气溶胶化学与物理1
气溶胶

影响人体健康
凝聚过程、化学反应 湿度小的时后有吸水性, 其它方面与烟效应相同
三、气溶胶源和汇 --气溶胶来源
天然源、人为源
(按颗粒物形成机制)气溶胶
一次气溶胶粒子、二次气溶胶粒子 一次气溶胶粒子
天然污染源和人为污染源释放。
二次气溶胶粒子
大气污染气体组分(如二氧化硫、氮氧化物、碳氢化合物等)之间, 或与大气中的正常组分(如氧气)之间通过光化学氧化反应、催化氧化 反应或其它化学反应转化生成的颗粒物。
表面积分布曲线(峰值 ) 0.25m
大气颗粒物的粒度:即艾根核模、积聚模和粗粒模。
由蒸汽凝结或光化学反应使气体经成核作用而形成的颗粒,粒 度为0.005~0.05m,属于核模型。
粒径在0.05~2m范围的颗粒物是由核模型颗粒凝聚或通过蒸气 凝结气而长大的,属于积聚模型。
以上颗粒物合称为细粒(小于2m)
10
气溶胶源和汇—气溶胶天然来源
一次气溶胶粒子天然源 地面扬尘(风吹灰尘)、海浪浪沫、火山爆发喷出物、
森林火灾燃烧物、陨星尘及生物界产生的颗粒物,如花粉、 袍子等。
二次气溶胶粒子天然源
森林排出碳氢化合物(主要是萜烯类)--光化学反应--产生微小 颗粒;与自然界硫、氮、碳循环有关的转化产物如由H2S、SO2经氧 化生成的硫酸盐;由NH3、NO和NO2氧化生成的硝酸等。
一 气溶胶粒子成核过程
SO2转化成硫酸或硫酸盐气溶胶的过程如下: 1. SO2气体的氧化g) mH 2SO4 nH2O
3.粒子成长过程
mH 2SO4 nH2O H 2SO4 其它气体、固体微粒 硫酸盐粒子
(液相硫酸雾核)
粒子(液体)
(固体)
二、气溶胶的分类
根据颗粒物的物理状态不同,可将气溶胶分为以下三类: ✓ 固态气溶胶——烟和尘; ✓ 液态气溶胶——雾;
大气科学中的大气化学和气溶胶物理

大气科学中的大气化学和气溶胶物理大气科学是研究地球大气现象的学科,主要包括大气物理、大气化学、大气动力学和气象学等领域。
其中,大气化学和气溶胶物理是大气科学中非常重要的研究领域,它们对于理解大气污染、气候变化和生态环境等方面都具有巨大的意义。
大气化学是研究大气中化学反应和物质输运的学科,它主要研究大气组成、化学反应、污染物的形成和转化、大气环境中的化学平衡等问题。
大气化学的研究内容非常广泛,在大气环境中,大气化学过程既有自然形成的化学反应和物质输运,也有人为污染物的排放和大气中的化学反应。
大气化学的研究成果对于解决大气污染问题和改善大气环境意义重大。
气溶胶物理是研究大气中气溶胶物理化学性质和对气候变化的影响的学科,主要涉及气溶胶的来源、物理化学性质、组成结构和光学特性等。
气溶胶是指悬浮在大气中的液体或固体微小颗粒,对于大气的辐射平衡、空气污染、气候变化和人类健康都具有重要影响。
在大气科学中,大气化学和气溶胶物理研究的实验方法和分析技术都非常复杂和细致。
通常需要采集和分析大量的大气样品,包括气体和气溶胶等,同时需要借助高级仪器和设备如质谱仪、光谱仪、拉曼仪等进行分析。
大气化学和气溶胶物理研究非常跨学科,需要多个学科的专业知识和技能,如化学、物理、材料科学、环境科学等。
大气化学和气溶胶物理的研究对于我们了解大气环境的复杂性和多样性非常有帮助。
通过揭示大气化学反应和气溶胶的物理化学特性,我们可以更好地了解大气污染的成因和特点,有利于制定和实施更加有效的大气污染防治和治理措施。
同时,气溶胶对于大气的辐射平衡和气候变化有重要影响,通过研究气溶胶物理,可以更好地了解气候变化规律和趋势,有助于我们制定更加准确的气候预测和气候变化应对策略。
总之,大气科学中的大气化学和气溶胶物理是非常重要的学科,它们对于我们了解和改善大气环境,探究气候变化规律,保护生态环境等方面都具有巨大的意义。
相信在未来的研究中,大气化学和气溶胶物理领域的研究会越来越深入,为人类的生存和发展做出更大的贡献。
气溶胶的基本特征课件

THANKS
感谢观看
改变云的形成和降水过程
01
影响地面对太阳辐射的吸收和反射
02
增加温室效应
03
对空气质量的影响
降低能见度
增加大气污染
形成光化学烟雾
对人类健康的影响
呼吸系统疾病 心血管系统疾病 增加死亡率
05
气溶胶的监测与测量方法
监测站点布局与采样方法
监测站点布局
采样方法
气溶胶测量仪器与技术
仪器
气溶胶测量仪器包括颗粒物计数器、粒子质量浓度测量仪、气溶胶质谱仪等。这 些仪器可以测量不同物理和化学性质的气溶胶,如颗粒物大小、成分和数量浓度 等。
06
气溶胶的控制与减排策略
减少排放源的措施
工业生产
控制工业生产过程中的废弃物排放,推广清洁生产技术,降低气 溶胶颗粒物产生。
能源利用
优化能源结构,减少燃煤和燃油使用,发展清洁能源,降低硫氧 化物、氮氧化物等气溶胶前体物的排放。
农业活动
推广有机肥和低毒农药使用,减少土壤和农作物中气溶胶颗粒物 的产生和排放。
控制大气中已有的气溶胶的措施
颗粒物排放控制
大气中已有气溶胶的去除
发展新型的气溶胶控制技术
新材料应用
研发新型材料,降低气溶胶颗粒物的产 生和排放,如低散发材料、水性涂料等。
VS
技术创新
推动清洁能源技术创新,提高能源利用效 率,减少气溶胶颗粒物的排放。如发展高 效、低成本的清洁能源转换技术、废弃物 资源化利用技术等。
气溶胶的性 质
物理性质
化学性质 环境影响
02
气溶胶的物理特性
粒子尺寸分布
气溶胶粒子大小通常在0.1-100 微米之间,其中大部分粒子在1-
分析气溶胶的形成和物理性质

分析气溶胶的形成和物理性质气溶胶是由固体或液体微粒悬浮在气相中的复杂混合物。
它们的来源包括天然和人工的过程,如火山喷发、森林火灾、工业排放、机动车辆尾气等。
气溶胶对公共健康和环境有着重要的影响,因为它们能够吸收或反射太阳辐射,影响地球能量平衡和气候,同时也能够对呼吸系统等产生负面影响。
本文将介绍气溶胶的形成机制和物理性质,为进一步了解气溶胶的环境影响提供更深入的理解。
一、气溶胶的形成机制气溶胶形成主要分为两种机制:核化和凝聚。
核化是指气态物质原子或分子自由组合形成稳定的固体或液体微粒的过程。
例如,大气中的氧、硫和氮等元素能够通过光和化学反应形成具有一定大小的微粒,成为大气气溶胶的一部分。
凝聚是指气溶胶微粒之间的相互作用力超过它们之间的热运动能量时,微粒彼此凝聚形成更大的微粒的过程。
这种过程可能是由于物理或化学作用导致的。
二、气溶胶的物理性质气溶胶化学和物理性质的复杂性导致了它们影响因素的巨大不确定性。
然而,它们的一些物理性质可以通过实验测量和数学模型进行研究。
大小和形状:气溶胶微粒的大小和形状可以对其行为和环境影响产生重要影响。
较小的微粒可以更容易地穿过人体呼吸系统并进入肺部,从而可能对健康造成负面影响。
形状和表面特性也与气液界面能量有关。
成分:气溶胶的成分对其环境化学和物理性质产生关键影响。
它们的化学成分取决于它们的来源。
例如,来自森林火灾的气溶胶中能够检测到碳和有机污染物,而来自工业排放的气溶胶中则可能含有重金属和硫酸盐等化学成分。
光学性质:气溶胶对太阳辐射的吸收和散射能够影响大气能量平衡和气候。
气溶胶的反射能力、散射角度和发散性不同,导致它们的光学性质也不同。
结论气溶胶的物理性质和影响因素非常复杂。
需要通过实验和数学模型的结合来建立气溶胶的化学和物理特征,进一步研究它们对公共卫生和环境的影响。
希望通过深入研究气溶胶,为缓解大气污染和气候变化等问题提供更有效的解决方案。
气溶胶物理与化学特性研究

气溶胶物理与化学特性研究一、气溶胶的概念和来源气溶胶,简单来说就是指空气中的悬浮物质。
这些物质非常小,一般都在0.01-10微米之间。
它们可以来自于不同的源头,比如工业废气、汽车尾气、露天焚烧等。
另外,还有一些气溶胶是自然界中形成的,比如海盐、沙尘、植物花粉等等。
二、气溶胶的物理特性1.粒径分布气溶胶的颗粒大小对其物理特性有着非常大的影响,因为颗粒大小不同,其在空气中的运动方式也不同。
一般来说,气溶胶的颗粒大小越小,越容易被悬浮在空气中,也越容易被吸入到人体内部。
2.相对湿度的影响气溶胶的物理特性还受到相对湿度的影响。
当相对湿度较高时,气溶胶中的水分子会充分吸收空气中的水分,使得颗粒变得更加稳定,也更容易被人体吸入。
3.电荷特性气溶胶的颗粒表面带有电荷,这些电荷的性质对颗粒的物理特性也有很大的影响。
比如说,负电荷的颗粒更容易聚集在一起,形成更大的颗粒,而正电荷的颗粒则更容易被空气中的负离子吸引并沉积下来。
三、气溶胶的化学特性1.组分分析气溶胶的化学特性主要表现在其组分的分析上。
根据不同的来源和环境,气溶胶中的成分可以有非常大的差异。
其中有些成分是重金属、有机物等毒性较大的物质,对人体健康造成的危害也更加严重。
2.化学反应气溶胶在大气中还会参与各种化学反应,从而产生不同的化学物质。
比如说,氮氧化物和挥发性有机物在光照、湿润的条件下可以相互反应,形成臭氧和一氧化碳等有害物质。
四、气溶胶的研究方法1.化学分析方法气溶胶的组分分析主要依靠现代化学分析技术,比如说气相色谱-质谱联用技术,能够非常精确地检测出气溶胶中的各种成分,并对其化学特性进行详细的研究和分析。
2.物理测量方法气溶胶的物理特性研究主要依靠物理测量技术,比如说激光粒径仪、光散射仪等。
通过这些测量手段,可以更加准确地确定气溶胶的颗粒大小、数目和浓度等特性。
五、气溶胶物理与化学特性研究的重要性气溶胶对环境和健康造成的影响非常大,因此对其物理和化学特性进行深入的研究对于环境污染监测和人体健康保护都有着非常重要的意义。
气溶胶的关键物理化学特性探究

气溶胶的关键物理化学特性探究气溶胶是指大气中悬浮的微粒状物质,其颗粒直径通常小于10微米。
气溶胶对全球气候变化、大气污染和健康状况等方面都会产生深远的影响,因此对气溶胶的特性进行探究具有重要意义。
气溶胶的成因气溶胶的成因极为复杂,包括自然因素和人为因素两部分。
自然因素主要涉及火山喷发、沙尘暴、森林火灾等,而人为因素则包括工业排放、机动车尾气、农业活动等。
气溶胶由于来源的多样性,在成分、形态、大小等方面也存在着很大的差异性。
气溶胶的物理特性气溶胶的物理特性表现为光学特性、机械特性、热学特性等方面。
其中光学特性是较为突出的一个特点。
气溶胶的粒径决定了其对光的散射、吸收及透过的能力,因此,气溶胶的光学性质是反映其物理特性的重要指标之一。
气溶胶的化学特性气溶胶的化学特性表现为其组成成分及含量的不同,涉及到无机物、有机物等方面。
无机物主要包括硫酸盐、硝酸盐、铵盐等,而有机物则包括多环芳烃、脂肪酸、醇酸等。
气溶胶的化学成分对其环境效应有着至关重要的影响。
气溶胶的对环境的影响气溶胶对全球气候变化、大气污染、健康状况等方面产生着重要的影响。
气溶胶通过反射、吸收、散射、辐射等方式影响着大气中的辐射平衡,从而影响全球气候的变化。
例如,黑碳是气溶胶的一种,它的存在对全球气候变暖有着重要贡献。
气溶胶对于大气污染形成、发展,起着十分重要的作用。
气溶胶可以促进二次污染的形成。
例如,氮氧化物和挥发性有机物在大气中光化反应形成气相氧化物,这些气相氧化物可以在气溶胶表面吸附和反应产生二次污染。
气溶胶对健康状况也会产生很大的影响。
气溶胶中存在的有害物质对空气质量和人体健康产生危害。
例如,PM2.5的存在不仅会影响人类的呼吸系统,还会对人类的心血管系统产生不利影响。
结语气溶胶是大气中不可缺少的一个组成部分。
对气溶胶的物理化学特性进行深入研究,对于深入了解其环境效应、制定科学合理的环保政策有着重要的意义。
气溶胶灭火原理

气溶胶灭火原理
气溶胶灭火技术是一种新型的灭火方式,它利用微小的气溶胶颗粒来扑灭火灾,具有快速、高效、安全等优点,逐渐受到人们的关注和重视。
那么,气溶胶灭火的原理是什么呢?
首先,我们需要了解气溶胶是什么。
气溶胶是由固体或液体微粒悬浮在气体中
而形成的混合物,其粒径范围一般在0.001~100微米之间。
在气溶胶灭火技术中,
气溶胶颗粒的大小对灭火效果有着重要的影响。
较小的颗粒能够更快速地扩散到火灾现场,与火焰和热量发生作用,从而达到灭火的目的。
其次,气溶胶灭火的原理主要包括物理灭火和化学灭火两种方式。
物理灭火是
指气溶胶颗粒在火灾现场与火焰和热量发生作用,通过吸热和降温的方式将火焰和热量消除,从而达到灭火的效果。
而化学灭火则是指气溶胶颗粒中的化学成分与火焰中的自由基和自由基链反应发生作用,抑制火焰的燃烧过程,从而达到灭火的效果。
此外,气溶胶灭火技术还具有对多种火灾类型的适用性。
不同于传统的灭火方式,气溶胶灭火技术可以用于固体火灾、液体火灾、气体火灾以及电气设备火灾等多种场景,具有灵活性和多功能性的特点。
在实际应用中,气溶胶灭火技术还具有一些独特的优势。
首先,它可以在火灾
初期就进行灭火,有效控制火势蔓延,减少火灾造成的损失。
其次,气溶胶灭火设备体积小、重量轻,便于携带和操作,适用于各种场所和环境。
此外,气溶胶灭火技术不会对人体和环境造成危害,是一种绿色环保的灭火方式。
总的来说,气溶胶灭火技术是一种高效、安全、灵活的灭火方式,具有广阔的
应用前景。
随着科技的不断发展和进步,相信气溶胶灭火技术将会在未来的灭火领域发挥越来越重要的作用。
气溶胶

气溶胶灭火系统近年楼下作为哈龙替代技术之一的所了溶胶灭火技术发展较快,国内外研究人员对各类气溶胶及其应用技术进行了大量有效的研究、开发、并取得一定成果。
1.气溶胶分类气溶胶是指液体或固体的微细颗粒悬浮于气体介质中的一种物质。
按气溶胶悬浮物质存在的不同状态,可分为:分散性和凝聚性两类。
1.1分散性气溶胶(冷气溶胶)分散性气溶胶是通过固体或液体的雾化形成的,这种气溶胶在气溶胶灭火剂释放之前,气体介质和被分散介质是分别稳定存在的。
气溶胶灭火剂的释放即是气体分散液体或固体灭火剂,形成气溶胶的过程。
这种气溶胶属于非高温技术气溶,通常称“冷气溶胶”,主要包括细水雾灭火技术和超细干粉灭火技术。
1.2凝聚性气溶胶(热气溶胶)凝聚性气溶胶是通过过热蒸气的凝聚或气相中的化学反应形成的。
这种气溶胶灭火剂在反应前是以化学物质混合物的固体形态存在。
气溶胶灭火剂的释放是靠自身的燃烧反应,反应产物中既有固体又有气体,气体分散固体形成气溶胶。
这种气溶胶属于高温技术气溶胶,通常称“热气溶胶”。
目前我国消防行业的气溶胶产品都属热气溶胶范畴。
2.热气溶胶灭火剂的组成热气溶胶灭火剂的配方和工艺采用了固体火箭推进剂的原理,由氧化剂、还原剂和粘合物结合组成含能灭火剂。
3.气溶胶的灭火机理气溶胶的灭火机理是通过燃烧反应生成大量固体微粒气溶胶,这种微粒在火焰中可以熔化、气化和分解来吸热降温;还可以干预火焰燃烧链反应,终止火焰燃烧,起负催化作用。
4.气溶胶的安全性4.1气溶胶的温度由于第一代产品的影响,有人把降低气溶胶的温度作为主要问题,甚至以气溶胶出口处温度的高低作为衡量产品质量的主要指标,其实热气溶胶的特征之一就是温度,要把热气溶胶的温度降到很低甚至达到室温是不现实的。
因为要降低热气溶胶出口温度就必须采取降温措施,不管是采取物理方法还是用化学方法,都会在一定程度上影响灭火效率。
现出口处温度一般为不大于250℃。
4.2工作压力热气溶胶灭火剂是一种固体燃料混合物,平时常压贮存。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不同粒径气溶胶对人体健康的危害
气溶胶的大小表征
1. 2. 3. 球形气溶胶的几何直径dp 体积等效直径 dve 光学等效直径 所研究的不规则形状粒子与直径为doe的球形粒子具有相同的 光散射能力,则定义doe为所研究粒子的光学等效直径。应该 指出的是,此定义只适用于粒子群的统计特征;粒子的光散射 能力与光波波长有关,一般以0. 55 μm绿光为标准来定义光学 等效直径。
• 分子热运动速度为Maxwell-Boltzmann分布, 其平均值为
单位时间内分子碰撞次数zm
• 相对运动速率
• 单位时间某个分子经过的 圆柱体内分子的数目
大气标准状况下分子平均自由程和 气溶胶纽森数
• 标准大气(1013 hPa压力和293 K温度)
• 对于10nm颗粒物,纽森数为13,自由分子态 • 对于1000nm颗粒物,纽森数为0.13,连续态 • 通常的大气颗粒物在两者之间的过渡态
空气动力学直径和体积等效直径的 关系
• 在连续态(大颗粒物),Cc约等于1 • 在自由分子态(小颗粒), • 此时da又称为真空空气动力学直径
电迁移率直径dm
电迁移率直径dm
• 静电末速VTE: 在电场中电场力与摩擦阻力相等时颗粒物的速度
• 电迁移率直径dm:同一电场中与被研究颗粒物具有相同电迁移速 率的球体的直径。直径相同的球体,带电荷不一样,dm不一样。 仅当与参考球体带有相等电荷时,其dm与dve相等。
Cunningham滑流修正系数
球形颗粒物的沉降末速
• 重力等于摩擦力时的恒定速度
大气中颗粒物的沉降末速
• 压力决定平均分子自由程,进而决定纽森数和 Cunningham修正系数 • 大颗粒物在连续态时Cc约等于1,VTS几乎跟压力无关 • 小颗粒在自由分子态,VTS˜1/p
修正非球形颗粒物所受到的阻力
归趋
– 碰并成大粒子,进入积聚模态(老化)
积聚模(condensation mode/droplet mode)
来源
– 燃烧过程所产生的蒸气冷凝、凝聚,以及由大气化 学反应所产生的各种气体分子转化成的二次气溶胶
归趋
– 碰并减弱,不易沉降和扩散去除 – 云中过程分化出condensation mode 和droplet mode
气溶胶形态和主要形成特征
3. 按气溶胶粒径大小分
总悬浮颗粒物(total suspended particulates或TSP):用标准大容量采样器(流量在1.1一1.7 m3/min)在滤
膜上所收集到的颗粒物总质量,通常称为总悬浮颗粒物。它是分散在大气中的各种粒子的总称,也
是大气质量评价中一个通用的重要污染指标。其粒径绝大多数在100 μm以下,多数在10 μm以下。 飘尘:可在大气中长期飘浮的悬浮物。主要是粒径小于10 μm的颗粒物。飘尘粒径小,能被人直接吸 入呼吸道内造成危害,其在大气中长期飘浮,易将污染物带到很远的地方,使污染范围扩大,同时 在大气中还可为化学反应提供反应床。因此,飘尘是最受人们关注的研究对象之一。 降尘:用降尘罐采集到的大气颗粒物。在总悬浮颗粒物中属粒径大于30 μm的粒子,由于其自身的重 力作用会很快沉降下来,所以将这部分微粒称为降尘。单位面积的降尘量可作为评价大气污染程度 的指标之一。 可吸入颗粒物(inhalable particles , IP)或PM10: 根据可进入呼吸道的粒径范围,把粒径Dp<10 μm的粒子 称为可吸人粒子。PM10是指粒径Dp 小于10 μm颗粒物的质量浓度。 细粒子(fine particle)或PM2.5: 根据气溶胶粒子的组成及来源随着粒径大小而明显不同的特点,也可 将气溶胶粒子分为细粒子(粒径Dp >2. 5 μm)和粗粒子(粒径DP >2.5 μm)两大类。PM2.5是指粒径Dp≤ 2.5 μm颗粒物的质量浓度。
4. 空气动力学直径
气体中颗粒物的运动
• 连续态(continuum regime)、自由分子态(kinetic regime) 和过渡态(transition regime) • 纽森数 Knudsen number (Kn):气态分子平均自由程与颗 粒物直径的比值
平均自由程
• 分子连续两次碰撞之间经过的平均距离 (=分子平均热运动速度/单位时间内分子碰 撞次数)
大气气溶胶的形貌
气溶胶的分类
1. 按颗粒物成因 一次气溶胶(primary aerosol ):由排放源直接排放到大气中 的颗粒物。 二次气溶胶(secondary aerosol):在大气中通过与气体组分的 化学反应生成的颗粒物。 2. 按颗粒物的物理状态 (1) 固态气溶胶:如烟和尘。烟是指燃烧过程产生的或燃 烧产生的气体通过转化形成的粒径小于1 μm 粒子;尘是 指通过各种碎裂过程而直接产生的粒径小于1 μm固体粒 子。 (2)液态气溶胶:如雾。 (3)固液混合态气溶胶:如烟雾( smog=smoke+fog),烟雾微 粒的粒径一般小于1 μm
颗粒物在流体中所受到的摩擦阻力
• 颗粒物在层流中,满足stokes定律
• 对于小于1 μm的小颗粒物,湍流状态,必 须做Cunningham滑流修正。 • Cc与纽森数有关,也即与颗粒物粒径有关
Cunningham滑流修正系数
• 参数化经验公式
• 当Kn趋近于0时,连续态, • 当Kn趋近于无穷时,自由分子态,
气溶胶化学与物理
环境科学与工程学院C510 余老师 2046376331@
课程基本情况
• 课程类别:学科基础课程
• 基础课程:物理化学,大气环境学,大学 化学,有机化学,流体力学 • 课程学分:2 学分 • 课程总学时: 32 学时,其中讲课:30学时, 考试 2学时 • 开课学期:第3学期
内容与课时安排
一、绪论(概念、分类、粒径分布、浓度、对人 体健康的危害) 二、气溶胶化学成分 三、气溶胶热力学基础 四、气溶胶生命周期(成核、凝结、碰并、激发、 沉降) 五、气溶胶表面非均相化学 六、气溶胶水相和液滴中的液相化学 七、气溶胶测量分析技术
一、绪论
• 大气污染物 气态+气溶胶颗粒 • 气溶胶定义 液体或固体微粒均匀地分散在气体中形成 的相对稳定的悬浮体系。所谓液体或固体微粒, 通常称为颗粒物或粒子( particles ),是指空气 动力学直径为0. 003-100 μm的液滴或固态粒子。 该粒径范围的下限来自目前能测出的最小尺度; 上限则相应于在空气中不能长时间悬浮而较快 降落的尺度。 1 m=103 mm=106 μm=109 nm
大气气溶胶谱分布函数的经验描述
• 总浓度 • 平均粒径 • 方差σ
对数正态分布
以对数正态分布表示 实际大气粒径分布
典型大气气溶胶三个模态的参数
气溶胶粒子的三模态及形成机制
实际大气的三模态分布
核模(Nucleation mode/Aitken mode)
来源
– 燃烧过程所产生的一次气溶胶 – 化学反应均相成核
研究大气气溶胶的意义
1. 气溶胶直接参与大气中云的形成和湿沉降(雨、 雪、冰和雾等)过程; 2. 当太阳光通过大气时,气溶胶粒子能够散射 或吸收太阳光,使大气能见度降低,削弱太 阳辐射,进而改变环境温度和植物的生长速 率; 3. 大气中的化学反应提供了良好的反应床,气 态污染物的最终归宿; 4. 气溶胶粒子通过呼吸道进人人体时,部分粒 子可以附着在呼吸道上,甚至进入肺部沉积 下来,直接影响人的呼吸,危害人体健康。
• 以上公式针对球形颗粒物。实际大气气溶 胶一般不是球形 • 动力学形状系数dynamic shape factor χ • 非球形颗粒物所受到的阻力为同体积球形 颗粒物受到的阻力乘以χ
• 体积等效直径dve
典型形状物体和颗粒物的动力学形 状系数
χ一般大于1
空气动力学直径和stokes直径
• Stokes直径ds:一个颗粒物的stokes直径定义 为与该颗粒物有相同密度和沉降速度的球 形颗粒物的直径 • 空气动力学直径da:一个颗粒物的da定义为 与该颗粒物有相同沉降速度的密度为1 g/cm3的球形颗粒物的直径
学习目标与任务
本课程的学习目标是掌握大气气溶胶的基础 知识、物理和化学特性、气溶胶在大气环 境污染形成过程中起着重要作用、基本测 量方法,了解气溶胶中有害物质对大气环 境的影响及对人类的危害。
参考书目
1. 大气环境化学(第二版),唐孝炎,张远航,邵敏主编, 2006年,高等教育出版社。 2. Atmospheric Chemistry And Physics: From Air Pollution To Climate Change, Second Edition, John H. Seinfeld, Spyros N. Pandis著 3. 气溶胶测量原理、技术及应用(第二版),(美) 巴伦,(美)维勒克编著,白志鹏等译 4. Basic Physical Chemistry for the Atmospheric Sciences, 2nd Edition, Peter V. Hobbs, 2000年出版 5. Introduction to Atmospheric Chemistry, Peter V. Hobbs, 2000年出版
• dm与真空空气动力学直径的关系
气溶胶的粒径分布的表示方法
同一群颗粒物,不同仪器测量粒径范围不同。若以粒子浓度作为纵坐标:
以dN/d(dp)作为纵坐标
• 两台仪器 测量粒径 不同,得 到的粒径 分布一样
气溶胶的粒径谱分布函数
气溶胶数浓度分布函数
气溶胶表面积浓度分布函数
气溶胶体积浓度分布函数
基于对数的谱分布函数
粗粒子模态
来源
– 粗粒子模主要来源于机械过程所造成的扬尘、海盐溅 沫、火山灰和风砂等一次气溶胶粒子。这种粒子的化 学成分与地表土的化学成分相近,而且各地区的平均 值变化不大。