正弦信号发生器(参考2)
正弦信号发生器

正弦信号发生器信号发生器是一种不需要外加输入信号,依据自激振荡的原理,产生具有肯定幅度的周期性输出信号的装置。
它广泛应用于测量、自动掌握、通信、广播电视以及金属的熔炼、淬火、焊接等工程技术领域中。
1.自激振荡的产生条件正弦信号发生器是通过放大器引入合适的正反馈而构成的。
产生自激振荡必需满意两个条件:(1)振幅条件反馈电压的幅度要与原输入电压的幅度相等,就是说要有足够的反馈量,表达式为(2)相位条件反馈电压与原输入电压必需同相位,就是说必需满意正反馈的要求。
总之,相位条件保证了起振,振幅条件维持了等幅振荡。
2.RC桥式正弦信号发生器RC桥式正弦信号发生器又称文式电桥(Wienbridge)振荡器,其原理电路如图所示。
这个电路由两部分组成,即放大器和选频网络。
前者为由集成运放和电阻Rf 、Rl 所组成的电压串联负反馈放大器,取其输入电阻高和输出电阻低的特点。
后者由Z1 和Z2 组成,同时构成正反馈连接。
由图可见,Z1、Z2和Rl、Rf 正好形成一个四臂电桥,电桥的对角线顶点接到放大器的两个输入端,桥式振荡器由此而得名。
关于推导运算放大器的各种运算关系的总结:分析运算关系的前提,是运算放大器应工作于线性工作区(从电路结构上应有负反馈存在)。
当认清运放工作于线性工作区之后,通常采纳如下三种方式:(1)对于由多个运算放大器组成的运算放大电路,要擅长化整为零,分割成若干个基本单元运算电路(反相比例、同相比例,求和、差动、积分、微分等)。
再利用这些基本单元运算电路的基本关系式,进行推导运算关系。
(2)对于往往是由一个运算放大器构成的运算电路,但又不和基本单元运算电路的电路结构一样。
只能仿照书中基本单元运算电路的推导过程,利用虚断、虚短、虚地来推导。
(即使用ii=if 或u+=u-把输入量ui 与输出量uo 联系起来,形成一个关系式)。
【例】在右图所示的电路中,试写出通过负载电阻RL 的电流iL 与输入信号ui 之间的关系式。
正弦波信号发生器实验报告

正弦波信号发生器实验报告
实验名称:正弦波信号发生器实验
实验目的:了解正弦波的基本属性,掌握正弦波信号的发生方法,对正弦波信号进行基本的测量和分析。
实验器材:函数发生器、示波器、万用表。
实验原理:正弦波(Sine Wave)是最常见的一种周期波形,其特点是正弦曲线的波形,具有完全的周期性和对称性。
在电路和信号处理系统中,正弦波信号非常常见,在很多实际应用中具有重要的作用。
函数发生器是一种能够产生各种各样波形的仪器,包括正弦波、方波、三角波等等。
而在产生正弦波信号的过程中,函数发生器利用一个内部的振荡器电路来产生振荡信号,再将其经过信号调制映射到正弦波的形式。
实验步骤:
1.将函数发生器的输出端口连接到示波器的输入端口,并将函数发生器的频率设定在1kHz左右。
2.打开示波器,选择一个适合的纵向和横向刻度,并将其垂直和水平方向校准至
合适位置,以显示正弦波的波形。
3.选择函数发生器的正弦波输出模式,调整幅度与频率,以获得所需的正弦波信号,可使用万用表对其进行精确测量。
实验结果:经过实验,我们成功产生了一路1kHz左右的正弦波信号,并使用示波器和万用表进行了基本的测量和分析,包括正弦波的频率、幅度、相位等基本特性。
实验结论:通过本次实验,我们深入了解了正弦波的特性及用途,掌握了正弦波信号发生器的基本使用方法,熟悉了正弦波信号的测量和分析方法,并在实践中获得了相应的实验数据。
这些知识和经验对我们今后的学习和工作将有非常重要的作用。
正弦信号发生器实验报告

正弦信号发生器实验报告正弦信号发生器实验报告一、引言正弦信号发生器是电子实验室中常见的一种仪器,用于产生稳定的正弦信号。
它在各种电子设备测试和实验中起着重要的作用。
本实验旨在探究正弦信号发生器的原理和性能,并通过实际操作来验证其功能。
二、实验目的1. 理解正弦信号的特性和应用;2. 掌握正弦信号发生器的基本原理和结构;3. 学习使用正弦信号发生器进行实际测试。
三、实验原理正弦信号是一种周期性的交流信号,具有连续变化的幅度和相位。
正弦信号发生器的基本原理是通过振荡电路产生稳定的正弦波形。
振荡电路通常由放大器、反馈网络和滤波电路组成。
其中,放大器负责提供足够的增益,反馈网络则确保振荡电路的稳定性,滤波电路则用于滤除其他频率成分。
四、实验器材和材料1. 正弦信号发生器2. 示波器3. 电阻、电容等元件4. 连接线等五、实验步骤1. 将正弦信号发生器与示波器连接,使用示波器观察输出的信号波形;2. 调节正弦信号发生器的频率和幅度,观察波形的变化;3. 使用示波器测量输出信号的频率和幅度,并记录数据;4. 更换不同数值的电阻和电容,观察对信号波形的影响;5. 分析实验结果,总结正弦信号发生器的性能和特点。
六、实验结果与分析通过实验观察和测量,我们得到了一系列关于正弦信号发生器的数据。
首先,我们发现随着频率的增加,正弦信号的周期变短,波形变得更加紧凑。
而幅度的调节则使得波形的振幅增大或减小。
这表明正弦信号发生器能够根据用户的需求产生不同频率和幅度的信号。
此外,我们还发现在改变电阻和电容数值时,信号波形也会发生变化。
较大的电阻和电容会导致信号的衰减,而较小的电阻和电容则会使信号更加稳定。
因此,在实际应用中,我们需要根据具体情况选择适当的电阻和电容数值,以获得所需的信号特性。
七、实验总结本实验通过对正弦信号发生器的实际操作和观察,我们深入了解了正弦信号的特性和应用。
我们学习到了正弦信号发生器的基本原理和结构,并通过实验验证了其功能和性能。
2kHz正弦信号发生器

2kHz 正弦信号发生器设计一、设计目的1、了解数字波形产生的原理2、学习用DSP 产生各种波形的基本方法和步骤,提高用C 语言进行DSP 编程的能力。
3、掌握DSP 与D/A 转换器接口的使用。
二、设计设备计算机、DSP 硬件仿真机、ZYE1801B 实验箱,60M 示波器,连接线若干。
三、设计原理数字波形信号发生器是利用DSP 芯片,通过软件编程和D/A 转换来产生所需要的信号波形的一种方法。
在通信、仪器和控制等领域的信号处理系统中,经常会用到各种数字波形发生器。
譬如,一般产生正弦波的方法有两种:1、查表法:此种方法用于对精度要求不是很高的场合。
如果要求精度高,所需要的表格就很大,相应的存储器容量也要很大。
2、泰勒级数展开法:这是一种更为有效的方法。
与查表法相比,需要的存储单元很少,而且精度比较高。
一个角度为θ的正弦函数和余弦函数,都可以展开成泰勒级数,取其前5项进行近似得:35792222sin (1(1(1(1))))3!5!7!9!2*34*56*78*9x x x x x x x x x x θ=-+-+=----24682222cos 11(1(1(1)))2!4!6!8!23*45*67*8x x x x x x x x θ=-+-+=---- 其中:x 为θ的弧度值。
也可以用递推公式求正弦和余弦值:θθθθ)2sin()1sin(cos 2sin ---∙=n n n θθθθ)2cos()1cos(cos 2cos ---∙=n n n利用递推公式计算正弦和余弦值需已知COS θ和正、余弦的前两个值。
用这种方法,求少数点可以,如产生连续正弦、余弦波,则累积误差太大,不可取。
通过3个拨码开关对DSP 进行输入,输入的0-7对应8种不同的波形,DSP 根据输入的数据进行不同的波形处理,把处理后的数字数据发送到D/A 转换器,经D/A 转换器转换后输出模拟量,用示波器进行测量,观察。
正弦信号发生器实验报告

正弦信号发生器实验报告
《正弦信号发生器实验报告》
实验目的:
本实验旨在通过搭建正弦信号发生器,探究正弦波的特性以及其在电子电路中的应用。
实验材料:
1. 电压源
2. 电阻
3. 电容
4. 二极管
5. 信号发生器
6. 示波器
实验步骤:
1. 按照电路图搭建正弦信号发生器电路。
2. 调节电压源的输出电压,使其为所需的正弦波幅值。
3. 使用示波器观察输出波形,并调节电路参数,如电阻、电容的数值,以获得理想的正弦波形。
4. 测量并记录输出波形的频率、幅值等参数。
实验结果:
经过调节电路参数,成功搭建了正弦信号发生器。
通过示波器观察到了理想的正弦波形,并测量了其频率、幅值等参数。
实验结果表明,通过合理设计电路参数,可以得到稳定、准确的正弦波信号。
实验分析:
正弦信号是电子电路中常见的信号波形,具有周期性、稳定性好的特点,因此
在通信、音频处理等领域有着广泛的应用。
通过本实验,我们深入了解了正弦
波的产生原理,掌握了调节电路参数以获得理想波形的方法。
实验结论:
通过搭建正弦信号发生器,我们成功地产生了稳定的正弦波信号,并对其进行
了观察和测量。
这为我们进一步理解正弦波的特性以及其在电子电路中的应用
奠定了基础。
总结:
本实验通过实际操作,加深了对正弦信号发生器的理解,提高了实验操作能力,为今后的电子电路实验打下了良好的基础。
同时,也为我们将来在工程领域的
实际应用提供了宝贵的经验。
正弦波信号发生器的基本概念

平衡条件讨论
.Hale Waihona Puke Xf 正反馈网络 F·a. 相位平衡条件
一个振荡器,只在振荡频率f0时满足相位平衡条件。
在电路中应包含选频网络
.
.
Xid 放大环节 A· Xo
.
Xf 正反馈网络 F· b. 幅度平衡条件
若 ,则电路减幅振荡,最后停止振荡。
若 ,电路增幅振荡。
AF=1是维持等幅振荡的唯一条件
2.振荡的建立与稳定 A·F·=1只能维持振荡,但不能建立振荡。
正弦波信号发生器是按照自激振荡原理构成的 信号发生器常称为振荡器
1. 正弦波自激振荡的基本原理
.
.
Xid
放大环节 A· Xo
.
Xf 正反馈网络 F·
自激振荡原 理方框图
.
输入Xid
工作原理 放大环节 A·
. ..
输出Xo= AXid
. ..
反馈Xf=FXo
正反馈网络 F· 正反馈
如果X. f=X. id
可在输出端继续维持原有的输出信号
.
输入Xid
如果X. f=X. id
. ..
反馈Xf=FXo 由· 及
放大环节 A·
. ..
输出Xo= AXid
正反馈网络 F·
·.
. ··
··
知电路产生自激振荡的平衡条件为
··
式 ·· 中
· ·
上式可分解为 a. 幅度平衡条件
b. 相位平衡条件
.
.
Xid 放大环节 A· Xo
振荡电路的起振条件:
AF > 1
A·F·> 1
A·F·> 1 输出幅值越来越大,最后出现非线性失真。
正弦信号发生器原理

正弦信号发生器原理
正弦信号发生器主要由振荡电路、放大电路和输出电路三部分组成。
振荡电路是实现正弦信号的关键部分,通过在电路中引入反馈机制,产生自激振荡。
其中,通常采用的是RC振荡电路或LC振荡电路。
在RC振荡电路中,通过调节电容和电阻的数值,可以调整正弦信号的频率。
而在LC振荡电路中,则通过调节电感和电容的数值来控制频率。
振荡电路输出的信号较小,需要经过放大电路进行放大。
放大电路通常采用集成运算放大器(OP-AMP)作为基础组件,通过调整电阻、电容的数值和配置方式,可以进一步增大振荡电路输出的信号幅度。
最后,正弦信号经过输出电路进行整形,使其具有合适的输出特性。
输出电路中通常包括滤波电路,用来去除掉信号中的高频杂散成分,以及输出阻抗匹配电路,使其能够与外部设备连接。
总结起来,正弦信号发生器通过振荡电路产生基准信号,经过放大电路增大信号幅度,最后经过输出电路整形并输出。
通过调节振荡电路的参数,可以得到不同频率的正弦信号。
信号发生器设计(正弦,方波,三角,多用信号发生器)

模拟电路课程设计报告设计课题:信号发生器设计班级:10通信工程三班学生姓名:陶冬波学号:2010550921指导教师:设计时间:目录一、信号发生器摘要--------------------3二、设计目的---------------------3三、设计内容和要求四、设计方案------------------------------------------34.1 RC桥式正弦波产生电路--------------------------------------3 4.2方波产生电路----------------------------------------------------6 4.3三角波产生电路-------------------------------------------------84.4多用信号发生器-------------------------------------------------9五、组装调试及元件清单---------------------------105.1 测试仪器---------------------------------------------------------10 5.2信号发生器元件清单-----------------------------------------------115.3调试中出现的故障、原因及排除方法----------------------11六、总结设计电路,改进措施----------------------116.1 正弦波产生电路改进措施--------------------------------------116.2多用信号发生器改进措施---------------------------------------11七、收获和体会-----------------------------------------12八、参考文献--------------------------------------------12信号发生器设计一、信号发生器设计摘要:本设计介绍了波形发生器的制作和设计过程,并根据输出波形特性研究该电路的可行性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正弦信号发生器作者:曾立丁运鸿陈亮赛前辅导及文稿整理辅导教师:肖看摘要本系统以51单片机及FPGA为控制核心,由正弦信号发生模块、功率放大模块、调幅(AM)、调频(FM)模块、数字键控(ASK,PSK)模块以及测试信号发生模块组成。
采用数控的方法控制DDS芯片AD9851产生5Hz-20MHz正弦信号,经滤波、放大和功放模块放大至6v并具有一定的驱动能力。
测试信号发生模块产生的1kHz正弦信号经过调幅(AM)模块、调频(FM)模块,对高频载波进行调幅或调频。
二进制基带序列信号送入数字键控模块,产生二进制PSK或ASK 信号,同时对ASK信号进行解调,恢复出原始数字序列。
另外,本系统还配备有液晶显示屏、遥控键盘,提供了友好的人机交互界面。
ABSTRACTThis system is in the core of Micro-Processor and FPGA (Field Programmable Gate Array), consist of sine signal generating module, Power amplifier, Amplitude Modulator, Frequency Modulator, ASK/PSK module and test signal generating module. The AD9851 controlled by Micro-Process in digital way to generate sine signal with the bandwidth 5Hz to 20MHz adjustable per 1Hz. After processing by LPF & power amplifier, the output signal has a peak value of move than 6V. The sine signal at 1 KHz was send to AM and FM module to modulate the high frequency carrier waveform. The binary sequential was send to the relative module to generate ASK and PSK signal. At last demodulate module demodulate the ASK signal and got the same binary sequential as set before.In order to provide a friendly user interface, the LCD and remote infrared control keyboard was introduced in this system.一、方案的设计和论证题目要求产生1kHZ-10MHz正弦信号,并在此基础上,产生模拟调幅信号、模拟调频信号、二进制PSK、ASK信号。
1kHZ-10MHz的正弦信号发生器是本设计的关键,以此为基础,对该信号进行各种调制,得到题目要求的各种波形。
1.正弦信号产生部分方案一:使用集成函数发生器芯片ICL8038。
ICL8038能输出方波、三角波、正弦波和锯齿波四种不同的波形,将他作为正弦信号发生器。
它是电压控制频率的集成芯片,失真度很低。
可输入不同的外部电压来实现不同的频率输出。
为了达到数控的目的,可用高精度DAC来输出电压以控制正弦波的频率。
方案二:锁相环频率合成器(PLL)锁相环频率合成器(PLL)是常用的频率合成方法。
锁相环由参考信号源、鉴相器、低通滤波器、压控振荡器几个部分组成。
通过鉴相器获得输出的信号F O 与输入信号Fi的相位差,经低通滤波器转换为相应的控制电压,控制VCO输出的信号频率,只有当输出信号与输入信号的频率于相位完全相等时,锁相环才达到稳定。
如果在环路中加上分频系数可程控的分频器,即可获得频率程控的信号。
由于输出信号的频率稳定度取决于参考振荡器信号fi ,参考信号fi由晶振分频得到,晶振的稳定度相当高,因而该方案能获得频率稳定的信号。
一般来说PLL 的频率输出范围相当大,足以实现1kHz-10MHZ的正弦输出。
如果fi=100Hz 只要分频系数足够精细(能够以1步进),频率100Hz步进就可以实现。
方案三:直接数字频率合成(DDS)DDS是一种纯数字化方法。
它现将所需正弦波一个周期的离散样点的幅值数字量存入ROM中,然后按一定的地址间隔(相位增量)读出,并经DA转换器形成模拟正弦信号,再经低通滤波器得到质量较好的正弦信号,DDS原理图如下:图 1 DDS原理图方案一(VOC)不能实现稳定频率信号的输出并且难于数字控制。
并且电容、电阻参数随温度等其他因素的影响,频率稳定度以及电路的稳定度都较低,实现也较复杂,不予采纳。
虽然ICL8038可很好的实现频率输出的控制,但查看ICL8038的设计资料可知其频率输出范围为0.01Hz~300kHz,不能达到题目的要求,故不予选用。
PLL方案和DDS方案都能实现1kHz~10MHz的稳定的信号输出,且能达到100Hz频率步进,但是PLL的动态特性却很差,在频率改变时,环路从不稳定到稳定的过程有时间延迟。
相比较而言,DDS的频率输出范围一般低于PLL,且杂散也大于PLL方案,但DDS信号源具有输出频率稳定度高、精度更高、分辨率更高且易于程控等优点,且频率改变不存在失调过程,尽管有杂散干扰,只需在输出级加滤波器仍可以得到质量很好的正弦波形。
对于DDS的实现,采用可编程逻辑器件设计,可以按题目的具体要求量身定做,灵活的发挥DDS信号源的各项优良性能,但需加DA转换器等外围器件,设计工作量较大。
采用集成DDS芯片只需少量外围器件就能构成一个完整的DDS 信号源。
集成芯片的电磁兼容性、抗干扰等各方面性能一般比可编程逻辑器件设计的DDS信号源性能要好。
目前有许多可用作信号发生器的专用DDS集成芯片,如ADI公司推出的AD9851,其性能均能满足本题的要求。
2.模拟幅度调制(AM)信号的产生幅度调制是正弦载波信号的幅度随调制信号做线形变换的过程。
模拟幅度调制(AM)信号就是载波振幅按照调制信号的大小成线性变化的高频振荡,因此实现的原理就是把载波信号与调制信号相乘。
方案一:用高速DA转换器实现载波信号送入DA转换器的参考电压V ref端,调制信号通过AD采样后,把转换得到的数字量送到DA转换器的数据输入端,从而得到被调制信号调制的模拟调幅信号。
但此方案需要双极性的DAC,而且对DAC的速度也比较苛刻,设计起来难度较大,故不采用。
方案二:用高速模拟乘法器实现采用AD835高速模拟乘法器,来实现模拟调制。
模拟乘法器AD835的-3dB 截止频率为250MHz,能够满足题目的要求。
但是AD835的差分输入范围仅为±1V,因此必须对输入信号进行预处理。
综上所述,采用AD835集成高速模拟乘法器不但简化了硬件电路,并且AD835具有很低的附加噪声,在频率f<10MHz时只有50,能够大大提高系统的抗干扰能力以及稳定度,可轻松实现题目要求,故采用此方案。
对题目要求的10%~100%调制度的实现,可预先在FPGA中建立10个不同调制度对应的幅度表格,然后查询各表格,将数据送给CA3338 AD转换器输出对应幅度的1kHz的正弦波,处理后输入AD835模拟乘法器后便可得到对应调制度的AM 调幅波形。
3.模拟频率调制(FM)信号的产生由于本系统采用DDS方案做信号源,因此用模拟方法实现频率调制有一定困难,频偏较难精确控制,且容易引入干扰。
因此FM信号的产生可结合AD9851芯片用数字方法来实现。
AD9851是通过写频率控制字FSW来控制输出信号的频率的,频率控制字的值与输出信号的频率成正比。
对输入的1kHz信号经过处理后进行实时采样,得到的数据正比于载波信号的频率偏移量。
把不同幅度采样得到的数据对应不同的频率偏移量,不同的频率偏移量又对应不同的频率控制字,可以作为表存储在FPGA中。
零点对应中心频率,幅度最大的点对应正向最大频偏对应的频率,而幅度最小的点对应负向最大频偏对应的频率,实时改变载波频率。
由于题目要求5kHz与10kHz频偏,因此要制作两个查询表。
4.ASK、FSK信号的产生方案一:ASK的实现:数字基带序列和载波输入相乘实现(FSK也可通过此方法实现)。
方案二:模拟开关实现ASK、FSK是数字调制技术,可采用的模拟开关来实现。
将模拟地线和载波分别接到模拟开关的两个输入端,用数字基带序列控制模拟开关的切换,即可以得到ASK信号。
同样的道理,将载波及其倒π相信号分别通入模拟开关的两个输入端,用数字基带序列控制模拟开关的切换,可以得到PSK信号。
考虑到载波频率为100kHz,需要较高速的模拟开关。
方案三:用FPGA内调制实现。
一般来说,模拟开关成本低于模拟乘法器,使用也更加方便,故采用方案二。
同时,利用FPGA,我们也实现了方案三。
二、单元电路分析与硬件电路设计1.正弦信号发生器采用了直接数字频率合成技术,可采用ADI公司的DDS集成芯片AD9851。
AD9851由DDS电路、数据输入寄存器、频率相位数据寄存器、高速D/A转换和比较器组成。
其中高速DDS电路又由32位相位累加器和正弦查询表组成。
正弦查询表内存储了一个周期正弦波的数字幅度信息,每个地址对应正弦波中00~3600范围的一个相位点。
每送入一个时钟脉冲信号,查询表就把形成的地址信息映射成正弦波幅度信号,然后经过D/A转换器输出模拟量。
AD9851系统时钟的最高频率可达180MHz。
为了提高系统的电磁兼容能力,AD9851内部集成了一个6倍频器,降低了所需外接时钟频率。
若外部介入的参考频率选用20MHz,则经AD9851内部6倍频后,系统时钟频率相当于120MHz。
由频率合成公式可计算出,在此时钟下的输出频率分辨率为:Hz=0.0279Hz (1)最大输出频率为系统时钟频率120MHz,远超出本题100Hz的步进值,1kHz~10MHzs的要求。
AD9851内部有5个8位输入数据寄存器,其中32位用于装载频率控制字FSW。
FPGA编写时序通过对32位控制字的赋值可精确控制最终合成的信号频率fo。
FSW 与fo之间的转换公式为:(2)频率控制字可向数据输入寄存器连续装入5次数据,并行装入到AD9851中。
AD9851生成的模拟信号由I OUT、I OUTB端送出,该两端对应AD9851内DA转换器的差分电流输出端,其满度电流大小由接在R SET端的电阻值大小决定。