(完整word版)高中数学必修2知识点总结归纳整理

合集下载

数学必修二知识点归纳

数学必修二知识点归纳

数学必修二知识点归纳一、函数的概念与性质1. 函数的定义:函数是从一个集合(称为定义域)到另一个集合(称为值域)的映射,每个定义域中的元素都有一个唯一的值与之对应。

2. 函数的表示方法:常用f(x) = y,其中x是自变量,y是因变量。

3. 函数的性质:包括单调性、奇偶性、周期性和有界性等。

- 单调性:函数在某个区间内单调递增或递减。

- 奇偶性:函数可能是奇函数(f(-x) = -f(x))或偶函数(f(-x) = f(x))。

- 周期性:函数如果存在一个非零常数T,使得对于所有x都有f(x + T) = f(x),则称函数具有周期T。

- 有界性:函数的值在某个范围内,即存在上界和下界。

二、基本初等函数1. 幂函数:形如y = x^n的函数,其中n是实数。

2. 指数函数:形如y = a^x的函数,其中a > 0且a ≠ 1。

3. 对数函数:形如y = log_a(x)的函数,其中a > 0且a ≠ 1。

4. 三角函数:包括正弦函数、余弦函数、正切函数等。

- 正弦函数:y = sin(x)- 余弦函数:y = cos(x)- 正切函数:y = tan(x)三、函数的图像与变换1. 函数图像的绘制:通过坐标系中的点来表示函数的图像。

2. 函数的平移:包括水平平移(左加右减)和垂直平移(上加下减)。

3. 函数的伸缩:包括水平伸缩(y = af(x))和垂直伸缩(y =f(bx))。

4. 函数的对称性:函数图像关于x轴、y轴或原点的对称性。

四、函数的应用1. 实际问题的建模:将实际问题转化为函数关系式进行求解。

2. 最值问题:求解函数的最大值和最小值。

3. 函数的复合:两个或多个函数的组合,如(f ∘ g)(x) = f(g(x))。

五、极限与连续性1. 极限的概念:描述函数在某一点附近的行为。

2. 极限的性质:包括唯一性、局部有界性、保号性等。

3. 连续函数:在定义域内任意一点都连续的函数。

(word完整版)高中数学必修2知识点总结归纳整理,文档

(word完整版)高中数学必修2知识点总结归纳整理,文档

高中数学必修二·空间几何体空间几何体的结构棱柱定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如'B'C'D'E'五棱柱ABCDE A几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等'B'C'D'E'表示:用各顶点字母,如五棱锥P A几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

棱台定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的局部分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如四棱台ABCD—A'B'C'D'几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点圆柱定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

1圆锥定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

圆台定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的局部几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

球体定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

高中数学必修二知识点总结及公式大全

高中数学必修二知识点总结及公式大全

高中数学必修二知识点总结及公式大全高中数学是培养学生逻辑思维和抽象能力的重要学科。

《必修二》作为高中数学课程的重要组成部分,涉及了许多核心知识点和基础公式。

本文将为您详细总结《必修二》的知识点,并整理出一份公式大全,帮助您更好地掌握这门学科。

一、高中数学必修二知识点总结1.函数概念与性质- 函数的定义、表示方法、分类- 函数的性质(单调性、奇偶性、周期性、对称性等)- 反函数及其求法2.指数函数与对数函数- 指数函数的定义、性质、图像- 对数函数的定义、性质、图像- 指数方程与对数方程的解法3.三角函数- 角度制与弧度制互换- 三角函数的定义、图像、性质- 三角恒等变换- 三角方程与不等式的解法4.数列- 等差数列与等比数列的定义、性质、求和公式- 数列的通项公式与求和公式- 数列的极限5.平面向量- 向量的定义、表示、线性运算- 向量的坐标表示与几何表示- 向量的数量积与垂直关系- 向量的平行四边形法则与三角形法则6.解析几何- 直线方程的求法(点斜式、截距式、一般式等)- 圆的方程与性质- 常见图形的面积、周长、体积计算二、高中数学必修二公式大全1.函数类- y=f(x) 的反函数:y=f^(-1)(x)- 幂函数:y=x^a(a 为常数)- 指数函数:y=a^x(a>0 且a≠1)- 对数函数:y=log_a(x)(a>0 且a≠1)2.三角函数类- 正弦函数:y=sin(x)- 余弦函数:y=cos(x)- 正切函数:y=tan(x)- 三角恒等变换公式(和差公式、倍角公式、半角公式等)3.数列类- 等差数列通项公式:a_n=a_1+(n-1)d- 等差数列求和公式:S_n=n/2(a_1+a_n)- 等比数列通项公式:a_n=a_1q^(n-1)- 等比数列求和公式:S_n=a_1(1-q^n)/(1-q)(q≠1)4.向量类- 向量加法:A+B=(a_x+b_x, a_y+b_y)- 向量减法:A-B=(a_x-b_x, a_y-b_y)- 向量数量积:A·B=a_xb_x+a_yb_y- 向量模长:|A|=√(a_x^2+a_y^2)5.解析几何类- 点斜式直线方程:y-y_1=k(x-x_1)- 截距式直线方程:x/a+y/b=1- 圆的标准方程:(x-a)^2+(y-b)^2=r^2总结:本文为您详细总结了高中数学必修二的知识点,并整理了一份公式大全。

高中必修2数学知识总结

高中必修2数学知识总结

高中必修2数学知识总结高中数学必修2主要包含以下知识点:平面向量、三角函数、数列与数理逻辑、平面解析几何、立体几何、概率论与数理统计。

接下来,我们将对每个知识点进行总结和概括。

一、平面向量平面向量是高中数学的重要概念,也是学习高级数学和物理学的基础。

在必修2中,我们学习了向量的概念、向量的坐标表示、向量的加法和减法、向量的数量积和向量的夹角、共线和垂直以及应用于几何中的平行四边形面积等知识。

二、三角函数三角函数是高中数学中重要的数学函数之一,主要包括正弦函数、余弦函数和正切函数。

我们学习了三角函数的定义、性质、基本关系式、解三角方程、三角函数的图像与性质以及在几何中的应用等。

三、数列与数理逻辑数列是有序数的排列,是高中数学学习中的一个重要内容。

我们学习了数列的概念、数列的通项公式、等差数列和等比数列的性质与求和公式、数列极限等知识。

数理逻辑是数学与逻辑学的交叉领域,通过学习数理逻辑可以提高我们的思维能力和逻辑推理能力。

四、平面解析几何平面解析几何是高中数学中的一门基础课程,主要研究平面上的点和直线的性质、方程以及它们之间的关系。

我们学习了平面解析几何的基本概念、直线和圆的方程及其应用、直线与圆的位置关系等内容。

五、立体几何立体几何是高中数学中的一门重要课程,主要研究空间中的点、直线、面以及它们之间的位置关系和几何性质。

我们学习了空间几何体的表面积和体积、平行线与平面的关系、空间几何体的投影、三棱锥和四棱锥的性质、球的性质等内容。

六、概率论与数理统计概率论是数学中重要的分支之一,研究事件发生的可能性。

我们学习了概率的基本概念、概率的运算、事件的互斥与独立、条件概率和贝叶斯定理等内容。

数理统计是研究收集到的大量数据的整理、求解和分析,通过数理统计可以研究数据分布、概括数据规律、进行统计推断等。

综上所述,高中数学必修2的知识点涉及平面向量、三角函数、数列与数理逻辑、平面解析几何、立体几何、概率论与数理统计等内容。

(word完整版)高中必修二数学知识点全面总结,文档

(word完整版)高中必修二数学知识点全面总结,文档

第1章 空间几何体11.1 柱、锥、台、球的结构特征 2空间几何体的三视图和直观图三视图:正视图:从前往后 侧视图:从左往右 俯视图:从上往下 画三视图的原那么: 长对齐、高对齐、宽相等直观图:斜二测画法 斜二测画法的步骤:〔1〕.平行于坐标轴的线依然平行于坐标轴; 〔2〕.平行于y 轴的线长度变半,平行于 x ,z 轴的线长度不变;〔3〕.画法要写好。

用斜二测画法画出长方体的步骤:〔1〕画轴〔2〕画底面〔3〕画侧棱〔4〕成图空间几何体的外表积与体积〔一〕空间几何体的外表积1棱柱、棱锥的外表积: 各个面面积之和2 圆柱的外表积rl 2r 2S23圆锥的外表积Srlr 24 圆台的外表积Sr l r 2 RlR 25球的外表积S 4R 2 〔二〕空间几何体的体积1柱体的体积 V S 底 h2锥体的体积V 1S 底 h3 3台体的体积V1S 上S 下 S 下)h 〔S 上34球体的体积V4R33第二章直线与平面的位置关系空间点、直线、平面之间的位置关系-1-1平面含义:平面是无限延展的2平面的画法及表示〔1〕平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长〔如图〕D C〔2〕平面通常用希腊字母α、β、γ等表示,如平面αα、平面β等,也可以用表示平面的平行四边形的四个顶点或A B者相对的两个顶点的大写字母来表示,如平面AC、平面ABCD等。

3三个公理:1〕公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内符号表示为A∈LAB∈L=>Lαα·A∈αLB∈α公理1作用:判断直线是否在平面内〔2〕公理2:过不在一条直线上的三点,有且只有一个平面。

A B符号表示为:A、B、C三点不共线=>α·C·有且只有一个平面α,·使A∈α、B∈α、C∈α。

公理2作用:确定一个平面的依据。

〔3〕公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

高中数学必修二最全完整笔记

高中数学必修二最全完整笔记

高中数学必修二第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式第四章圆与方程4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系第一章空间几何体1.1 空间几何体的结构一、空间几何体:占据着空间的一部分,只考虑这些物体的形状和大小,那么由这些物体抽象出来的空间图形叫空间几何体。

1.多面体:一般地,我们把由若干个平面多边形围成的几何体叫做多面体。

(1)面:围成多面体的各个多边形叫做多面体的面。

(2)棱:相邻两个面的公共边叫做多面体的棱。

(3)顶点:棱与棱的公共顶点叫做多面体的顶点。

2.旋转体:由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何,叫做旋转体。

(1棱3.棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

(1)底面:两个互相平行的面叫做棱柱的底面(简称底)。

(2)侧面:其余各面叫做棱柱的侧面。

(3)侧棱:相邻侧面的公共边。

(4)顶点:侧面与底面的公共顶点。

(5)简单性质:1.侧棱都相等,侧面都是平行四边形。

2.两个底面与平行于底面的截面是全等的。

3.各不相邻的侧棱所形成的斜面是平行四边形。

(6)棱柱的分类:1.按底面边多少分:n棱柱(n≥3)2.按侧棱与底面的关系分:垂直:直棱柱、正棱柱(底面为正多边形) 三棱柱四棱柱不垂直:斜棱柱1.底面为直角三角形 1.直平行六面体2.底面为等边三角形 2.正四棱柱3.底面为等腰直角三角形 3.正方体(非棱柱)4.棱锥:有一个面是多边形,其余各面都是有一公共点的三角形。

(1)底面:多边形面。

高三数学必修二全部知识点

高三数学必修二全部知识点

高三数学必修二全部知识点高三数学必修二是高中数学课程中的重要一环,它包含了许多基础的数学知识点。

下面将详细介绍高三数学必修二全部知识点,帮助同学们全面了解和掌握这些知识,为高考做好充分准备。

一、函数与导数1. 函数的定义及性质- 定义函数的方法- 函数的定义域、值域、奇偶性等性质2. 初等函数- 幂函数、指数函数、对数函数- 三角函数、反三角函数- 伸缩变换、平移变换、反转变换对函数图象的影响3. 函数的运算- 四则运算、复合函数、反函数- 常用初等函数的运算性质4. 导数与导函数- 导数的定义与几何意义- 导数与函数的连续性、可导性的关系- 导函数的计算- 导数的应用:切线与法线、函数的极值与最值、导数与函数的单调性二、幂指对数方程与不等式1. 幂指方程- 幂指函数的图象与性质- 一次幂指方程的解法- 二次幂指方程的解法2. 对数方程- 对数函数的图象与性质- 一次对数方程的解法- 二次对数方程的解法3. 幂指不等式- 幂指函数的单调性与不等式- 一元幂指不等式的解法- 二元幂指不等式的解法4. 对数不等式- 对数函数的单调性与不等式- 一元对数不等式的解法- 二元对数不等式的解法三、三角恒等变换与射影几何1. 三角恒等变换- 三角函数的基本关系- 和差化积公式、倍角与半角公式- 万能公式的推导与应用2. 射影几何- 点、直线、平面、圆锥曲线的基本概念- 直线与平面的位置关系- 圆锥曲线的方程及图象四、数列与数学归纳法1. 数列的概念与表示- 等差、等比、等差几何数列的概念与性质2. 数列的通项公式与前n项和- 等差、等比、等差几何数列的通项公式与前n项和公式3. 递推数列的应用- 斐波那契数列与黄金分割4. 数学归纳法- 数学归纳法的基本思想与应用五、概率统计1. 基本概念与排列组合- 事件、样本空间、随机事件的概念- 基本事件与复合事件的关系- 排列与组合的分类与应用2. 概率的定义与性质- 频率与概率的关系- 加法定理、乘法定理、全概率公式、贝叶斯公式3. 随机变量与概率分布- 离散型与连续型随机变量的概念与性质- 二项分布、泊松分布、正态分布的性质与应用4. 抽样与统计- 总体与样本的概念- 抽样调查的方法与应用- 统计指标的计算与应用通过对高三数学必修二全部知识点的学习和掌握,同学们能够更好地应对高考数学的挑战,提高数学成绩,达到理想的考试目标。

高中数学必修2知识点总结

高中数学必修2知识点总结

高中数学必修2知识点总结高中数学必修二知识点总结1. 一元二次方程一元二次方程的标准形式为ax^2+bx+c=0,并且a≠0。

求解一元二次方程的方法是配方法、公式法和因式分解法。

2. 三角函数常用的三角函数有正弦函数、余弦函数、正切函数和余切函数。

三角函数的定义域和值域以及其性质和图像都是必须掌握的。

3. 三角恒等式包括正弦、余弦和正切等三角函数的恒等式,例如正弦函数的和差公式、倍角公式、半角公式等。

三角恒等式是解决三角函数问题的重要工具。

4. 二次函数的图像和性质二次函数的标准形式为y=ax^2+bx+c,其中a≠0。

二次函数的图像是一个开口朝上或开口朝下的抛物线,其对称轴为x=-b/2a。

必须掌握二次函数的顶点、零点、对称轴等性质,这些性质是判断图像和求解问题的重要方法。

5. 平面向量平面向量包括向量的定义、向量之间的运算、向量的坐标表示等。

向量的运算包括向量的加法、减法、数量积和向量积。

向量的坐标表示是将向量投影在坐标轴上来表示的。

6. 点、直线、平面和空间几何点、直线、平面和空间几何的基本概念和性质是必须掌握的,例如点的坐标、直线的一般式方程、平面的法向量等。

此外,必须掌握两条直线和两个平面之间的位置关系、垂直平分线以及中垂线等概念。

7. 三视图和轴测图三视图是立体图形的三个视图,包括正视图、左视图和俯视图。

轴测图是用于三维图形表示的一种图形表示方法,包括斜二测和等轴测。

8. 四边形和圆的性质四边形和圆的主要性质包括四边形内角和定理、对角线定理、圆的周长和面积计算公式、圆内部和圆外部点与圆的位置关系等。

9. 三角形和圆的性质三角形和圆的主要性质包括三角形内角和、三角形的面积计算公式、圆心角和圆弧、圆的切线和切点等。

10. 函数及其应用函数的概念和图像、定义域和值域、单调性等性质必须掌握。

函数的应用包括函数的极值、最大值和最小值等问题。

以上是高中数学必修二知识点的总结,这些知识点是高中数学教育的重点和难点,学好这些知识点对于提高数学成绩和发展数学思维能力都具有重要的意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修二·空间几何体1.1空间几何体的结构棱柱定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边 形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、 五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱'''''E D C B A ABCDE -几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形, 由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、 五棱锥等表示:用各顶点字母,如五棱锥'''''E D C B A P -几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

棱台定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间 的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、 五棱台等表示:用各顶点字母,如四棱台ABCD —A'B'C'D'几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点圆柱定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的 曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面 圆的半径垂直;④侧面展开图是一个矩形。

圆锥定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

圆台定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

球体定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

1.2空间几何体的三视图和直观图1.中心投影与平行投影中心投影:把光由一点向外散射形成的投影叫做中心投影。

平行投影:在一束平行光照射下形成的投影叫做平行投影。

2.三视图正视图:从前往后侧视图:从左往右俯视图:从上往下画三视图的原则:长对齐、高对齐、宽相等3.直观图:斜二测画法斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y轴的线长度变半,平行于x,z轴的线长度不变;(3).画法要写好。

1.3空间几何体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。

(2)特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线)ch S =直棱柱侧面积 rh S π2=圆柱侧 '21ch S =正棱锥侧面积 rl S π=圆锥侧面积')(2121h c c S +=正棱台侧面积 l R r S π)(+=圆台侧面积()l r r S +=π2圆柱表()l r r S +=π圆锥表()22R Rl rl r S +++=π圆台表(3)柱体、锥体、台体的体积公式V Sh=柱2V Sh r h π==圆柱13V Sh =锥 h r V 231π=圆锥'1()3V S S h =台 '2211()()33V S S h r rR R h π=++=++圆台球体的表面积和体积公式:V 球=343R π; S 球面=24R π·空间点、直线、平面的位置关系公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。

(即直线在平面内,或者平面经过直线)应用:判断直线是否在平面内用符号语言表示公理1:,,,A l B l A B l ααα∈∈∈∈⇒⊂ 公理2:经过不在同一条直线上的三点,有且只有一个平面。

推论:一直线和直线外一点确定一平面;两相交直线确定一平面; 两平行直线确定一平面。

公理2及其推论作用:①它是空间内确定平面的依据 ②它是证明平面重合的依据 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线符号:平面α和β相交,交线是a ,记作α∩β=a 。

符号语言:,P A B A B l P l ∈⇒=∈ 作用:①它是判定两个平面相交的方法。

②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。

③它可以判断点在直线上,即证若干个点共线的重要依据。

公理4:平行于同一条直线的两条直线互相平行空间直线与直线之间的位置关系① 异面直线定义:不同在任何一个平面内的两条直线 ② 异面直线性质:既不平行,又不相交。

③ 异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线 ④ 异面直线所成角:直线a 、b 是异面直线,经过空间任意一点O ,分别引直线a ’∥a ,b ’∥b ,则把直线a ’和b ’所成的锐角(或直角)叫做异面直线a 和b 所成的角。

两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。

说明:(1)判定空间直线是异面直线方法:①根据异面直线的定义;②异面直线的判定定理(2)在异面直线所成角定义中,空间一点O 是任取的,而和点O 的位置无关。

②求异面直线所成角步骤:A 、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。

B 、证明作出的角即为所求角 C 、利用三角形来求角(7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。

三种位置关系的符号表示:a ⊂α a ∩α=A a ∥α(8)平面与平面之间的位置关系:平行——没有公共点;α∥β相交——有一条公共直线。

α∩β=b空间中的平行问题直线和平面平行:直线l 与平面α没有公共点,则称直线l 与平面α平行,记作α//l 两个平面平行:没有公共点的两个平面叫做平行平面。

(1)直线与平面平行的判定及其性质线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。

线线平行⇒线面平行b a α////a b a a b ααα⊄⎫⎪⊂⇒⎬⎪⎭线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平 面和这个平面相交,那么这条直线和交线平行。

线面平行⇒线线平行(2)平面与平面平行的判定及其性质 两个平面平行的判定定理:①如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行线面平行⇒面面平行②如果两个平面同垂直于一条直线,那么这两个平面平行平行于同一个平面的两个平面平行两个平面平行的性质定理(1)如果两个平面平行,那么在一个平面内的所有直线都平行于另一个平面βα//且α⊂a β//a ⇒ (面面平行→线面平行)(2)如果两个平行平面同时和第三个平面相交,那么它们的交线平行b a b a ////⇒⎪⎩⎪⎨⎧==βγαγβα a βαβαβα//⇒⎩⎨⎧⊥⊥l l b a b a a ////⇒⎪⎩⎪⎨⎧=⊂βαβα //////,a b a b P a b ββαβα⎧⎪⎪⇒⎨=⎪⎪⊂⎩γαγββα//////⇒⎩⎨⎧(面面平行→线线平行)(3)如果两个平行平面中有一个垂直于一条直线,那么另一个平面也垂直于这条直线空间角问题(1)直线与直线所成的角①两平行直线所成的角:规定为 0。

②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。

③两条异面直线所成的角:过空间任意一点O ,分别作与两条异面直线a ,b 平行的直线b a '',,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。

④范围:0,2π⎡⎤⎢⎥⎣⎦(2)直线和平面所成的角①平面的平行线与平面所成的角:规定为 0。

②平面的垂线与平面所成的角:规定为 90。

③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角。

求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”。

在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线, 在解题时,注意挖掘题设中两个主要信息:(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线。

④范围:0,2π⎡⎤⎢⎥⎣⎦(3)二面角和二面角的平面角①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。

②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内..分别作垂直于...棱的两条射线,这两条射线所成的角叫二面角的平面角。

③直二面角:平面角是直角的二面角叫直二面角。

两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角 ④求二面角的方法定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角范围:[]0,πβαβα⊥⇒⊥l l 且//空间中的垂直问题(1)线线、面面、线面垂直的定义①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。

②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。

③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。

(2)线线垂直定义: 直线l 与平面α内的任意一条直线都垂直,就说直线l 与平面α互相垂直.该直线叫做平面的垂线,该平面叫做这条直线的垂面线面垂直的性质:b a b a ⊥⇒⎩⎨⎧⊂⊥αα;线面垂直的判定定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线 垂直于这个平面αα⊥⇒⎪⎪⎩⎪⎪⎨⎧⊂=⊥⊥a c b O c b c a b a , ; 注意点: 定理中的“两条相交直线”这一条件不可忽视;推论: 如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直这个平面⎭⎬⎫a ∥b a ⊥α⇒b ⊥α线面垂直的性质定理(1)垂直于同一个平面的两条直线平行//a a b b αα⊥⎫⇒⎬⊥⎭. (2)如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。

//a b b a αα⎫⇒⊥⎬⊥⎭三垂线定理: 平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它就和这条斜线垂直三垂线定理的逆定理: 平面内的一条直线,如果和这个平面的一条斜线垂直,那么,它也和这条斜线的射影垂直 (3)面面垂直定义:一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.面面垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.面面垂直的性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直b a a a b αβαββα⊥⎫⎪=⎪⇒⊥⎬⊂⎪⎪⊥⎭.·直线与方程(1)直线的倾斜角:对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时,所转的最小正角叫做直线的倾斜角 直线的倾斜角取值范围是0°≤α<180° (2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。

相关文档
最新文档