北师大版七年级数学下册 第三章 达标检测卷(含答案)
北师大版七年级下册数学第三章测试卷及答案

第三章变量之间的关系一、选择题(每题3分,共24分)1.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中,因变量是( )A.沙漠B.体温C.时间D.骆驼2.气温y(℃)随高度x(km)的变化而变化的情况如下表,由表可知,气温y随着高度x的增大而( )高度x/km 0 1 2 3 4 5 6 7 8气温y/℃28 22 16 10 4 -2 -8 -14 -20A.升高B.降低C.不变D.以上答案都不对3.长方形的周长为24 cm,其中一边长为x cm(其中0<x<12),面积为y cm2,则该长方形中y与x 的关系式可以写为( )A.y=x2B.y=(12-x)2C.y=(12-x)·xD.y=2(12-x)4.小明骑自行车上学,开始以正常速度匀速行驶,但行至途中自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度.下面是小明离家后他到学校剩下的路程s关于时间t的图象,那么符合小明行驶情况的图象大致是( )5.如图是某市某一天的气温变化图,根据图象,下列说法中错误的是( )A.这一天中最高气温是24 ℃B.这一天中最高气温与最低气温的差为16 ℃C.这一天中2时至14时之间的气温在逐渐升高D.这一天中只有14时至24时之间的气温在逐渐降低6.某校组织学生到距学校6 km的光明科技馆参观.王红准备乘出租车去科技馆,出租车的收费标准如下表:里程数收费/元3 km以下(含3 km) 8.003 km以上每增加1 km 1.80则收费y(元)与出租车行驶里程数x(km)(x≥3)之间的关系式为( )A.y=8xB.y=1.8xC.y=8+1.8xD.y=2.6+1.8x7.均匀地向如图所示的容器中注满水,能反映在注水过程中水面高度h随时间t变化的图象的是( )8.A,B两地相距20 km,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(km)与时间t(h)之间的关系.下列说法:①乙晚出发1 h;②乙出发3 h后追上甲;③甲的速度是4 km/h;④乙先到达B地.其中正确的个数是( )A.1B.2C.3D.4二、填空题(每题5分,共30分)9.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的关系是y=x+32.如果某一温度的摄氏度数是25 ℃,那么它的华氏度数是____________.10.小雨画了一个边长为 3 cm的正方形,如果将正方形的边长增加x cm,那么面积的增加值y(cm2)与边长的增加值x(cm)之间的关系式为____________.11.如图是甲、乙两名运动员在自行车比赛中所走路程与时间的关系图象,则甲的速度____________乙的速度(用“>”“=”或“<”填空).12.小明早晨从家骑车到学校,先上坡,后下坡,行驶情况如图所示,如果返回时上、下坡的速度与去学校时上、下坡的速度相同,那么小明从学校骑车回家用的时间是____________.13.某航空公司行李的托运费按行李的质量收取,30 kg以下免费,30 kg及以上按图中所示的关系来计算,若某人行李的质量为200 kg,则他需要付托运费____________.14.小英、爸爸、妈妈同时从家中出发到达同一目的地后都立即返回,小英去时骑自行车,返回时步行;妈妈去时步行,返回时骑自行车;爸爸往返都步行,三人步行的速度不等,小英与妈妈骑车的速度相等,每个人的行走路程与时间的关系分别是下图中的一个,走完一个往返,小英用时____________,爸爸用时____________,妈妈用时____________.三、解答题(15题10分,16题12分,17,18题每题14分,19题16分,共66分)15.下表是佳佳往表妹家打长途电话的收费记录:时间/min 1 2 3 4 5 6 7电话费/元0.6 1.2 1.8 2.4 3.0 3.6 4.2(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)若佳佳的通话时间是10 min,则需要付多少电话费?16.如图表示某市2016年6月份某一天的气温随时间变化的情况,请观察此图回答下列问题:(1)这天的最高气温是多少摄氏度?(2)这天共有多少个小时的气温在31 ℃以上?(3)这天什么时间范围内气温在上升?(4)请你预测一下,次日凌晨1时的气温大约是多少摄氏度?17.张阳从家里跑步去体育场,在那里锻炼了一会儿后,又走到文具店去买笔,然后走回家,如图是张阳离家的距离与时间的关系图象.根据图象回答下列问题:(1)体育场离张阳家多少千米?(2)体育场离文具店多少千米?张阳在文具店逗留了多长时间?(3)张阳从文具店到家的速度是多少?18.如图,一个半径为18 cm的圆,从中心挖去一个正方形,当挖去的正方形的边长由小变大时,剩下部分的面积也随之发生变化.(1)若挖去的正方形边长为x(cm),剩下部分的面积为y(cm2),则y与x之间的关系式是什么?(2)当挖去的正方形的边长由1 cm变化到9 cm时,剩下部分的面积由变化到.19.弹簧挂上物体后会伸长.已知一弹簧的长度(cm)与所挂物体的质量(kg)之间的关系如下表:所挂物体的质量/kg 0 1 2 3 4 5 6 7弹簧的长度/cm 12 12.5 13 13.5 14 14.5 15 15.5(1)当所挂物体的质量为3 kg时,弹簧的长度是___________;(2)如果所挂物体的质量为x kg,弹簧的长度为y cm,根据上表写出y与x的关系式;(3)当所挂物体的质量为5.5 kg时,请求出弹簧的长度;(4)如果弹簧的最大长度为20 cm,则该弹簧最多能挂质量为多重的物体?参考答案一、1.【答案】B解:根据自变量和因变量的定义可知,在这一问题中,体温随时间的变化而变化,时间是自变量,体温是因变量,故选B.2.【答案】B3.【答案】C4.【答案】D5.【答案】D解:由题图可知,这一天中气温在逐渐降低的时段有0时至2时和14时至24时,故选D.6.【答案】D解:由题意知,当出租车行驶里程数x≥3时,y=8+1.8(x-3)=1.8x+2.6,故选D.7.【答案】A8.【答案】C解:①③④正确,②应为乙出发2 h后追上甲.二、9.【答案】77 ℉解:将x=25代入关系式可得y=×25+32=45+32=77,故它的华氏度数是77 ℉.10.【答案】y=x2+6x解:边长为3 cm的正方形的面积是9 cm2,边长为(x+3)cm的正方形的面积为(3+x)2 cm2,所以面积的增加值y=(3+x)2-9=x2+6x.11.【答案】>12.【答案】37.2 min解:由题图可知,上坡速度为 3 600÷18=200(m/min),下坡速度为(9 600-3 600)÷(30-18)=500(m/min),返回途中,上、下坡的路程刚好相反,所用时间为 3 600÷500+(9 600-3 600)÷200=37.2(min).13.【答案】340元14.【答案】21 min;24 min;26 min三、15.解:(1)反映了电话费与通话时间之间的关系;其中通话时间是自变量,电话费是因变量.(2)设电话费为y元,通话时间为t min.则由题意可知,y与t之间的关系式为y=0.6t,故当t=10时,y=6.所以需付6元电话费.16.解:(1)37 ℃.(2)9 h. (3)3时至15时.(4)25 ℃.(答案不唯一,合理即可)17.解:(1)体育场离张阳家2.5 km.(2)因为2.5-1.5=1(km),所以体育场离文具店1 km.因为65-45=20(min),所以张阳在文具店逗留了20 min.(3)文具店到张阳家的距离为1.5 km,张阳从文具店到家用的时间为100-65=35(min),所以张阳从文具店到家的速度为1.5÷=(km/h).18.解:(1)剩下部分的面积=圆的面积-正方形的面积,所以y与x之间的关系式为y=πr2-x2=324π-x2.(2)(324π-1)cm2(324π-81)cm219.解:(1)13.5 cm(2)由表格可知,弹簧的长度y与所挂物体的质量x之间的关系式为y=12+0.5x.(3)当x=5.5时,y=12+0.5×5.5=14.75(cm).(4)当y=20时,20=12+0.5x,解得x=16,故该弹簧最多能挂16 kg重的物体.。
北师大版七年级下学期数学第三单元测试题及答案

北师大版七年级下册第三单元测试题一.选择题〔本大题共10小题,每小题3分,共30分〕1.4.13×10-4用小数表示为〔〕A.-41300 B.0.0413 C.0.00413 D.0.0004132.生活在海洋中的蓝鲸,又叫长须鲸或剃刀鲸,它的体重达到150多吨,它体重的百万分之一会与〔〕的体重相近.A.大象 B.豹 C.鸡 D.松鼠3.小敏利用某种测量工具测得自己收集到的一片树叶的长度为7.34厘米,则这种测量工具的最小单位是〔〕A.毫米 B.厘米 C.分米 D.微米4.20##1~5月份,某市累计完成地方一般预算收入216.58•亿元,数据216.58亿精确到〔〕A.百亿位 B.亿位 C.百万位 D.百分位5.下列四个近似数中,保留三个有效数字的是〔〕A.0.035 B.0.140 C.25 D.6.125×1046.下列说法中正确的是〔〕A.近似数63.0与63的精确度相同B.近似数63.0与63的有效数字相同C.近似数0.0103与2个有效数字D.近似数4.0万与4.0×104的精确度和有效数字都相同7.如图所示的是华联商厦某个月甲,乙,丙三种品牌彩电的销售量统计图,则甲,丙两种品牌彩电该月共销售了〔〕A .50台B .65台C .75台D .95台8.太阳内部高温核聚变反应释放的辐射能功率为33.8102⨯千瓦,到达地球的仅占20亿分之一,到达地球的辅射能功率为〔〕千瓦.〔用科学计数法表示,保留2个有效数字〕A .141.910⨯B .142.010⨯C .157.610⨯D .151.910⨯9.小华和小丽最近都测量了自己的身高,小华量得自己的身高约1.6米,小丽量得A .小华和小丽一样高B .小华比小丽高C .小华比小丽矮D .无法确定谁高10. 如图所示是学校对九年级的100名学生学习数学的兴趣进行问卷调查的结果,被调查的学生中对学生数学很感兴趣的有〔〕A .40人B .30人C .20人D .10人二、填空题〔本大题共6小题,每小题3分,共18分〕11.某种微生物的长度约为0.0000006m,用科学记数法表示为______.12.5纳米=______米.13.用四舍五入法取近似数,647.96精确到十分位的近似数是_______.14.3.15百万,精确到________位.15. 某中学对该校的200•名学生进行了关于"造成学生睡眠少的主要原因"的抽样调查,将调查结果制成扇形统计图〔如图〕,由图中的信息可知认为造成学生睡眠少的主要原因是作业太多的学生有______名.16.如图所示的是某居民家庭全年各项支出的统计图,则该家庭教育支出占全年总支出的百分比是 ________.三、〔本大题共3小题,第17小题6分,第18、19小题各7分,共20分〕17.某种花粉的直径大约是40微米,多少粒这种花粉首尾连接起来能达到1米?18. 全国中小学危房改造工程实施五年来,已改造的农村中小学危房占地总面积约7800万平方米,如果按一幢教学楼占地面积约750平方米计算,那么该工程共修建了大约有多少幢教学楼?〔结果保留两个有效数字〕19.小明的身高约为1.7m,小华的身高约为1.70m,小强的身高约为1.700m,这里近似数1.7,1.70,1.700有无区别?请说明理由.四、〔本大题共2小题,每小题7分,共14分〕20.某商店为了了解本店一种罐装饮料上半年的销售情况,随机调查了8•天该种饮料的日销售量,结果如下〔单位:听〕:75,70,85,75,60,50,80,60.〔1〕这8天的平均日销售量约是多少听?〔结果精确到个位〕〔2〕根据〔1〕中的计算结果,估计上半年〔按181天计算〕该店能销售这种饮料多少听?〔结果用科学记数法表示,并保留两个有效数字〕21.某中学七年级一班的45名学生中,12岁的有5人,13岁的有35人,14岁的有4人,15岁的有1人,求这个班学生的平均年龄.〔结果精确到个位〕五、〔本大题共2小题,第22小题8分,第23小题10分,共18分〕22.某地区教育部门要了解初中学生阅读课外书籍的情况,随机调查了本地区500名初中学生一学期阅读课外书的本数,并绘制了如图3-3-12所示的统计图.请根据统计图反映的信息回答问题.〔1〕这些课外书籍中,哪类书的阅读数量最大?〔2〕这500名学生一学期平均每人阅读课外书约多少本?〔精确到1本〕〔3〕若该地区共有2万名初中学生,请估计他们一学期阅读课外书的总本数.23.某校为了解七年级学生体育测试情况,以九年级〔1〕班学生的体育测试成绩为样,,,四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图本,按A B C D中所给信息解答下列问题:〔说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下〕〔1〕请把条形统计图补充完整;〔2〕样本中D级的学生人数占全班学生人数的百分比是;〔3〕若该校九年级有500名学生,请你用此样本估计体育测试中A级和B级的学生人数约为人.北师大版七年级下册第三单元测试题答一、1.D 2.D 3.A 4.C 5.B 6.D 7.C 8.A 9.D 10.B二、11.6×10-7m 12.5×10-9 13.648.0 14.万 15.88三、17.解:因为1微米=10-6米,所以这种花粉的直径大约是40×10-6米,即4×10-5米,1÷〔4×10-5〕=2.5×104〔粒〕.答:2.5×104粒这种花粉首尾连接起来能达到1米.18. 解:78000000÷750=104000=1.04×105≈1.0×105〔幢〕.答:该工程共修建了大约1.0×105幢教学楼.19. 解:近似数1.7,1.70,1.700有区别.理由:〔1〕它们的精确度不同:1.7精确到十分位;1.70精确到百分位;1.700•精确到千分位;〔2〕它们的有效数字也不同:1.7有2位有效数字;1.70有3•个有效数字;•1.700有4个有效数字.因此它们是有区别的.四、20.解:〔1〕〔75+70+85+75+60+50+80+60〕÷8=69.375≈69〔听〕答:这8天的平均日销售量约是69听.〔2〕69×181=12489≈1.2×104〔听〕答:估计上半年〔按181天计算〕该店能销售这种饮料约1.2×104听.21.解:〔12×5+13×35+14×4+15×1〕÷45=586÷45=13.02≈13〔岁〕等级5答:这个班学生的平均年龄约为13岁.五、22.解:〔1〕这些课外书籍中,小说类的阅读数量最大.〔2〕〔2.0+3.5+6.4+8.4+2.4+5.5〕×100÷500=5.64≈6〔本〕. 答:这500名学生一学期平均每人阅读课外书约6本.〔3〕20000×6=120000〔本〕或2×6=12〔万本〕.答:他们一学期阅读课外书的总本数是12万本.23.〔1〕条形图补充正确;〔2〕10﹪;〔3〕330.。
七年级数学下册北师大版第三单元测试(含答案)

七年级数学下册北师大版第三单元测试班级姓名一、选择题1.如果在一个顶点周围用两个正方形和n 个正三角形恰好可以进行平面镶嵌,则n 的值是( ).A .3 B .4 C .5 D .62.下面四个图形中,线段BE 是⊿ABC 的高的图是( )3.已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是()A .13cmB .6cmC .5cmD .4cm4.三角形一个外角小于与它相邻的内角,这个三角形是( )A .直角三角形B .锐角三角形C .钝角三角形D .属于哪一类不能确定5.如图,在直角三角形ABC 中,AC≠AB,AD 是斜边上的高,DE⊥AC,DF⊥AB,垂足分别为E 、F ,则图中与∠C (∠C 除外)相等的角的个数是( ) A 、3个 B 、4个 C 、5个 D 、6个6.如图,将一副三角板叠放在一起,使直角的顶点重合于O ,则∠AOC+∠DOB=( )A 、900B 、1200C 、1600D 、18007.以长为13cm 、10cm 、5cm 、7cm 的四条线段中的三条线段为边,可以画出三角形的个数是( )(A)1个 (B)2个 (C)3个 (D)4个8.给出下列命题:①三条线段组成的图形叫三角形 ②三角形相邻两边组成的角叫三角形的内角 ③三角形的角平分线是射线 ④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外 ⑤任何一个三角形都有三条高、三条中线、三条角平分线 ⑥三角形的三条角平分线交于一点,且这点在三角形内。
正确的命题有( )第5题图第6题图AA.1个B.2个C.3个D.4个二、填空题9.如图,一面小红旗其中∠A=60°, ∠B=30°,则∠BCD= 。
10.为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是___________________.11.把一副常用的三角板如图所示拼在一起,那么图中∠ADE 是 度。
北师大版七年级下册数学第三章测试卷及答案

第三章知识梳理A卷知识点1用表格表示的变量间关系一、选择题1.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中的因变量是()A.太阳光强弱B.水的温度C.所晒时间D.热水器答案:B2.一个长方形的面积是10 cm2,其长是a cm,宽是b cm,下列判断错误的是()A.10是常量B.10是变量C.b是变量D.a是变量答案:B3.某地受台风影响发生强降雨,某水库一天的水位记录如表.根据表中数据可知,水位上升最快的时段是()A.8~12时B.12~16时C.16~20时D.20~24时答案:D二、填空题4.小明的妈妈自小明出生起,每隔一段时间就给小明称体重,得到如表的数据.从表中可以得到:小明体重是随小明的变化而变化,这两个变量中,是自变量,是因变量.答案:年龄年龄体重三、解答题5.已知某易拉罐厂设计一种易拉罐,在设计过程中发现符合要求的易拉罐的底面半径与用铝量有如下关系:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当易拉罐底面半径为2.4 cm时,易拉罐需要的用铝量是多少?(3)根据表格中的数据,你认为易拉罐的底面半径为多少时比较适宜?说明理由;(4)简要说明易拉罐底面半径对所需铝质量的影响.答案:解:(1)上表反映了易拉罐的底面半径与用铝量之间的关系,易拉罐的底面半径是自变量,用铝量是因变量.(2)当易拉罐的底面半径为2.4 cm时,易拉罐需要的用铝量是5.6 cm3. (3)易拉罐的底面半径为2.8 cm时比较适宜,因为此时用铝量少,成本低. (4)当易拉罐底面半径为1.6~2.8 cm时,用铝量随半径的增大而减少;当易拉罐底面半径为2.8~4.0 cm时,用铝量随半径的增大而增加.知识点2用关系式表示的变量间关系一、选择题6.以固定的速度v向上抛一个小球,小球的高度h与小球的运动时间t之间的关系式是h=vt-4.9t2,在这个关系式中,常量、变量分别是()A.4.9是常量,t,h是变量B.v是常量,t,h是变量C.v0,-4.9是常量,t,h是变量 D.4.9是常量,v,t,h是变量答案:C7.某地温度T与高度d之间的关系可以近似地用如图所示的关系式表示,当d=900时,T的值为()A.4B.5C.6D.16答案:A8.李大爷要围成如图所示的长方形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长度恰好为24 m.设BC边的长为x m,AB边的长为y m,则y 与x之间的关系式为()A.y=-12x+12 B.y=-2x+24C.y=2x-24D.y=12x-12答案:A9.据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05 mL.小康洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x min后,水龙头滴出y mL水,则y与x之间的关系式是()A.y=0.05xB.y=5xC.y=100xD.y=0.05x+100答案:B二、填空题10.(上海)同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的关系式是y=95x+32,如果某一温度的摄氏度数是25 ℃,那么它的华氏度数是℉. 答案:7711.如图,△ABC的边长BC是8,BC边上的高AD′是4,点D在BC上运动,设BD的长为x,则△ACD的面积y与x的关系式是.答案:y=2(8-x)12.汽车开始行驶时,油箱中有油55 L,如果每小时耗油7 L,则油箱内剩余油量y L与行驶时间t h之间的关系式是.答案:y=55-7t三、解答题13.地壳的厚度约为8~40 km,在地表以下某地的温度y可按y=3.5x+t计算,其中x是深度,t是地表温度.(1)在这个变化过程中,自变量和因变量分别是什么?(2)如果t=2,求当x=5时y的值.答案:解:(1)自变量是深度x,因变量是地表以下某地的温度y.(2)当t=2,x=5时,y=3.5×5+2=19.5.14.人在运动时的心跳速率通常和人的年龄有关,如果用x来表示年龄,用y来表示正常情况下运动时所能承受的每分钟心跳的最高次数,那么有y=0.8×(200-x).(1)正常情况下,在运动时一个13岁的学生每分钟所能承受的最高心跳次数是多少?(2)一个30岁的人运动时,如果半分钟心跳的次数是70,那么他有危险吗?答案:解:(1)x=13时,y=0.8×(200-13)=189.6(次).答:在运动时一个13岁的学生每分钟所能承受的最高心跳次数是189.6次. (2)x=30时,y=136,136÷2=68<70.所以他有危险.知识点3用图象表示的变量间关系一、选择题15.(贵州六盘水)为了加强爱国主义教育,学校每周一都要举行庄严的升旗仪式,同学们凝视着冉冉上升的国旗,下列哪个函数图象能近似地刻画上升的国旗离旗杆顶端的距离与时间的关系()答案:A16.如图是护士统计一位流感病人的体温变化图,这位病人在16时的体温约是()A.37.8 ℃B.38 ℃C.38.7 ℃D.39.1 ℃答案:C17.小明的父亲从家走了20 min到一个离家900 m的书店,在书店看了10 min 书后,用15 min返回家,下列图中表示小明的父亲离家的距离与时间的函数图象是( )答案:B二、填空题18.园林队在公园进行绿化,中间休息了一段时间.已知绿化面积S与时间t的函数关系如图所示,则休息后园林队绿化面积为平方米.答案:10019.如图是某地的气温变化情况.(1)在时气温最高,为℃;(2)在时到时气温是逐渐上升的.答案:(1)15 15(2)8 15三、解答题20.如图是江津区某一天的气温随时间变化的图象.根据图象回答:(1)12时的气温是多少?(2)什么时间气温最高,最高是多少?什么时间气温最低,最低是多少?(3)什么时间的气温是4 ℃?答案:解:(1)8 ℃.(2)14时气温最高,最高是10 ℃;4时气温最低,最低是-4 ℃.(3)8时和22时.21.小华某天上午9时骑自行车离开家,17时回家,他有意描绘了离家的距离与时间的变化情况,如图所示.(1)图象表示了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)10时和11时,他分别离家多远?(3)他最初到达离家最远的地方是什么时间?离家多远?(4)11时到13时,他行驶了多少千米?答案:解:(1)图象表示了离家的距离与时间之间的关系,时间是自变量,离家的距离是因变量.(2)10时他离家15 km,11时他离家20 km.(3)他最初到达离家最远的地方是13时,离家30 km.(4)11时到13时,他行驶了10 km.。
七年级数学下册北师大版第三单元测试(含答案)

七年级数学下册北师大版第三单元测试班级 姓名一、选择题1.如果在一个顶点周围用两个正方形和n 个正三角形恰好可以进行平面镶嵌,则n 的值是( ).A .3 B .4 C .5 D .6 2.下面四个图形中,线段BE 是⊿ABC 的高的图是( )3.已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ) A .13cmB .6cmC .5cmD .4cm4.三角形一个外角小于与它相邻的内角,这个三角形是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .属于哪一类不能确定 5.如图,在直角三角形ABC 中,AC ≠AB ,AD 是斜边上的高, DE ⊥AC ,DF ⊥AB ,垂足分别为E 、F ,则图中与∠C (∠C 除外)相等的角的个数是( ) A 、3个 B 、4个 C 、5个 D 、6个6.如图,将一副三角板叠放在一起,使直角的顶点重合于O , 则∠AOC+∠DOB=( )A 、900B 、1200C 、1600D 、18007.以长为13cm 、10cm 、5cm 、7cm 的四条线段中的三条线段为边,可以画出三角形的个数是( )(A)1个 (B)2个 (C)3个 (D)4个8.给出下列命题:①三条线段组成的图形叫三角形 ②三角形相邻两边组成的角叫三角形的内角 ③三角形的角平分线是射线 ④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外 ⑤任何一个三角形都有三条高、三条中线、三条角平分线 ⑥三角形的三条角平分线交于一点,且这点在三角形内。
正确的命题有( )第5题图第6题图A.1个B.2个C.3个D.4个二、填空题9.如图,一面小红旗其中∠A=60°, ∠B=30°,则∠BCD= 。
10.为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是___________________.11.把一副常用的三角板如图所示拼在一起,那么图中∠ADE 是 度。
(北师大版)初中数学七年级下册第三章综合测试01含答案解析

加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!第三章综合测试一、选择题(每小题3分,共30分)1.滑雪动员从斜坡顶部滑了下来,可以大致刻画出滑雪动员下滑过程中速度随时间变化情况的是( )A B C D2.在ABC △中,它的一边是a ,该边上的高是h ,则ABC △的面积12S ah =,当h 为定长时,在此式中( ) A .S ,a 是变量,12,h 是常量 B .S ,h ,a 是变量,12是常量 C .a ,h 是变量,12,S 是常量 D .S 是变量,12,a ,h 是常量 3.弹簧挂重物会伸长,测得弹簧长度y (cm )最长为20cm ,与所挂物体质量x (kg )间有下面的关系.A .x 与y 都是变量,x 是自变量,y 是因变量B .所挂物体为6kg 时,弹簧长度为11cmC .在弹簧伸缩范围内,物体每增加1kg ,弹簧长度就增加0.5cmD .挂30kg 物体时一定比原长增加15cm4.“人间四月芳菲尽,山寺桃花始盛开”,说明温度随着高度的升高而降低.已知某地地面温度为20℃,且每升高1千米温度下降6℃,则山上距离地面h 千米处的温度t 为( )A .206t h =−B .206h t =−C .206t h =− D .206h t=− 5.星期六,小明从家里骑自行车到同学家去玩,然后返回,如图所示是他离家的距离y (千米)与时间x (分)的关系的图象,根据图象信息,下列说法不一定正确的是( )A .小明到同学家的路程是3千米B .小明在同学家逗留的时间是1小时C .小明去时走上坡路,回家时走下坡路D .小明回家时用的时间比去时用的时间少6.在生理上,人的情绪的高低呈一定的周期性变化.如图所示是小明在一个月中情绪起伏的状况.下列说法正确的是()A.小明从情绪最低到情绪最高要一个月时间B.小明的情绪周期大约为半个月C.小明从情绪最低到情绪最高要半个月时间D.每月的6日后不能与小明交往7.如图所示的四幅图象分别表示变量之间的关系,请按图象的顺序,将下面的四种情境与之对应排序.a b c d①运动员推出去的铅球(铅球的高度与时间的关系);②静止的小车从光滑的斜面滑下(小车的速度与时间的关系);③一个弹簧秤由不挂重物到所挂重物的质量逐渐增加(弹簧秤的长度与所挂重物的质量的关系);④小明先从A地到B地后,停留一段时间,然后按原速度原路返回(小明离A地的距离与时间的关系).正确的顺序是()A.①②③④B.①④②③C.①③②④D.①③④②8.如图所示的四幅图象分别近似刻画两个变量之间的关系,请按图象顺序将下面情景与之对应排序()甲乙丙丁①一辆汽车在公路上匀速行驶(汽车行驶的路程与时间的关系);②向底大口小的锥形瓶中匀速注水(水面的高度与注水时间的关系);③将常温下的温度计插入一杯热水中(温度计的读数与时间的关系);④一杯越来越凉的水(水温与时间的关系).A.①②③④B.③④②①C.①④②③D.③②④①9.陈灿从家中出发,到离家1.5千米的早餐店吃早餐,用了一刻钟吃完早餐后,按原路返回到离家1千米的学校上课,在下列图象中,能反映这一过程的大致图象是()A B C D10.甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人间的距离为s(单位:千米),甲行驶的时间为t(单位:时),s与t之间的关系如图所示,有下列结论:①出发1小时时,甲、乙在途中相遇;②出发1.5小时时,乙比甲多行驶了60千米;③出发3小时,甲、乙同时到达终点;④甲的速度是乙的速度的一半.其中正确结论的个数是()A.4B.3C.2D.1二、填空题(每小题4分,共24分)11.“冰层越厚,所承受的压力就越大”,其中自变量是________,因变量是________.12.梯形的上底长为8,下底长为x,高是6,那么梯形面积y与下底长x之间的关系式是________.(不必写出自变量的取值范围)13.小明从家跑步到学校,接着马上原路步行回家.如图是小明离家的路程y(米)与时间t(分)的关系图象,则小明回家的速度是每分钟步行________.14.某城市大剧院地面的一部分为扇形,观众席的座位数按下表设置,则第5排、第6排分别有________、________个座位;第n排有________个座位.15.根据如图所示的计算程序计算变量y的对应值,若输入x的值为−,则输出的结果为________.216.火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的长度为120米;②火车的速度为30米/秒;③火车整体都在隧道内的时间为25秒;④隧道长度为750米.其中正确的结论是________.(把你认为正确结论的序号都填上)三、解答题(共46分)17.(10分)要通过驾照考试,初学驾驶的人就必须熟悉交通规则,也要知道路况不好时,使车子停止前进所需的大约距离,经交警部门测算,得到如下表所示的一些对应的数值:(1(2)说一说这两个变量之间的变化趋势如何,从中可以得到什么启示.18.(10分)周末,小明坐公交车到滨海公园游玩,他从家出发0.8小时后达到中心书城,逗留一段时间后继续坐公交车到滨海公园,小明离家一段时间后,爸爸驾车沿相同的路线匀速前往滨海公园.如图是他们离家路程(km)与小明离家时间(h)的关系图,请根据图回答下列问题:(1)图中自变量是________,因变量是________;(2)小明家到滨海公园的路程为________km,在中心书城逗留的时间为________h;(3)小明出发________小时后爸爸驾车出发;(4)小明从中心书城到滨海公园的平均速度为________km/h,小明爸爸驾车的平均速度为________km/h;(5)爸爸驾车经过________小时追上小明,他离家路程s与小明离家时间t之间的关系式为________. 19.(12分)将长为30cm,宽为10cm的长方形白纸按如图所示的方法黏合起来,黏合部分的宽为3cm.(1)求5张白纸黏合后的长度;(2)设x 张白纸黏合后的总长度为cm y ,写出y 与x 之间的关系式,并求20x =时y 的值及813y =时x 的值;(3)设x 张白纸黏合后的总面积为2cm S ,写出S 与x 之间的关系式,并求30x =时S 的值及5430S =时x 的值.20.(14分)阳阳离开家去新华书店买书,回来后,阳阳用所学知识绘制了一幅反映他离家的距离与时间的关系图(如图),请根据阳阳绘制的这幅图回答以下问题:(1)阳阳到达新华书店用了多长时间?(2)新华书店离阳阳家有多远?(3)阳阳回家用了多长时间?(4)阳阳从家到新华书店的平均速度是多少?返回时的平均速度是多少?第三章综合测试答案解析一、 1.【答案】A 2.【答案】A 【解析】因为12S ah =,当h 为定长时,12,h 不变,是常量,S ,a 是变量. 3.【答案】D【解析】选项A 正确,x 与y 都是变量,x 是自变量,y 是因变量;选项B 正确,所挂物体为6kg 时,弹簧长度为860.511cm +⨯=;选项C 正确,在弹簧伸缩范围内,物体每增加1kg ,弹簧长度就增加0.5cm ;选项D 错误,8152320+=>,而弹簧长度最长为20cm .故选D. 4.【答案】A【解析】因为每升高1千米温度下降6℃,所以升高h 千米温度下降6h ℃,所以山上距离地面h 千米处的温度206t h =−. 5.【答案】C【解析】由题图可知小明到同学家的路程是3千米,小明去同学家用了20分钟,在同学家逗留的时间是1小时,从同学家回自己家用了15分钟,比去时用的时间少,但不能确定是上坡路还是下坡路.故选C. 6.【答案】C【解析】由题图读出6日情绪最低,21号情绪最高,故选C. 7.【答案】D【解析】a 与①对应;b 中小车开始时是静止的,所以它的速度应从0开始,逐渐增大,所以b 与④对应;c 中弹簧秤不挂重物时有一定的长度,随着所挂重物的质量逐渐增加,弹簧秤逐渐伸长,所以c 与②对应;d 中小明由A 地出发又返回A 地,中间有一段停留时间,所以d 与③对应,故选D. 8.【答案】D【解析】对“①一辆汽车在公路上匀速行驶(汽车行驶的路程与时间的关系)”进行分析,由于路程=速度×时间,速度一定,路程与时间的关系应为图象丁,故可排除选项A 、C.对“②向底大口小的锥形瓶中匀速注水(水面的高度与注水时间的关系)”进行分析,水面的高度应随注水时间的增加而增加,但增加得越来越快;对“④一杯越来越凉的水(水温与时间的关系)”进行分析,水温应随时间的增加而减小,且减小得越来越慢,故选D. 9.【答案】B【解析】陈灿从家中出发,到离家1.5千米的早餐店吃早餐,距离逐渐增大,当吃早餐时,距离不变,当返回学校时,距离逐渐变小,到达学校后距离不再变化.故选B. 10.【答案】B【解析】由题图可得,A 、B 两地相距120千米,行驶1小时,甲、乙两人相遇,故①正确;乙行驶1.5小时到达A 地,甲行驶3小时到达B 地,故③错误;乙的速度为120 1.580/÷=(千米时),甲的速度为120340/÷=(千米时),∴甲的速度是乙的速度的一半,故④正确;出发 1.5小时,乙比甲多行驶了1.5804060⨯−=()(千米),故②正确.故选B.二、11.【答案】冰层厚度 压力12.【答案】324y x =+【解析】根据梯形的面积公式可得862324y x x =+⨯÷=+(),故答案为324y x =+. 13.【答案】80【解析】通过读图可知:小明从学校步行回家所用的时间是15510−=(分),所走的路程是800米,所以小明回家的速度是每分钟步行8001080÷=(米).故答案为80.14.【答案】62 65 473n +()【解析】由题表可以看出每增加1排,增加3个座位,第n 排有5031473n n +−=+()()个座位.15.【答案】32−【解析】21111322122x y =−−−∴=−=−,-<<,.16.【答案】②③【解析】火车的长度是150米,故①错误;如图,在BC 段,所用的时间是5秒,路程是150米,则速度是150530/÷=米秒,故②正确;整个火车都在隧道内的时间是355525−−=秒,故③正确;隧道长是3530150900⨯−=米,故④错误.故正确的是②③.三、17.【答案】解:(1)反映的是“车子的速度”与“停止距离”两个变量之间的关系.(2)车速越快,停止距离越大,这样在路上行驶时越不安全,为保证行车安全,应该按照交通规则规定的速度行驶.18.【答案】解:(1)时间 路程 (2)30 1.7 (3)2.5 (4)12 30 (5)233075s t =− 【解析】爸爸驾车经过12301322h −=追上小明;爸爸离家路程s 与小明离家时间t 之间的关系式为2.530s t =−⨯(),即3075s t =−.19.【答案】解:(1)138cm .(2)273y x =+(x 为正整数),当20x =时,543y =;当813y =时,30x =. (3)27030S x =+(x 为正整数),当30x =时,8130S =;当5430S =时,20x =. 20.【答案】解:(1)阳阳到达新华书店用了20分钟. (2)新华书店离阳阳家有900米.(3)453015−=(分),阳阳回家用了15分钟.(4)9002045/÷=(米分);9001560/÷=(米分).阳阳从家到新华书店的平均速度是45米/分,返回时的平均速度是60米/分.。
七年级数学下册北师大版第三单元测试(含答案)

七年级数学下册北师大版第三单元测试班级姓名一、选择题1.如果在一个顶点周围用两个正方形和n个正三角形恰好可以进行平面镶嵌,则n的值是().A.3 B.4 C.5 D.62.下面四个图形中,线段BE是⊿ABC的高的图是()3.已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()A.13cm B.6cm C.5cm D.4cm4.三角形一个外角小于与它相邻的内角,这个三角形是()A.直角三角形 B.锐角三角形 C.钝角三角形 D.属于哪一类不能确定5.如图,在直角三角形ABC中,AC≠AB,AD是斜边上的高,DE⊥AC,DF⊥AB,垂足分别为E、F,则图中与∠C(∠C除外)相等的角的个数是()A、3个B、4个C、5个D、6个6.如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB=()A、900B、1200C、1600D、18007.以长为13cm、10cm、5cm、7cm的四条线段中的三条线段为边,可以画出三角形的个数是()(A)1个 (B)2个 (C)3个 (D)4个8.给出下列命题:①三条线段组成的图形叫三角形②三角形相邻两边组成的角叫三角形的内角③三角形的角平分线是射线④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外⑤任何一个三角形都有三条高、三条中线、三条角平分线⑥三角形的三条角平分线交于一点,且这点在三角形内。
正确的命题有( )第5题图第6题图A.1个B.2个C.3个D.4个二、填空题9.如图,一面小红旗其中∠A=60°, ∠B=30°,则∠BCD= 。
10.为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是___________________.11.把一副常用的三角板如图所示拼在一起,那么图中∠ADE 是 度。
12.如图,∠1=_____.13.若三角形三个内角度数的比为2:3:4,则相应的外角比是 . 14.如图,⊿ABC 中,∠A = 40°,∠B = 72°,CE 平分∠ACB ,CD ⊥AB 于D ,DF ⊥CE , 则∠CDF = 度。
2021-2022学年北师大版七年级数学下册《第3章变量之间的关系》单元综合达标测试题(附答案)

2021-2022学年北师大版七年级数学下册《第3章变量之间的关系》单元综合达标测试题(附答案)一.选择题(共8小题,满分40分)1.某市居民生活用水的收费标准是2.5元/立方米,当用水量为x(立方米)时,收取水费为y(元).对于这一问题中,下列说法正确的是()A.2.5是自变量,x是因变量B.2.5是因变量,y是自变量C.2.5是因变量,y是常量,x是自变量D.2.5是常量,x是自变量,y是因变量2.下列关系式中,表示y不是x的函数的是()A.B.C.D.3.点燃的蜡烛每分钟燃烧的长度一定,长22cm的蜡烛,点燃10分钟,变短了4cm,设点燃x分钟后,还剩ycm,下列说法正确的有()A.蜡烛每分钟燃烧0.6cm B.y与x的关系式为y=22﹣4xC.第23分钟时,蜡烛还剩12.8cm D.第51分钟时,蜡烛燃尽4.火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,下列结论正确的是()A.火车的长度为120米B.火车的速度为30米/秒C.火车整体都在隧道内的时间为35秒D.隧道长度为750米5.一个学习小组利用同一块木板,测量了小车从不同高度下滑的时间,他们得到如表数据:支撑物的高度h(cm)10203040506070小车下滑的时间t(s) 4.23 3.00 2.45 2.13 1.89 1.71 1.59下列说法正确的是()A.当h=70cm时,t=1.50sB.h每增加10cm,t减小1.23C.随着h逐渐变大,t也逐渐变大D.随着h逐渐升高,小车下滑的平均速度逐渐加快6.如图,一个矩形的长比宽多3cm,矩形的面积是Scm2.设矩形的宽为xcm,当x在一定范围内变化时,S随x的变化而变化,则S与x满足的函数关系是()A.S=4x+6B.S=4x﹣6C.S=x2+3x D.S=x2﹣3x7.变量x,y的一些对应值如下表:x…﹣2﹣10123…y…﹣8﹣16132027…根据表格中的数据规律,当x=﹣5时,y的值是()A.75B.﹣29C.41D.﹣758.某天早晨,小明从家骑自行车去上学,途中因自行车发生故障而维修.如图所示的图象反映了他骑车上学的整个过程,则下列结论正确的是()A.修车花了10分钟B.小明家距离学校1000米C.修好车后花了25分钟到达学校D.修好车后骑行的速度是110米/分钟二.填空题(共6小题,满分30分)9.某复印店复印收费y(元)与复印面数x面的函数图象如图所示,从图象中可以看出,复印超过100面的部分,每面收费元.10.李师傅加工一批零件,工作时间与加工零件总数的关系如图.(1)工作时间与加工零件总数成比例.(2)照这样计算,加工270个零件需要小时.11.小涵骑车从学校回家,中途在十字路口等红灯用了1分钟,然后继续骑车回家.若小涵骑车的速度始终不变,从出发开始计时,小涵离家的距离s(单位:米)与时间t(单位:分钟)的对应关系如图所示,则该十字路口与小涵家的距离为.12.某市地铁票价计费标准如表所示:乘车距离x,单位:公里.乘车距离x x≤66<x≤1212<x≤2222<x≤32x>32票价(元)3456每增加1元可乘20公里另外,使用市政交通一卡通,每个自然月每张卡片支出累计满100元后,超出部分打8折;满150元后,超出部分打5折;支出累计达400元后,不再打折.小红妈妈上班时,需要乘坐地铁15公里到达公司,每天上下班共乘坐两次,如果每次乘坐地铁都使用市政交通一卡通,那么每月第22次乘坐地铁上下班时,她刷卡支出的费用是元.13.小李从沂南通过某快递公司给在南昌的外婆寄一盒樱桃,快递时,他了解到这个公司除收取每次6元的包装费外,樱桃不超过1kg收费22元,超过1kg,则超出部分按每千克10元加收费用.已知小李给外婆快寄了 2.5kg樱桃,请你求出这次快寄的费用是元.14.如图1,在长方形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止,设点R运动的路程为x,三角形MNR的面积为y,如果y随x变化的图象如图2所示,则三角形MNR的最大的面积是.三.解答题(共6小题,满分50分)15.已知某易拉罐厂设计一种易拉罐,在设计过程中发现符合要求的易拉罐的底面半径与用铝量有如下关系:底面半径x(cm) 1.6 2.0 2.4 2.8 3.2 3.6 4.0用铝量y(cm³) 6.9 6.0 5.6 5.5 5.76 6.5(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当易拉罐底面半径为2.4cm时,易拉罐需要的用铝量是多少?(3)根据表格中的数据,你认为易拉罐的底面半径为多少时比较适宜?说说你的理由;(4)粗略说一说易拉罐底面半径对用铝量的影响16.在面积都相等的若干矩形中,当其中一个矩形的一边长为1时,它的另一边长为3.(1)设矩形的长宽分别为x、y,求y关于x的函数表达式;(2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?17.宁陵酥梨个大皮薄,酥脆多汁,香甜味美,含糖量高达15%,富含磷、铁、VC等多种元素和维生素,是畅销海内外的佳品珍果.2020年果农小林家的酥梨喜获丰收,在销售过程中,酥梨的销售额y(元)与销量x(千克)满足如下关系:销量x(千克)12345678销售额y(元)3691215182124(1)上表这个变化过程中,自变量是,因变量是.(2)酥梨的销售额y(元)与销量x(千克)之间的关系式为.(3)当酥梨销量为50千克时,销售额是多少元?18.一个函数的图象如图所示,根据图象回答问题(1)写出自变量x的取值范围;(2)当x=18时,则y的值是;(3)求△ABO的面积;(4)当18≤x<23时,请说明:当x的值逐渐变大时,函数值y怎样变化?19.某城市对用户的自来水收费实行阶梯水价,收费标准如下表所示:超过18吨的部分月用水量不超过12吨的部分超过12吨不超过18吨的部分收费标准(元/吨) 2.00 2.50 3.00(1)某用户5月份缴水费45元,则该用户5月份的用水量是多少?(2)某用户想月所缴水费控制在20元至30元之间,则该用户的月用水量应该如何控制?(3)若某用户的月用水量为m吨,请用含m的代数式表示该用户月所缴水费.20.某商场在“五一”期间举行促销活动,根据顾客按商品标价一次性购物总额,规定相应的优惠方法:①如果不超过500元,则不予优惠;②如果超过500元,但不超过800元,则按购物总额给予8折优惠;③如果超过800元,则其中800元给予8折优惠,超过800元的部分给予6折优惠.促销期间,小红和她母亲分别看中一件商品,若各自单独付款,则应分别付款480元和520元;若合并付款,则她们总共只需付款多少元.参考答案一.选择题(共8小题,满分40分)1.解:居民生活用水的收费标准是2.5元/立方米,当用水量为x(立方米)时,收取水费为y(元).对于这一问题中2.5为常量,x为自变量,y为因变量.故选:D.2.解:A、对于自变量x的每一个值,y不是有唯一的值与它对应,所以y不是x的函数,故A符合题意;B、对于自变量x的每一个值,y都有唯一的值与它对应,所以y是x的函数,故B不符合题意;C、对于自变量x的每一个值,y都有唯一的值与它对应,所以y是x的函数,故C不符合题意;D、对于自变量x的每一个值,y都有唯一的值与它对应,所以y是x的函数,故D不符合题意;故选:A.3.解:A、燃烧10分钟后变短了4cm,可得每分钟燃烧=0.4cm,故不正确,不合题意;B、点燃的蜡烛每分钟燃烧的长度一定,长22cm的蜡烛,点燃10分钟,变短了4cm,设点燃x分钟后,还剩ycm,y与x的关系式为y=22﹣0.4x,故不正确,不合题意;C、第23分钟时,蜡烛还剩y=22﹣0.4×23=12.8cm,故正确,符合题意;D、第51分钟时,蜡烛还剩y=22﹣0.4×51=1.6cm,故不正确,不合题意;故选:C.4.解:由题意可知,火车的长度是150米,故选项A不合题意;在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒,故选项B符合题意;整个火车都在隧道内的时间是:35﹣5﹣5=25(秒),选项C不合题意;隧道长是:35×30﹣150=900(米),故选项D不合题意.故选:B.5.解;A.由表格可知,当h=70cm时,t=1.59s,故A不符合题意;B.由表格可知,h由10cm增加20cm,t减小1.23;h由20cm增加30cm,t减小0.15,故B不符合题意;C.随着h逐渐升高,t逐渐变小,故C不符合题意;D.随着h逐渐升高,小车的时间减少,小车的速度逐渐加快,故D正确;故选:D.6.解:由题意得:S=x(x+3)=x2+3x,∴S与x满足的函数关系是:S=x2+3x,故选:C.7.解:根据表格数据可知,函数的解析式为y=7x+6,当x=﹣5时,y=7×(﹣5)+6=﹣29.故选:B.8.解:A.由横坐标看出,小明修车时间为20﹣5=15(分钟),故本选项不符合题意;B.由纵坐标看出,小明家离学校的距离2100米,故本选项不合题意;C.由横坐标看出,小明修好车后花了30﹣20=10(分钟)到达学校,故本选项不合题意;D.小明修好车后骑行到学校的平均速度是:(2100﹣1000)÷10=110(米/分钟),故本选项符合题意;故选:D.二.填空题(共6小题,满分30分)9.解:超过100面部分每面收费(70﹣50)÷(150﹣100)=0.4(元),故答案为:0.4.10.解:(1)由图象可知,工作时间与加工零件总数成正比例,故答案为:正;(2)李师傅加工零件的速度为每小时30个,则加工270个零件需要的时间为:270÷30=9(小时),故答案为:9.11.解:小涵骑车的速度=1500÷(6﹣1)=300(米/分钟).十字路口与小涵家的距离=1500﹣300×2=900(米).故答案为:900米.12.解:小红妈妈每天的上下班的费用分别为5元,即每天10元,10天后花费100元,第22次乘坐地铁时,价格给予8折优惠,此时花费5×0.8=4(元),故答案为:4.13.解:设该公司从沂南到南昌快寄樱桃的费用为y(元),所寄樱桃为x(kg),当x>1时,y=6+22+(x﹣1)×10=10x+18,把x=2.5代入y=10x+18,得y=10×2.5+18=25+18=43,故这次快寄的费用是43元.故答案为:4314.解:当R在PN上运动时,面积y不断在增大,当到达点P时,面积开始不变,到达Q后面积不断减小,由图2可知:当x=4时,点R与点P重合,PN=4,当x=10时,点R与点Q重合,PQ=10﹣4=6,所以矩形PQMN的面积为:4×6=24,所以三角形MNR的最大面积是24÷2=12.故答案为:12.三.解答题(共6小题,满分50分)15.解:(1)易拉罐底面半径和用铝量的关系,易拉罐底面半径为自变量,用铝量为因变量.(2)当底面半径为2.4cm时,易拉罐的用铝量为5.6cm3.(3)易拉罐底面半径为2.8cm时比较合适,因为此时用铝较少,成本低.(4)当易拉罐底面半径在1.6~2.8cm变化时,用铝量随半径的增大而减小,当易拉罐底面半径在2.8~4.0cm间变化时,用铝量随半径的增大而增大.16.解:(1)由题意可得:xy=3,则y=(x>0);(2)∵一个矩形的周长为6,∴x+y=3,∴x+=3,整理得:x2﹣3x+3=0,∵b2﹣4ac=9﹣12=﹣3<0,∴矩形的周长不可能是6;所以圆圆的说法不对.∵一个矩形的周长为10,∴x+y=5,∴x+=5,整理得:x2﹣5x+3=0,∵b2﹣4ac=25﹣12=13>0,∴矩形的周长可能是10,所以方方的说法对.17.解:(1)自变量是销量,因变量是销售额,故答案为:销量,销售额;(2)根据表格的数据得y=3x,故答案为:y=3x;(3)当x=50时,y=3×50=150(元),答:当酥梨销量为50千克时,销售额是150元.18.解:(1)自变量x的取值范围是0≤x≤23;(2)当x=18时,则y的值是12;故答案为:12;(3);(4)由图象可知,当18≤x<23时,当x的值逐渐变大时,函数值y随着x的变大而减小.19.解:(1)当用水12吨时,缴水费为2×12=24元,当用水18吨时,缴水费为24+2.5×(18﹣12)=24+15=39元,∵45元>39元,∴5月份的用水量超过18吨,设5月份的用水量为x吨,根据题意得,39+(x﹣18)×3=45,解得x=20;(2)根据(1),当所缴水费为20元时,∵20<24,∴用水20÷2=10吨,当所缴水费为30元时,∵24<30<39,∴设用水为x,则24+(x﹣12)×2.5=30,解得x=14.4,所以,该用户的月用水量应该控制在10~14.4吨之间;(3)①m≤12吨时,所缴水费为2m元,②12<m≤18吨时,所缴水费为2×12+(m﹣12)×2.5=(2.5m﹣6)元,③m>18吨时,所缴水费为2×12+2.5×(18﹣12)+(m﹣18)×3=(3m﹣15)元.20.解:由题意知付款480元,实际标价为480或480×=600元,付款520元,实际标价为520×=650元,①当小红买标价为480元,她母亲买标价为650元时,总买标价480+650=1130元,应付款:800×0.8+(1130﹣800)×0.6=838元.②当小红买标价为600元,她母亲买标价为650元时,总买标价600+650=1250元,应付款:800×0.8+(1250﹣800)×0.6=910元.答:她们总共只需付款838元或910元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版七年级数学下册第三章达标检测卷一、选择题(每题3分,共30分)1.在球的体积公式V=43πr3中,下列说法正确的是()A.V,π,r是变量,43是常量B.V,π是变量,43,r是常量C.V,r是变量,43,π是常量D.V是变量,43,π,r是常量2.气温y(℃)随高度x(km)的变化而变化的情况如下表,由表可知,气温y随着高度x的增大而()高度x/km 0 1 2 3 4 5 6 7 8气温y/℃28 22 16 10 4 -2 -8 -14 -20A.升高B.降低C.不变D.以上都不对3.长方形的周长为24 cm,其中一边的长为x(0<x<12)cm,面积为y cm2,则该长方形中y与x的关系式可以写为()A.y=x2B.y=(12-x)2C.y=(12-x)x D.y=2(12-x) 4.小明骑自行车上学,开始以正常速度匀速行驶,但行至途中自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度.下面是小明离家后他到学校剩下的路程s关于时间t的图象,那么符合小明行驶情况的图象大致是()5.如图是某市某一天的气温变化图,根据图象,下列说法中错误的是() A.这一天中最高气温是24 ℃B.这一天中最高气温与最低气温的差为16 ℃C.这一天中2时至14时之间的气温在逐渐升高D.这一天中只有14时至24时之间的气温在逐渐降低6.在某次试验中,测得两个变量之间的对应数据如下表:m 1 2 3 4v 0.01 2.9 8.03 15.1则m与v之间的关系式最接近于下列各关系式中的()A.v=2m-2 B.v=m2-1 C.v=3m-3 D.v=m+1 7.星期天,小王去朋友家借书,如图是他离家的距离y(千米)与时间x(分)的关系图象,根据图象信息,下列说法正确的是()A.小王去时的速度大于回家时的速度B.小王在朋友家停留了10分钟C.小王去时所花的时间少于回家时所花的时间D.小王去时走下坡路,回家时走上坡路8.根据图中的程序计算y的值,若输入的x值为3,则输出的y值为() A.-5 B.5C.32D.49.如图是某蓄水池的横断面示意图,分为深水区和浅水区,如果这个蓄水池以固定的流量注水,下面能大致表示水的深度与时间之间的关系的图象是()10.A,B两地相距20 km,甲、乙两人都从A地去B 地,如图,l1和l2分别表示甲、乙两人所走路程s(km)与时间t(h)之间的关系.给出下列说法:①乙晚出发1 h;②乙出发3 h后追上甲;③甲的速度是4 km/h;④乙先到达B地.其中正确的个数是()A.1 B.2 C.3 D.4二、填空题(每题3分,共24分)11.同一温度的华氏度数y()与摄氏度数x(℃)之间的关系式是y=95x+32.如果某一温度的摄氏度数是25 ℃,那么它的华氏度数是________.12.小雨画了一个边长为3 cm的正方形,如果将正方形的边长增加x cm,那么面积的增加值y(cm2)与边长的增加值x(cm)之间的关系式为______________.13.如图是甲、乙两名运动员在自行车比赛中所行路程与时间的关系图象,则甲的速度________乙的速度(用“大于”“等于”或“小于”填空).14.经研究发现,高度每升高1 km,温度会下降6 ℃.若某火山喷出的岩浆温度高达2 010 ℃,那么距离火山口200 km的高空温度将达到________℃. 15.某下岗职工购进一批货物到集贸市场零售,已知卖出的货物质量x(kg)与售价y(元)的关系如下表:质量x/kg 1 2 3 4 5售价y/元2+0.1 4+0.2 6+0.3 8+0.4 10+0.5 则用x表示y的式子是____________.16.声音在空气中传播的速度y(m/s)与气温x(℃)之间的关系式为y=35x+331.当x=22 ℃时,某人看到烟花燃放5 s后才听到声音,则此人与燃放烟花所在地的距离为________m.17.小明早晨从家骑车到学校,先上坡,后下坡,行驶情况如图所示,如果返回时上、下坡的速度与去学校时上、下坡的速度相同,那么小明从学校骑车回家用的时间是________.18.如图①,在长方形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.在这个变化过程中,变量x表示点R运动的路程,变量y表示△MNR的面积,图②表示变量y随x的变化情况,则当y=9时,点R 所在的边是____________.三、解答题(19~21题每题10分,其余每题12分,共66分)19.为了解某种品牌汽车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表.汽车行驶时间t/h 0 1 2 3 …油箱剩余油量Q/L 50 42 34 26 …(1)根据上表的数据,请你直接写出Q与t之间的关系式.(2)汽车行驶5 h后,油箱中的剩余油量是多少?20.如图表示某市2019年6月份某一天的气温随时间变化的情况,请观察此图回答下列问题:(1)这天的最高气温是多少摄氏度?(2)这天共有多少时的气温在31 ℃以上?(3)这天什么时间范围内气温在上升?(4)请你预测一下,次日凌晨1时的气温大约是多少摄氏度?21.如图是甲骑自行车与乙骑摩托车分别从A,B两地向C地(A,B,C地在同一路线上)行驶过程中离B地的距离与行驶时间的关系图,请你根据图象回答下列问题:(1)A,B两地哪个距C地近?近多少?(2)甲、乙两人谁出发时间早?早多长时间?(3)甲、乙两人在途中行驶的平均速度分别为多少?22.如图,在△ABC中,底边BC=8 cm,当△ABC的高AD由小到大变化时,三角形的面积发生了变化.(1)在这个变化过程中,自变量、因变量分别是什么?(2)若三角形的高为x(cm),那么该三角形的面积y(cm2)与x的关系式是什么?(3)当x=2时,y的值是多少?23.弹簧挂上物体后会伸长.已知一弹簧的长度(cm)与所挂物体的质量(kg)之间的关系如下表:所挂物体的质量/kg 0 1 2 3 4 5 6 7弹簧的长度/cm 12 12.5 13 13.5 14 14.5 15 15.5(1)当所挂物体的质量为3 kg时,弹簧的长度是________;(2)在弹性限度内如果所挂物体的质量为x kg,弹簧的长度为y cm,根据上表写出y与x的关系式;(3)当所挂物体的质量为5.5 kg时,请求出弹簧的长度;(4)如果弹簧的最大长度为20 cm,那么该弹簧最多能挂质量为多少的物体?24.小明用的练习本可以到甲超市购买,也可以到乙超市购买.已知两超市的标价都是每本1元,但甲超市的优惠条件是购买10本以上,从第11本开始按标价的70%卖;乙超市的优惠条件是每本都按标价的85%卖.(1)当小明要买20本时,到哪家超市购买较省钱?(2)写出在甲超市购买,总价y甲(元)与购买本数x(本)(x>10)的关系式.(3)小明现有24元,最多可以买多少本练习本?答案一、1.C 2.B 3.C 4.D5.D点拨:由题图可知,这一天中气温在逐渐降低的时段有0时至2时和14时至24时,故选D.6.B7.B8.B9.C10.C点拨:①③④正确,②应为乙出发2 h后追上甲.二、11.77 点拨:将x=25代入关系式可得y=95×25+32=45+32=77,故它的华氏度数是77 .12.y=x2+6x点拨:边长为3 cm的正方形的面积是9 cm2,边长为(x+3)cm 的正方形的面积为(3+x)2 cm2,所以面积的增加值y=(3+x)2-9=x2+6x. 13.大于14.81015.y=2.1x16.1 72117.37.2 min点拨:由题图可知,去学校时上坡速度为3 600÷18=200(m/min),下坡速度为(9 600-3 600)÷(30-18)=500(m/min),返回途中,上、下坡的路程与去时刚好相反,所用时间为3 600÷500+(9 600-3 600)÷200=37.2(min).18.PN边或QM边三、19.解:(1)Q=50-8t.(2)当t=5时,Q=50-8×5=10.答:汽车行驶5 h后,油箱中的剩余油量是10 L.点拨:变量的求值方法:已知自变量,利用关系式求因变量的值,实际上就是求代数式的值;已知因变量,利用关系式求自变量的值,实际上是求方程的根.20.解:(1)37 ℃.(2)9 h.(3)3时至15时.(4)25 ℃(答案不唯一,合理即可).21.解:(1)A地距C地近,近20 km.(2)甲出发时间早,早2 h.(3)甲的平均速度:(80-20)÷6=10(km/h),乙的平均速度:80÷(4-2)=40(km/h).答:甲的平均速度为10 km/h,乙的平均速度为40 km/h. 22.解:(1)自变量:三角形的高,因变量:三角形的面积.(2)y=12×8·x=4x.(3)当x=2时,y=4×2=8.23.解:(1)13.5 cm(2)由表格可知,y与x之间的关系式为y=12+0.5x.(3)当x=5.5时,y=12+0.5×5.5=14.75,即弹簧的长度为14.75 cm.(4)当y=20时,20=12+0.5x,解得x=16,故该弹簧最多能挂16 kg的物体.24.解:(1)买20本时,在甲超市购买需用10×1+10×1×70%=17(元),在乙超市购买需用20×1×85%=17(元),所以买20本到两家超市买价钱一样.(2)y甲=10×1+(x-10)×1×70%=0.7x+3(x>10).(3)由题知在乙超市购买,总价y乙(元)与购买本数x(本)的关系式为y乙=x×1×85%=17 20x.所以当y甲=24时,24=0.7x+3,x=30;当y乙=24时,24=1720x,x≈28.所以拿24元最多可以买30本练习本(在甲超市购买).。