材料分析方法课后习题答案
材料分析测试方法练习与答案

材料分析测试⽅法练习与答案第⼀章⼀、选择题1.⽤来进⾏晶体结构分析的X射线学分⽀是( B)A.X射线透射学;B.X射线衍射学;C.X射线光谱学;D.其它2. M层电⼦回迁到K层后,多余的能量放出的特征X射线称( B )A.Kα;B. Kβ;C. Kγ;D. Lα。
3. 当X射线发⽣装置是Cu靶,滤波⽚应选( C )A.Cu;B. Fe;C. Ni;D. Mo。
4. 当电⼦把所有能量都转换为X射线时,该X射线波长称(A )A.短波限λ0;B. 激发限λk;C. 吸收限;D. 特征X射线5.当X射线将某物质原⼦的K层电⼦打出去后,L层电⼦回迁K层,多余能量将另⼀个L层电⼦打出核外,这整个过程将产⽣(D)(多选题)A.光电⼦;B. ⼆次荧光;C. 俄歇电⼦;D. (A+C)⼆、正误题1. 随X射线管的电压升⾼,λ0和λk都随之减⼩。
()2. 激发限与吸收限是⼀回事,只是从不同⾓度看问题。
()3. 经滤波后的X射线是相对的单⾊光。
()4. 产⽣特征X射线的前提是原⼦内层电⼦被打出核外,原⼦处于激发状态。
()5. 选择滤波⽚只要根据吸收曲线选择材料,⽽不需要考虑厚度。
()三、填空题1. 当X射线管电压超过临界电压就可以产⽣连续X射线和特征X射线。
2. X射线与物质相互作⽤可以产⽣俄歇电⼦、透射X射线、散射X 射线、荧光X射线、光电⼦、热、、。
3. 经过厚度为H的物质后,X射线的强度为。
4. X射线的本质既是波长极短的电磁波也是光⼦束,具有波粒⼆象性性。
5. 短波长的X射线称,常⽤于;长波长的X射线称,常⽤于。
习题1. X 射线学有⼏个分⽀?每个分⽀的研究对象是什么?2. 分析下列荧光辐射产⽣的可能性,为什么?(1)⽤CuK αX 射线激发CuK α荧光辐射;(2)⽤CuK βX 射线激发CuK α荧光辐射;(3)⽤CuK αX 射线激发CuL α荧光辐射。
3. 什么叫“相⼲散射”、“⾮相⼲散射”、“荧光辐射”、“吸收限”、“俄歇效应”、“发射谱”、“吸收谱”?4. X 射线的本质是什么?它与可见光、紫外线等电磁波的主要区别何在?⽤哪些物理量描述它?5. 产⽣X 射线需具备什么条件?6. Ⅹ射线具有波粒⼆象性,其微粒性和波动性分别表现在哪些现象中?7. 计算当管电压为50 kv 时,电⼦在与靶碰撞时的速度与动能以及所发射的连续谱的短波限和光⼦的最⼤动能。
(完整版)材料现代分析方法第一章习题答案解析

第一章1.X射线学有几个分支?每个分支的研究对象是什么?答:X射线学分为三大分支:X射线透射学、X射线衍射学、X射线光谱学。
X射线透射学的研究对象有人体,工件等,用它的强透射性为人体诊断伤病、用于探测工件内部的缺陷等。
X射线衍射学是根据衍射花样,在波长已知的情况下测定晶体结构,研究与结构和结构变化的相关的各种问题。
X射线光谱学是根据衍射花样,在分光晶体结构已知的情况下,测定各种物质发出的X射线的波长和强度,从而研究物质的原子结构和成分。
2. 试计算当管电压为50 kV时,X射线管中电子击靶时的速度与动能,以及所发射的连续谱的短波限和光子的最大能量是多少?解:已知条件:U=50kV电子静止质量:m0=9.1×10-31kg光速:c=2.998×108m/s电子电量:e=1.602×10-19C普朗克常数:h=6.626×10-34J.s电子从阴极飞出到达靶的过程中所获得的总动能为:E=eU=1.602×10-19C×50kV=8.01×10-18kJ由于E=1/2m0v02所以电子击靶时的速度为:v0=(2E/m0)1/2=4.2×106m/s所发射连续谱的短波限λ0的大小仅取决于加速电压:λ0(Å)=12400/U(伏) =0.248Å辐射出来的光子的最大动能为:E0=hv=h c/λ0=1.99×10-15J3. 说明为什么对于同一材料其λK<λKβ<λKα?答:导致光电效应的X光子能量=将物质K电子移到原子引力范围以外所需作的功hV k = W k以kα为例:hV kα = E L– E khe = W k – W L = hV k – hV L ∴h V k > h V k α∴λk<λk α以k β 为例:h V k β = E M – E k = W k – W M =h V k – h V M ∴ h V k > h V k β∴ λk<λk βE L – E k < E M – E k ∴hV k α < h V k β∴λk β < λk α4. 如果用Cu 靶X 光管照相,错用了Fe 滤片,会产生什么现象?答:Cu 的K α1,K α2, K β线都穿过来了,没有起到过滤的作用。
智慧树知到《材料分析方法》章节测试答案

智慧树知到《材料分析方法》章节测试答案绪论1、材料研究方法分为()A:组织形貌分析B:物相分析C:成分价键分析D:分子结构分析正确答案:组织形貌分析,物相分析,成分价键分析,分子结构分析2、材料科学的主要研究内容包括()A:材料的成分结构B:材料的制备与加工C:材料的性能D:材料应用正确答案:材料的成分结构,材料的制备与加工,材料的性能3、下列哪些内容不属于材料表面与界面分析()A:晶界组成、厚度B:晶粒大小、形态C:气体的吸附D:表面结构正确答案:晶粒大小、形态4、下列哪些内容属于材料微区分析()A:晶格畸变B:位错C:晶粒取向D:裂纹大小正确答案:晶格畸变,位错,晶粒取向,裂纹大小5、下列哪些内容不属于材料成分结构分析()A:物相组成B:晶界组成、厚度C:杂质含量D:晶粒大小、形态正确答案:晶界组成、厚度,晶粒大小、形态第一章1、扫描电子显微镜的分辨率已经达到了()A:0.1 nmB:1.0 nmC:10 nmD:100 nm正确答案: 1.0 nm2、利用量子隧穿效应进行分析的仪器是A:原子力显微镜B:扫描隧道显微镜C:扫描探针显微镜D:扫描电子显微镜正确答案:扫描隧道显微镜3、能够对样品形貌和物相结构进行分析的是透射电子显微镜。
A:对B:错正确答案:对4、扫描隧道显微镜的分辨率可以到达原子尺度级别。
A:对B:错正确答案:对5、图像的衬度是()A:任意两点存在的明暗程度差异B:任意两点探测到的光强差异C:任意两点探测到的信号强度差异D:任意两点探测到的电子信号强度差异正确答案:任意两点存在的明暗程度差异,任意两点探测到的信号强度差异6、对材料进行组织形貌分析包含哪些内容()A:材料的外观形貌B:晶粒的大小C:材料的表面、界面结构信息D:位错、点缺陷正确答案:材料的外观形貌,晶粒的大小,材料的表面、界面结构信息,位错、点缺陷7、光学显微镜的最高分辨率为()A:1 μmB:0.5 μmC:0.2 μmD:0.1 μm正确答案: 0.2 μm8、下列说法错误的是()A:可见光波长为450~750 nm,比可见光波长短的光源有紫外线、X射线和γ射线B:可供照明的紫外线波长为200~250 nm,可以作为显微镜的照明源C:X射线波长为0.05~10 nm,可以作为显微镜的照明源D:X射线不能直接被聚焦,不可以作为显微镜的照明源正确答案: X射线波长为0.05~10 nm,可以作为显微镜的照明源9、 1924年,()提出运动的电子、质子、中子等实物粒子都具有波动性质A:布施B:狄拉克C:薛定谔D:德布罗意正确答案:德布罗意10、电子束入射到样品表面后,会产生下列哪些信号()A:二次电子B:背散射电子C:特征X射线D:俄歇电子正确答案:二次电子,背散射电子,特征X射线,俄歇电子第二章1、第一台光学显微镜是由哪位科学家发明的()A:胡克B:詹森父子C:伽利略D:惠更斯正确答案:詹森父子2、德国科学家恩斯特·阿贝有哪些贡献()A:阐明了光学显微镜的成像原理B:解释了数值孔径等问题C:阐明了放大理论D:发明了油浸物镜正确答案:阐明了光学显微镜的成像原理,解释了数值孔径等问题,阐明了放大理论,发明了油浸物镜3、光学显微镜包括()A:目镜B:物镜C:反光镜D:聚光镜正确答案:目镜,物镜,反光镜,聚光镜4、下列关于光波的衍射,错误的描述是()A:光是电磁波,具有波动性质B:遇到尺寸与光波波长相比或更小的障碍物时,光线将沿直线传播C:障碍物线度越小,衍射现象越明显D:遇到尺寸与光波波长相比或更小的障碍物时,光线将偏离直线传播正确答案:遇到尺寸与光波波长相比或更小的障碍物时,光线将沿直线传播5、下列说法正确的是()A:衍射现象可以用子波相干叠加的原理解释B:由于衍射效应,样品上每个物点通过透镜成像后会形成一个埃利斑C:两个埃利斑靠得越近,越容易被分辨D:埃利斑半径与光源波长成反比,与透镜数值孔径成正比正确答案:衍射现象可以用子波相干叠加的原理解释,由于衍射效应,样品上每个物点通过透镜成像后会形成一个埃利斑6、在狭缝衍射实验中,下列说法错误的是()A:狭缝中间每一点可以看成一个点光源,发射子波B:子波之间相互干涉,在屏幕上形成衍射花样C:整个狭缝内发出的光波在中间点的波程差半波长,形成中央亮斑D:在第一级衍射极大值处,狭缝上下边缘发出的光波波程差为1波长正确答案:整个狭缝内发出的光波在中间点的波程差半波长,形成中央亮斑7、下列关于阿贝成像原理的描述,正确的是()A:不同物点的同级衍射波在后焦面的干涉,形成衍射谱B:同一物点的各级衍射波在像面的干涉,形成物像C:物像由透射光和衍射光互相干涉而形成D:参与成像的衍射斑点越多,物像与物体的相似性越好。
材料分析方法答案

第一章一、选择题1.用来进行晶体结构分析的X射线学分支是()A.X射线透射学;B.X射线衍射学;C.X射线光谱学;D.其它2. M层电子回迁到K层后,多余的能量放出的特征X射线称()A.Kα;B. Kβ;C. Kγ;D. Lα。
3. 当X射线发生装置是Cu靶,滤波片应选()A.Cu;B. Fe;C. Ni;D. Mo。
4. 当电子把所有能量都转换为X射线时,该X射线波长称()A.短波限λ0;B. 激发限λk;C. 吸收限;D. 特征X射线5.当X射线将某物质原子的K层电子打出去后,L层电子回迁K层,多余能量将另一个L层电子打出核外,这整个过程将产生()(多选题)A.光电子;B. 二次荧光;C. 俄歇电子;D. (A+C)二、正误题1. 随X射线管的电压升高,λ0和λk都随之减小。
()2. 激发限与吸收限是一回事,只是从不同角度看问题。
()3. 经滤波后的X射线是相对的单色光。
()4. 产生特征X射线的前提是原子内层电子被打出核外,原子处于激发状态。
()5. 选择滤波片只要根据吸收曲线选择材料,而不需要考虑厚度。
()三、填空题1. 当X射线管电压超过临界电压就可以产生X射线和X射线。
2. X射线与物质相互作用可以产生、、、、、、、。
3. 经过厚度为H的物质后,X射线的强度为。
4. X射线的本质既是也是,具有性。
5. 短波长的X射线称,常用于;长波长的X射线称,常用于。
习题1.X射线学有几个分支?每个分支的研究对象是什么?2.分析下列荧光辐射产生的可能性,为什么?(1)用CuKαX射线激发CuKα荧光辐射;(2)用CuKβX射线激发CuKα荧光辐射;(3)用CuKαX射线激发CuLα荧光辐射。
3.什么叫“相干散射”、“非相干散射”、“荧光辐射”、“吸收限”、“俄歇效应”、“发射谱“吸收谱”? 4.X 射线的本质是什么?它与可见光、紫外线等电磁波的主要区别何在?用哪些物理量描述它? 5.产生X 射线需具备什么条件? 6.Ⅹ射线具有波粒二象性,其微粒性和波动性分别表现在哪些现象中? 7.计算当管电压为50 kv 时,电子在与靶碰撞时的速度与动能以及所发射的连续谱的短波限和光子的最大动能。
材料分析测试方法课后答案

第一章一、选择题1.用来进行晶体结构分析的X射线学分支是()A.X射线透射学;B.X射线衍射学;C.X射线光谱学;D.其它2. M层电子回迁到K层后,多余的能量放出的特征X射线称()A.Kα;B. Kβ;C. Kγ;D. Lα。
3. 当X射线发生装置是Cu靶,滤波片应选()A.Cu;B. Fe;C. Ni;D. Mo。
4. 当电子把所有能量都转换为X射线时,该X射线波长称()A.短波限λ0;B. 激发限λk;C. 吸收限;D. 特征X射线5.当X射线将某物质原子的K层电子打出去后,L层电子回迁K层,多余能量将另一个L层电子打出核外,这整个过程将产生()(多选题)A.光电子;B. 二次荧光;C. 俄歇电子;D. (A+C)二、正误题1. 随X射线管的电压升高,λ0和λk都随之减小。
()2. 激发限与吸收限是一回事,只是从不同角度看问题。
()3. 经滤波后的X射线是相对的单色光。
()4. 产生特征X射线的前提是原子内层电子被打出核外,原子处于激发状态。
()5. 选择滤波片只要根据吸收曲线选择材料,而不需要考虑厚度。
()三、填空题1. 当X射线管电压超过临界电压就可以产生X射线和X射线。
2. X射线与物质相互作用可以产生、、、、、、、。
3. 经过厚度为H的物质后,X射线的强度为。
4. X射线的本质既是也是,具有性。
5. 短波长的X射线称,常用于;长波长的X射线称,常用于。
习题1.X射线学有几个分支?每个分支的研究对象是什么?2. 分析下列荧光辐射产生的可能性,为什么?(1)用CuK αX 射线激发CuK α荧光辐射;(2)用CuK βX 射线激发CuK α荧光辐射;(3)用CuK αX 射线激发CuL α荧光辐射。
3. 什么叫“相干散射”、“非相干散射”、“荧光辐射”、“吸收限”、“俄歇效应”、“发射谱”、“吸收谱”?4. X 射线的本质是什么?它与可见光、紫外线等电磁波的主要区别何在?用哪些物理量描述它?5. 产生X 射线需具备什么条件?6. Ⅹ射线具有波粒二象性,其微粒性和波动性分别表现在哪些现象中?7. 计算当管电压为50 kv 时,电子在与靶碰撞时的速度与动能以及所发射的连续谱的短波限和光子的最大动能。
材料分析方法习题

注: *的多少仅代表该题可能的难易程度。
第一章 X 射线物理学基础1、X 射线有什么性质,本质是什么?波长为多少?与可见光的区别。
(*)2、什么是X 射线管的管电压、管电流?它们通常采用什么单位?数值通常是多少?(*)3、X 射线管的焦点与表观焦点的区别与联系。
(*)4、X 射线有几种?产生不同X 射线的条件分别是什么?产生机理是怎样的?晶体的X 射线衍射分析中采用的是哪种X 射线?(*)5、特征X 射线,连续X 射线与X 射线衍射的关系。
(*)6、什么是同一线系的特征X 射线?不同线系的特征X 射线的波长有什么关系?同一线系的特征X 射线的波长又有什么关系?7、什么是临界激发电压?为什么存在临界激发电压?(**)8、什么是、射线?其强度与波长的关系。
什么是、射线其强度与波长的关系。
(**)αK βK 1αK 2αK 9、为什么我们通常只选用Cr 、Fe 、Co 、Ni 、Mo 、Cu 、W 等作阳极靶,产生特征X 射线的波长与阳极靶的原子序数有什么关系。
10、 什么是相干散射、非相干散射?它们各自还有什么名称?相干散射与X 射线衍射的关系。
(*)11、 短波限,吸收限,激发限如何计算?注意相互之间的区别与联系。
(**)12、 什么是X 射线的真吸收?比较X 射线的散射与各种效应。
(*)13、 什么是二次特征辐射?其与荧光辐射是同一概念吗?与特征辐射的区别是什么?(**)14、 什么是俄吸电子与俄吸效应,及与二次特征辐射的区别。
(**)15、 反冲电子、光电子和俄歇电子有何不同? (**)16、 在X 射线与物质相互作用的信号中,哪些对我们进行晶体分析有益?哪些有害?非相干散射和荧光辐射对X 射线衍射产生哪些不利影响?(**)17、 线吸收系数与质量吸收系数的意义。
并计算空气对CrK α的质量吸收系数和线吸收系数(假如空气中只有质量分数80%的氮和质量分数20%的氧,空气的密度为1.29×10-3g/cm 3)(**)18、 阳极靶与滤波片的选择原则是怎样的?(*)19、 推导出X 射线透过物质时的衰减定律,并指出各参数的物理意义。
材料分析方法课后习题答案

材料分析测试方法复习题第一部分简答题:1. X射线产生的基本条件答:①产生自由电子;②使电子做定向高速运动;③在电子运动的路径上设置使其突然减速的障碍物。
2. 连续X射线产生实质答:假设管电流为10mA,则每秒到达阳极靶上的电子数可达6.25x10(16)个,如此之多的电子到达靶上的时间和条件不会相同,并且绝大多数达到靶上的电子要经过多次碰撞,逐步把能量释放到零,同时产生一系列能量为hv(i)的光子序列,这样就形成了连续X射线。
3. 特征X射线产生的物理机制答:原子系统中的电子遵从刨利不相容原理不连续的分布在K、L、M、N等不同能级的壳层上,而且按能量最低原理从里到外逐层填充。
当外来的高速度的粒子动能足够大时,可以将壳层中某个电子击出去,于是在原来的位置出现空位,原子系统的能量升高,处于激发态,这时原子系统就要向低能态转化,即向低能级上的空位跃迁,在跃迁时会有一能量产生,这一能量以光子的形式辐射出来,即特征X射线。
4. 短波限、吸收限答:短波限:X射线管不同管电压下的连续谱存在的一个最短波长值。
吸收限:把一特定壳层的电子击出所需要的入射光最长波长。
5. X射线相干散射与非相干散射现象答: 相干散射:当X射线与原子中束缚较紧的内层电子相撞时,电子振动时向四周发射电磁波的散射过程。
非相干散射:当X射线光子与束缚不大的外层电子或价电子或金属晶体中的自由电子相撞时的散射过程。
6. 光电子、荧光X射线以及俄歇电子的含义答:光电子:光电效应中由光子激发所产生的电子(或入射光量子与物质原子中电子相互碰撞时被激发的电子)。
荧光X射线:由X射线激发所产生的特征X射线。
俄歇电子:原子外层电子跃迁填补内层空位后释放能量并产生新的空位,这些能量被包括空位层在内的临近原子或较外层电子吸收,受激发逸出原子的电子叫做俄歇电子。
7. X射线吸收规律、线吸收系数答:X射线吸收规律:强度为I的特征X射线在均匀物质内部通过时,强度的衰减与在物质内通过的距离x成比例,即-dI/I=μdx 。
材料分析方法部分课后习题答案解析

第一章X 射线物理学基础2、若X 射线管的额定功率为1.5KW,在管电压为35KV 时,容许的最大电流是多少?答:1.5KW/35KV=0.043A。
4、为使Cu 靶的Kβ线透射系数是Kα线透射系数的1/6,求滤波片的厚度。
答:因X 光管是Cu 靶,故选择Ni 为滤片材料。
查表得:μ m α=49.03cm2/g,μ mβ=290cm2/g,有公式,,,故:,解得:t=8.35um t6、欲用Mo 靶X 射线管激发Cu 的荧光X 射线辐射,所需施加的最低管电压是多少?激发出的荧光辐射的波长是多少?答:eVk=hc/λVk=6.626×10-34×2.998×108/(1.602×10-19×0.71×10-10)=17.46(kv)λ 0=1.24/v(nm)=1.24/17.46(nm)=0.071(nm)其中h为普郎克常数,其值等于6.626×10-34e为电子电荷,等于1.602×10-19c故需加的最低管电压应≥17.46(kv),所发射的荧光辐射波长是0.071纳米。
7、名词解释:相干散射、不相干散射、荧光辐射、吸收限、俄歇效应答:⑴当χ射线通过物质时,物质原子的电子在电磁场的作用下将产生受迫振动,受迫振动产生交变电磁场,其频率与入射线的频率相同,这种由于散射线与入射线的波长和频率一致,位相固定,在相同方向上各散射波符合相干条件,故称为相干散射。
⑵当χ射线经束缚力不大的电子或自由电子散射后,可以得到波长比入射χ射线长的χ射线,且波长随散射方向不同而改变,这种散射现象称为非相干散射。
⑶一个具有足够能量的χ射线光子从原子内部打出一个K 电子,当外层电子来填充K 空位时,将向外辐射K 系χ射线,这种由χ射线光子激发原子所发生的辐射过程,称荧光辐射。
或二次荧光。
⑷指χ射线通过物质时光子的能量大于或等于使物质原子激发的能量,如入射光子的能量必须等于或大于将K 电子从无穷远移至K 层时所作的功W,称此时的光子波长λ称为K 系的吸收限。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十四章1、波谱仪和能谱仪各有什么优缺点?优点:1)能谱仪探测X射线的效率高。
2)在同一时间对分析点所有元素X射线光子的能量进行测定和计数,在几分钟可得到定性分析结果,而波谱仪只能逐个测量每种元素特征波长。
3)结构简单,稳定性和重现性都很好4)不必聚焦,对样品表面无特殊要求,适于粗糙表面分析。
缺点:1)分辨率低。
2)能谱仪只能分析原子序数大于11的元素;而波谱仪可测定原子序数从4到92间的所有元素。
3)能谱仪的Si(Li)探头必须保持在低温态,因此必须时时用液氮冷却。
分析钢中碳化物成分可用能谱仪;分析基体中碳含量可用波谱仪。
2、举例说明电子探针的三种工作方式(点、线、面)在显微成分分析中的应用。
答:(1)、定点分析:将电子束固定在要分析的微区上用波谱仪分析时,改变分光晶体和探测器的位置,即可得到分析点的X射线谱线;用能谱仪分析时,几分钟即可直接从荧光屏(或计算机)上得到微区全部元素的谱线。
(2)、线分析:将谱仪(波、能)固定在所要测量的某一元素特征X射线信号(波长或能量)的位置把电子束沿着指定的方向作直线轨迹扫描,便可得到这一元素沿直线的浓度分布情况。
改变位置可得到另一元素的浓度分布情况。
(3)、面分析:电子束在样品表面作光栅扫描,将谱仪(波、能)固定在所要测量的某一元素特征X射线信号(波长或能量)的位置,此时,在荧光屏上得到该元素的面分布图像。
改变位置可得到另一元素的浓度分布情况。
也是用X射线调制图像的方法。
3、要在观察断口形貌的同时,分析断口上粒状夹杂物的化学成分,选用什么仪器?用怎样的操作方式进行具体分析?答:(1)若观察断口形貌,用扫描电子显微镜来观察:而要分析夹杂物的化学成分,得选用能谱仪来分析其化学成分。
(2)A、用扫描电镜的断口分析观察其断口形貌:a、沿晶断口分析:靠近二次电子检测器的断裂面亮度大,背面则暗,故短裤呈冰糖块状或呈石块状。
沿晶断口属于脆性断裂,断口上午塑性变形迹象。
b、韧窝断口分析:韧窝的边缘类似尖棱,故亮度较大,韧窝底部比较平坦,图像亮度较低。
韧窝断口是一种韧性断裂断口,无论是从试样的宏观变形行为上,还是从断口的微观区域上都能看出明显的塑性变形。
韧窝断口是穿晶韧性断口。
c、解理断口分析:由于相邻晶粒的位相不一样,因此解理断裂纹从一个晶粒扩展到相邻晶粒部时,在晶界处开始形成河流花样即解理台阶。
解理断裂是脆性断裂,是沿着某特定的晶体学晶面产生的穿晶断裂。
d 、纤维增强复合材料断口分析:断口上有很多纤维拔出。
由于纤维断裂的位置不都是在基体主裂纹平面上,一些纤维与基体脱粘后断裂位置在基体中,所以断口山更大量露出的拔出纤维,同时还可看到纤维拔出后留下的孔洞。
B 、用能谱仪定性分析方法进行其化学成分的分析。
定点分析: 对样品选定区进行定性分析.线分析: 测定某特定元素的直线分布. 面分析: 测定某特定元素的面分布a 、定点分析方法:电子束照射分析区,波谱仪分析时,改变分光晶体和探测器位置.或用能谱仪,获取 、E —I 谱线,根据谱线中各峰对应的特征波长值或特征能量值,确定照射区的元素组成;b 、线分析方法:将谱仪固定在要测元素的特征X 射线 波长值或特征能量值,使电子束沿着图像指定直线轨迹扫描.常用于测晶界、相界元素分布.常将元素分布谱与该微区组织形貌结合起来分析;c 、面分析方法:将谱仪固定在要测元素的特征X 射线波长值或特征能量值, 使电子束在在样品微区作光栅扫描,此时在荧光屏上便得到该元素的微区分布,含量高则亮。
4、扫描电子显微镜是由电子光学系统,信号收集处理、图像显示和记录系统,真空系统三个基本部分组成。
(1)、电子光学系统(镜筒)1)电子枪:提供稳定的电子束,阴阳极加速电压2)电磁透镜:第一、二透镜为强磁透镜,第三为弱磁透镜,聚集能力小,目的是增大镜筒空间3)扫描线圈:使电子束在试样表面作规则扫描,同时控制电子束在样品上扫描与显像管上电子束扫描同步进行。
扫描方式有光栅扫描(面扫)和角光栅(线)扫描4)样品室及信号探测: 放置样品,安装信号探测器;各种信号的收集和相应的探测器的位置有很大关系。
样品台本身是复杂而精密的组件,能进行平移、倾斜和转动等运动。
(2)信号收集和图像显示系统电子束照射试样微区,产生信号量----荧光屏对应区光强度。
因试样各点状态不同(形貌、成分差异),在荧光屏上反映图像亮度不同,从而形成光强度差(图像)。
(3)真空系统防止样品污染,灯丝氧化;气体电离,使电子束散射。
真空度1。
33×10-2----1。
33×10-3 。
由表可看出二次电子和俄歇电子的分辨率高,而特征X 射线调制成显微图像的分辨率最低。
6、二次电子成像原理及应用(1)成像原理为:二次电子产额对微区表面的几何形状十分敏感。
随入射束与试样表面法线夹角增大,二次电子产额增大。
因为电子束穿入样品激发二次电子的有效深度增加了,使表面I--λ5-10 nm 作用体积逸出表面的二次电子数量增多。
(2)应用:a 、断口分析 1)沿晶断口; 2)韧窝断口; 3)解理断口;4)纤维增强复合材料断口。
b 、样品表面形貌特征 1)烧结样品的自然表面分析 2)金相表面c 、材料形变和断裂过程的动态分析 1) 双相钢 2) 复合材料7、背散射电子衬度原理及应用(1).,↑↑b i Z 不同成分---b η不同---电子强度差----衬度----图像。
背散射电子像中不同的区域衬度差别,实际上反映了样品相应不同区域平均原子序数的差别,据此可以定性分析样品的化学成分分布。
对于光滑样品,原子序数衬度反映了表面组织形貌,同时也定性反映了样品成分分布 ;而对于形貌、成分差样品,则采用双检测器,消除形貌衬度、原子序数衬度的相互干扰。
(2)背散射电子用于:形貌分析——来自样品表层几百nm 围;成分分析——产额与原子序数有关;晶体结构分析——基于通道花样衬度。
第十三章1、电子束入射固体样品表面会激发哪些信号?他们有哪些特点和用途?答:1)背散射电子:能量高;来自样品表面几百nm 深度围;其产额随原子序数增大而增多。
用作形貌分析、成分分析以及结构分析。
2)二次电子:能量较低;来自表层5—10nm 深度围;对样品表面化状态十分敏感。
不能进行成分分析,主要用于分析样品表面形貌。
3)吸收电子:其衬度恰好和SE 或BE 信号调制图像衬度相反;与背散射电子的衬度互补。
吸收电子能产生原子序数衬度,即可用来进行定性的微区成分分析。
4)透射电子:透射电子信号由微区的厚度、成分和晶体结构决定。
可进行微区成分分析。
5)特征X 射线: 用特征值进行成分分析,来自样品较深的区域6)俄歇电子:各元素的俄歇电子能量值很低;来自样品表面1—2nm 围。
它适合做表面分析。
2、当电子束入射重元素和轻元素时,其作用体积有何不同?各自产生的信号的分辨率有何特点?当电子束进入轻元素样品表面后悔造成滴状作用体积。
入射电子束进入浅层表面时,尚未向横向扩展开来,因此二次电子和俄歇电子的分辨率就相当于束斑的直径。
入射电子束进入样品较深部位时,向横向扩展的围变大,则背散射电子的分辨率较低,而特征X 射线的分辨率最低。
当电子束射入重元素样品中时,作用体积呈半球状。
电子书进入表面后立即向横向扩展,因此在分析重元素时,即使电子束的束斑很细小,也能达到较高的分辨率,此时二次电子的分辨率和背散射电子的分辨率之间的差距明显变小。
第十一章1、薄膜样品的制备方法(工艺过程)1)、从实物或大块试样上切割厚度为0。
3~0。
5mm 厚的薄片。
电火花县切割法是目前用得最广泛的方法,它是用一根往返运动的金属丝做切割工具,只能用于导电样品。
设薄膜有A 、B 两晶粒。
B 的某(hkl)晶面严格满足Bragg 条件,或B 晶粒满足“双光束条件”,则通过(hkl)衍射使入射强度I0分解为I hkl 和IO-I hkl 两部分。
A 晶粒所有晶面与Bragg 角相差较大,不能产生衍射。
在物镜背焦面上的物镜光阑,将衍射束挡掉,只让透射束通过光阑孔进行成像(明场),此时,像平面上A 和B 晶粒的光强度或亮度不同,分别为I A » I 0 I B » I 0 - I hklB 晶粒相对A 晶粒的像衬度为0)(I I I I I I I hkl A B A B ≈-=∆ 明场成像: 只让中心透射束穿过物镜光栏形成的衍衬像称为明场镜。
暗场成像: 只让某一衍射束通过物镜光栏形成的衍衬像称为暗场像。
中心暗场像: 入射电子束相对衍射晶面倾斜角,此时衍射斑将移到透镜的中心位置,该衍射束通过物镜光栏形成的衍衬像称为中心暗场成像。
3、什么是消光距离? 影响晶体消光距离的主要物性参数和外界条件是什么?答:(1)消光距离:由于透射波和衍射波强烈的动力学相互作用结果,使I 0和Ig 在晶体深度方向上发生周期性的振荡,此振荡的深度周期叫消光距离。
(2)影响因素:晶胞体积,结构因子,Bragg 角,电子波长。
4、双光束近似:假定电子束透过薄晶体试样成像时,除了透射束外只存在一束较强的衍射束,而其他衍射束却大大偏离布拉格条件,它们的强度均可视为零。
柱体近似是把成像单元缩小到和一个晶胞相当的尺度。
试样下表面某点所产生的衍射束强度近似为以该点为中心的一个小柱体衍射束的强度,柱体与柱体间互不干扰。
等厚条纹:等厚条纹:当 S ≡ C时显然,当t = n/s(n为整数)时,Ig = 0当 t = (n + 1/2)/s 时,用Ig随t周期性振荡这一运动学结果,定性解释以下两种衍衬现象。
晶体样品契形边缘处出现的厚度消光条纹,也叫等厚消光条纹。
等倾条纹:当t ≡ c时,5、什么是缺陷不可见判据? 如何用不可见判据来确定位错的布氏矢量?答:缺陷不可见判据是指:=⋅Rg。
确定位错的布氏矢量可按如下步骤:找到两个操作发射g1和g2,其成像时位错均不可见,则必有g1·b=0,g2·b=0。
这就是说,b应该在g1和g2所对应的晶面(h1k1l1)he(h2k2l2),即b应该平行于这两个晶面的交线,b=g1×g2,再利用晶面定律可以求出b的指数。
至于b的大小,通常可取这个方向上的最小点阵矢量。
6、如果将作为位错消光的有效判据,那么,在进行位错Burgers矢量测定时,只要找到产生该位错消光的两个操作反射g1和g2,即可确定,请分析为什么?答:这是因为,如果能找到两个操作发射g1和g2,其成像时位错均不可见,则必有g1·b=0,g2·b=0。
这就是说,b应该在g1和g2所对应的晶面(h1k1l1)he(h2k2l2),即b应该平行于这两个晶面的交线,b=g1×g2,再利用晶面定律可以求出b的指数。
至于b的大小,通常可取这个方向上的最小点阵矢量。