廉、易 于大规模生产;OLED的生产更近似于精细化工 产品,可在塑料、树脂等不同的材质上生产,产 品的机械性能好,不仅可以制造出笔记本电脑、 台式机适用的显示器,还有可能创造出墙壁大小 的屏幕、可以弯曲折叠的屏幕(图4)。人们预言, 随着规模量产的到来,OLED可以比LCD成本低 20%。
图2 ACTFEL结构示意图 1金属电极;2绝缘层;3发光层;4绝缘层;5透明电极;玻璃衬底
记忆效应可以解释为:脉冲电压产生强电场,使 发光层中电子加速。在这些电子穿过发光层时, 激发锰发光中心。已穿过发光层的电子便在发光 层与绝缘层的界面上积累起来,这些电子在电场 移去后仍将留在界面处,于是在发光层两边形成 极化电荷。如果下一个脉冲与上一个脉冲同方向, 则极化电场将抵消脉冲电压产生的电场的大部分, 所以发光亮度变小。反过来,如果下一脉冲方向 反转,则极化电场与脉冲电压产生的电场叠加, 总电场变大,所以发光亮度增加。利用记忆效效 可以制成具有灰度级的记忆板,作为视频显示板 用的记忆板能够具有帧储存的能力。
ACTFEL优点是寿命长(大于2万小时), 亮度高,工作温度宽(-55℃~+125℃), 缺点是只有掺Mn的发光效率高,且为橙黄 色,对全色显示要求三基色研制高效的发 光材料是当今研究的课题。EL器件目前已 被应用在背光源照明上,在汽车、飞机及 其他设备仪器仪表、手机、手表、电子钟、 LCD模块、笔记本电脑显示器等方面获得 应用。也作为交通安全标志,公司标志, 出口通道等发光指示牌上的发光显示器件。
本征型电致发光种类繁多,大致分成:
交流粉末电致发光(ACEL); 直流粉末电致发光(DCEL); 交流薄膜电致发光(ACTFEL); 直流薄膜电致发光(DCTFEL)。 低能电致发光是指某些高电导荧光粉在低能电子 注入时的激励发光现象。
1、高场交流电致发光显示
图1 ACEL结图
交流电致发光显示是目前高场电致发光显示的主 流。ACEL结构如图1所示。 它是将电致发光粉ZnS:CuCl或(ZnCd)S:CuBr 混合在环氧树脂和氰乙基醣的混合物的有机介质 中,两端夹有电极,其中一个为透明电极。另一 个是真空蒸镀铝或银电极,构成一个EL。 实质上,ACEL是大量几微米到几十微米的发光粉 状晶体悬浮在绝缘介质中的发光现象,也称德斯 垂效应。ACEL所加的电压通常为数百伏。ACEL 是晶体内的发光线发光,不是体发光。线发光强 度可达3.4×105cd/m2,总体发光亮度约40cd/m2 功率转换效率为1/%,寿命约1000小时。
电致发光及场致发光器件 ——OLED
小组组员:
Y003091047 李 朋 Y00309 1045 刘 忠 儒 Y003091 046 王 博 琳 Y00309 1044 白 秋 飞
电致发光及场致发光器件(OLED)的发展
1920年德国学者古登和波尔发现,某些物质加上 电压后会发光,人们把这种现像称为电致发光或 场至发光(EL)。 1936年,德斯垂将ZnS荧光粉浸入蓖麻油中,并 加上电场,荧光粉便能发出明亮的光。 1947年美国学者麦克马斯发明了导电玻璃,多人 利用这种玻璃做电极制成了平面光源,但由于当 时发光效率很低,还不适合作照明光源,只能勉 强作显示器件。 70年代后,由于薄膜技术带来的革命,薄膜晶体 管(TFT)技术的发展场致发光(EL)在寿命、 效率、亮度、存储上的技术有了相当的提高。使 得场致发光(EL)成为三在显示技术中最有前途 的发展方向之一。
图4 可以卷起来的显示器
图5 典型双异质结结构
OLED已成为当今超薄、大面积平板显示器件研究的热门。 1963年Pope发表了世界上第一篇有关OLED的文献,当时 使用数百伏电压,加在有机芳香族Anthracene(葸)晶体 上时,观察到发光现象。但由于电压过高,发光效率低, 未得到重视。 直到1987年伊士曼柯达公司的C.W. Tang及Steve Van Slyke等人发明以真空蒸镀法制成多层式结构的的OLED器 件后,研究开发才活越起来。同年,英国剑桥大学开文迪 施实验室的Jeremy Burroughes证明高分子有机聚合物也 有电致发光效应。 1990年英国剑桥大学的Friend等人成功的开发出以涂布方 式将多分子应用在OLED上,即Polymer(多聚物,聚和物) LED,亦称PLED。不但再次引发第二次研究热潮,更确立 了OLED在二十一世纪产业中所占的重要地位。
相关文档
最新文档