生物化学脂类代谢

合集下载

生物化学之脂类代谢

生物化学之脂类代谢
1、是生物机体内重要的贮能和供能物质:脂肪完全氧 化产能9.3千卡/g;蛋白质完全氧化产能4千卡/g;糖 完全氧化产能大约4千卡/g。 但不是主要贮能和供能物质:脂肪少而糖类多,则 对机体无大碍,但脂肪多而糖类少,则对机体有碍 。这是因为TCA中乙酰CoA和草酰乙酸是起始物质 ,而草酰乙酸则主要由糖生成,故脂肪的生物氧化 需要有糖类生物氧化配合。 2、是良好的脂溶剂 3、供给人和动物营养必需的不饱和脂肪酸:亚油酸、 亚麻酸、花生四烯酸是机体必须的,缺少时会产生 一些疾病。亚油酸:治心血管病。
第七章 脂类代谢
第一节 第二节 第三节 第四节 第五节 第六节 脂类的消化和吸收 甘油三酯的分解代谢 甘油三酯的合成代谢 磷脂的代谢 胆固醇代谢 血浆脂蛋白代谢
脂类
脂肪:甘油三酯 脂类
胆固醇 胆固醇酯 磷脂 糖脂
类脂
是动、植物细胞原生质的主要成分 分子中除C、H、O外,还有P和N
一、脂肪的生理功能
乙酰乙酸硫激酶(肾脏)
(3)乙酰乙酰CoA硫解,生成2分子乙酰CoA
CH3CHOHCH 2COOH
β -羟丁酸
β -羟丁酸脱氢酶
NAD+ NADH+H +
CH2 CH2
COOH COSCoA
HSCoA+ATP 乙酰乙酰硫激酶 AMP+PPi
(肾脏)
CH2COCH2COOH 乙酰乙酸 CH3COCH2COSCoA
步骤1:脱氢
步骤2:加水(水化)
步骤3:再脱氢
步骤4:硫解
由此产生2碳的乙酰CoA,剩下少掉2个碳的脂酰CoA,再 进入β-氧化循环。一个16碳的软脂酸经过完全分解总共可产生 129个ATP。
O
脂肪酸
RCH2CH2C 脂酰CoA 合成酶

生物化学第10章 脂类代谢

生物化学第10章 脂类代谢

课外练习题一、名词解释1、脂肪动员;2、酮体;3、脂肪酸的β-氧化;4、血脂;5、高脂血症;二、符号辨识1、ACP;2、BCCP;三、填空1、甘油三酯的合成包括()途径和()途径共两条途径。

2、脂肪酸β-氧化的限速酶是()。

3、脂肪酸的活化在()中进行,由()酶催化。

4、脂肪酸的β-氧化包括()、()、()和()四步连续反应。

5、酮体在()中生成,在()组织中利用。

6、酮体包括()、()和()三种物质。

7、脂肪酸合成的主要原料是(),需通过()循环由线粒体转运至细胞质。

8、脂肪酸合成的关键酶是()羧化酶;脂肪酸合成酶系催化合成的终产物主要是()。

9、脂肪酸碳链的延长可在()和()中进行。

10、人体内不能合成的不饱和脂肪酸主要是()、()和()。

11、人体内胆固醇的来源有二,即()和()。

胆固醇合成的主要原料是()。

12、胆固醇在体内可转化生成()、()激素和维生素()。

13、参与胆固醇合成的NADPH主要来自()途径;乙酰CoA来自()代谢。

14、3-磷酸甘油的来源有两种方式,即()的消化产物和葡萄糖经过()途径产生。

15、每一分子脂肪酸被活化为脂酰CoA需消耗()个高能磷酸键。

16、脂酰CoA经一次β-氧化可生成()分子乙酰CoA和比原来少()个碳原子的脂酰CoA。

17、一分子14碳长链脂酰CoA可经()次β-氧化生成()个乙酰CoA。

18、若底物脱下的[H]全部转变成A TP,则1mol软脂酸(含16C)经β-氧化途径可共生成()个ATP,或净生成()个A TP。

19、脂肪酸的合成原料包括()、()、()和()。

20、脂肪酸的β-氧化在()中进行,需经过()、()和()反应三个过程。

21、脂酰CoA需要借助一种特殊的载体即()才能从细胞浆转运到线粒体内。

22、不饱和脂肪酸的氧化除了β-氧化的酶外,还需要()酶和()酶的参与。

23、脂肪酸合成时,乙酰CoA的转移是通过()转运体系进行的,()是乙酰基的载体。

生物化学第11章、脂类代谢

生物化学第11章、脂类代谢

5
E SH S O C CH2 OH CH CH3
SH SH
2
E S
CoASH
COCH3
ACP
ACP
ACP
S
COCH2COOH
加氢 NADP+
缩合
E SH S O C CH2 O C CH3
3
β-酮脂酰-ACP合酶
4
NADPH+H+
ACP
CO2
(四)由脂肪酸合酶催化的各步反应

1、启动
CH3CO~SCoA CoASH

1、有利的一面 (1) 酮体具有水溶性,生成后进入血液,输送到 肝外组织利用; (2)作为燃料,经柠檬酸循环提供能量。 因此,酮体是输出脂肪能源的一种形式。 如:禁食、应急及糖尿病时,心、肾、骨骼肌摄 取酮体代替葡萄糖供能,节省葡萄糖以供脑和红 细胞所需,并可防止肌肉蛋白的过多消耗。 长期饥饿时,酮体供给脑组织50~70%的能量。
4、还原
NADPH+H NADP β -酮酰 —SH —SH OH E ACP还原酶 E ACP—S—COCH2CHCH3 ACP—S—COCH2COCH3
+ +


NADPH作为还原剂参与此反应。 脂酸生物合成中所需的NADPH大部分是戊糖磷 酸途径供给的,有些来自苹果酸酶反应。
5、脱水
—SH E
(二)丙二酸单酰CoA的形成



1、脂肪酸合成起始于乙酰-CoA转化成丙二酸单酰 - CoA,该反应是在 乙酰-CoA 羧化酶作用下实现 的。 2、乙酰-CoA羧化酶催化的反应是脂肪酸合成中 的限速步骤。 3、乙酰CoA羧化酶的组成 包括生物素羧基载体蛋白(BCCP)、生物素羧化 酶、羧基转移酶3个亚基,辅基为生物素。

动物生物化学 第七章 脂类代谢

动物生物化学 第七章  脂类代谢

CH2OH甘油激酶 CH2OPO23- 磷酸甘油脱氢酶 CH2OPO23-
CHOH
CHOH
CO
CH2OHATP ADP CH2OH NAD+ NADH+ H+ CH2OH
2.脂肪酸的分解代谢
(1)脂肪酸的-氧化
• 脂肪酸的-氧化作用是指脂肪酸在氧化 分解时,碳链的断裂发生在脂肪酸的位,即脂肪酸碳链的断裂方式是每次切 除2个碳原子。脂肪酸的-氧化是含偶数 碳原子或奇数碳原子饱和脂肪酸的主要 分解方式。
• 胰脂肪酶是一种非专一性水解酶,对脂肪酸碳 链的长短及饱和度专一性不严格。但该酶具有 较好的位置选择性,即易于水解甘油酯的1位 及3位的酯键,主要产物为甘油单酯和脂肪酸。 甘油单酯则被另一种甘油单酯脂肪酶水解,得 到甘油的脂肪酸。
1.脂肪的动员
1.甘油的代谢
• 甘油经血液输送到肝脏后,在ATP存在下,由甘油激 酶催化,转变成-磷酸甘油。这是一个不可逆反应过 程。-磷酸甘油在脱氢酶(含辅酶NAD+)作用下, 脱氢形成磷酸二羟丙酮。磷酸二羟丙酮是糖酵解途径 的一个中间产物,它可以沿着糖酵解途径的逆过程合 成葡萄糖及糖原;也可以沿着糖酵解正常途径形成丙 酮酸,再进入三羧酸循环被完全氧化。
• (2)许多类脂及其衍生物具有重要生理作用。脂类代 谢的中间产物是合成激素、胆酸和维生素等的基本原 料,对维持机体的正常活动有重要影响作用。
• (3)人类的某些疾病如动脉粥样硬化、脂肪肝和酮尿 症等都与脂类代谢紊乱有关。
7.1 脂肪的分解代谢
• 脂肪在脂肪酶催化下水解成甘油和脂肪酸,它 们在生物体内将沿着不同途径进行代谢。
• 由于软脂酸转化成软脂酰CoA时消耗了1分子ATP中的两个 高能磷酸键的能量(ATP分解为AMP, 可视为消耗了2个 ATP),因此,1分子软脂酸完全氧化净生成 131 – 2 = 129 个ATP。

生物化学-第六章 脂类代谢

生物化学-第六章 脂类代谢

四、脂类的主要生理功能
分类 含量 分布 生理功能 1. 储脂供能 2. 提供必需脂酸 脂肪组织、 3. 促脂溶性维生素吸收 血浆 4. 热垫作用 5. 保护垫作用 6. 构成血浆脂蛋白
生物膜、 神经、 血浆
脂肪
95﹪
类脂
5﹪
1. 维持生物膜的结构和功能 2. 胆固醇可转变成类固醇激 素、 维生素、胆汁酸等 3. 构成血浆脂蛋白
(二)动物体内重要脂肪酸
习惯名称 乙酸 月桂酸 肉豆蔻酸 软脂酸 硬脂酸 油酸 亚油酸 亚麻酸 十二碳脂酸 十四碳脂酸 十六碳脂酸 十八碳脂酸 十八碳一烯酸 十八碳二烯酸 十八碳三烯酸 系统名称 碳原子数 双键数 2 12 14 16 18 18 18 18 3 4 5 0 0 0 0 0 1 2 3 9 9,12 9,12,15 9 18:1Δ9C
+ H2NCH2COOH CH2CONHCH2COOH
苯乙尿酸
CH3CH CH2CH CH2COOH 2COOH H2 CH
2 2
β
α
β
α
(二)脂肪酸一般氧化分解过程
四个阶段:
P402
1、脂肪酸激活(线粒体外膜):RCOOH →RCOSCOA
2、脂酰COA转运(10C以上): RCOSCOA 肉毒碱 RCOSCOA
脂肪动员过程
ATP 脂解激素-受体 +
G蛋白
+
AC
cAMP +
HSLa(无活性) PKA
HSLb(有活性)
甘油一酯
甘油二酯脂肪酶 FFA
甘油二酯
FFA
甘油三酯
甘油一酯脂肪酶 FFA
甘油
AC:腺苷酸环化酶 PKA :蛋白激酶A

生物化学第七章脂类代谢

生物化学第七章脂类代谢

软脂酸合成的总反应式:
乙酰CoA + 7丙二酸单酰CoA + 14NADPH+H+
脂肪酸合成酶系 软脂酸(16C)+14 NADP++8HSCoA+7CO2+6H2O
软 脂 酸 的 合 成 总 图
目录
(四) 脂酸合成的调节
(1)代谢物的调节作用
乙酰CoA羧化酶的别构调节 抑制剂:软脂酰CoA及其他长链脂酰CoA
激活剂:柠檬酸、异柠檬酸
糖代谢加强,NADPH及乙酰CoA供应增 多,有利于脂酸的合成。 大量进食糖类能增强脂肪合成酶的活性从 而使脂肪合成增加。
(2)激素调节
胰岛素
胰高血糖素 肾上腺素 生长素 + 脂酸合成
﹣ 脂酸合成 ﹣ TG合成
乙酰CoA羧化酶的共价调节 胰高血糖素:激活PKA,使之磷酸化而失活 胰岛素:通过磷蛋白磷酸酶,使之去磷酸化 而复活
作用:转移羧基
(2)软脂酸合成 各种生物合成软脂酸的过程基本相似。 软脂酸的合成是一个重复加成过程,每 次延长2个碳原子。由脂酸合成酶系催化。
真核生物7种酶蛋白结构域(脂肪酰基转移酶、
丙二酰酰CoA酰基转移酶、β酮脂肪酰合成酶、β酮
脂肪酰还原酶、β羟脂酰基脱水酶、脂烯酰还原酶、
硫酯酶)和脂酰基载体蛋白(ACP)聚合在一条多肽
第 七 章
脂类代谢
Metabolism of Lipid
第一节 脂 类 的 概 述
一、脂类的概念:
脂类(lipids)是脂肪(fat)和类脂(lipoid)的总称。
脂肪(甘油三酯 triglyceride)
脂类 类脂 胆固醇(酯) cholesterol 磷脂 phospholipid
糖脂
脂类物质的基本构成:

生物化学7.脂类代谢

生物化学7.脂类代谢

脂肪动员的结果是生成三分子的自 由脂肪酸(free fatty acid,FFA) 和一分子的甘油。 甘油可在血液循环中自由转运,而 脂肪酸进入血液循环后须与清蛋白 结合成为复合体再转运。 脂肪动员生成的甘油主要转运至肝 脏再磷酸化为3-磷酸甘油后进行代 谢。
甘油的代谢:
脂肪动员生成的甘油,主要经血循环转运 至肝脏进行代谢。 1.甘油在甘油磷酸激酶的催化下,磷酸化 为3-磷酸甘油:
乙醛酸循环的生理意义
1、对油料种子而言,乙醛酸循环可以为糖 异生提供原料,从而在没有光合作用的 情况下合成碳源和能源。 2、对细菌和藻类而言,乙醛酸循环可使其 利用乙酸盐为碳源和能源。 3、是连接糖代谢和脂代谢的枢纽。
油 料 种 子 萌 发 时 脂 肪 转 化 为 糖 过 程
习题
1.下列关于乙醛酸循环的论述不正确的是( )
2.丙二酸单酰CoA的合成:
在乙酰CoA羧化酶的催化下,将乙酰CoA 羧化为丙二酸单酰CoA。乙酰CoA羧化酶 受柠檬酸和异柠檬酸的变构激活,受长链 脂酰CoA的变构抑制。
乙酰CoA羧化酶 (生物素)
HOOC-CH2-CH(OH)-CH2-N+-(CH3)3
肉碱的分子结构
细胞溶胶中形成的脂酰CoA不能透过 线粒体内膜。肉碱可以携带脂酰基进入 线粒体。
脂酰CoA的转运
肉脂酰转移酶Ⅰ和Ⅱ是一组同工酶
(3) β -氧化: β -氧化过程由四个连续的酶促反应 组成: ① 脱氢; ② 水化; ③ 再脱氢; ④ 硫解。
(1)偶数碳原子脂肪酸: 2n — 2(n—1)= 2 即苯乙酸
(1)奇数碳原子脂肪酸:
( 2n+1)—2n = 1 即苯甲酸
只有脂肪酸以β -氧化这种方式分解才会出 现只有两种代谢终产物(苯甲酸和苯乙酸)的 情况。其他类型都有2种以上终产物。

生物化学(2)第四章 脂类的代谢

生物化学(2)第四章  脂类的代谢

例如:油脂酰CoA经3次β-氧化产 生3分子乙酰CoA后,剩余部分为△ 3,4顺烯月桂酰CoA,该底物在△3,4-顺-△2, 3-反-烯脂酰CoA异构酶作用下,将△ 3, 4-顺式转化为△2,3-反式结构,进行β氧化。
四、脂肪酸氧化的其他途径 (一)奇数碳链饱和脂肪酸的氧化 许多植物和海洋生物体内的脂类含 有奇数碳原子脂肪酸,石油酵母脂类中 含有大量15和17碳脂肪酸。 奇数碳原子的脂肪酸依偶数碳原子 脂肪酸相同的方式进行氧化,但在氧化 的最后一轮产物是丙酰辅酶A和乙酰辅 酶A。
5、酸中毒 在正常情况下,人体血液中含有少量 酮体(78.4~489.7μ mol /L),但在某 些情况下,如胃炎、饥饿、糖尿病等由于 脂肪动员增强,肝中酮体的生成超过肝外 组织氧化利用酮体的能力,就会出现血中 酮体含量过多,出现血中酮体含量较高 (酮血症);严重者尿中有酮体,呼气有 酮味(烂苹果味),称为“酮尿症”。 由于酮体中的乙酰乙酸、 β -羟丁酸 是酸性物质,可导致血液中pH下降,导 致酸中毒。
(三)能量 1、每次β -氧化有两次脱氢过程,产生1分子 FADH2和1分子NADH。 其中: FADH2 2 ATP 5 ATP NADH 3 ATP 2、 乙酰CoA参加三羧酸循环,每次12ATP。
例子
一分子软脂酸通过β -氧化彻底分解生成 ATP数量: 7次β -氧化:7×5=35ATP 8分子乙酰CoA:8×12=96ATP 活化时消耗2个高能磷酸键; 净生成:129个ATP。
存在
肝脏和某些需氧细菌中存在(清除海洋 浮油污染)。
五、酮体的生成和利用 1、酮体的生成 脂肪酸β -氧化所生成的乙酰CoA 在肝外组 织中,大部分可迅速通过三羧酸循环氧化成二 氧化碳和水,并产生能量或被某些反应所利用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

掌握内容:
必需脂酸的概念及种类:
人体需要但又不能合成,必须从食物中获取的脂酸。

人体必需的脂酸是亚油酸,亚麻酸,花生四烯酸。

脂肪动员:
概念及过程:储存于脂肪细胞中的甘油三酯,在三种脂肪酶的作用下逐步水解为游离脂酸和甘油,释放入血供其他组织氧化利用的过程,称脂肪动员。

甘油三酯脂肪酶是脂肪动员的限速酶。

(过程PPT29、30)
激素敏感性脂肪酶的定义和作用:
甘油三酯脂肪酶是脂肪动员的限速酶,其活性受多种激素调节故称激素敏感性脂肪酶
脂解激素:增加脂肪动员限速酶活性,促进脂肪动员活性的激素。

(肾上腺素、去甲状腺激素、胰高血糖素、促肾上腺皮质激素、促甲状腺激素
抗脂解激素:抑制脂肪动员,(胰岛素,前列腺素E2,烟酸)
甘油的代谢甘油的主要去路:
*经糖异生转变为葡萄糖
*氧化分解为水、二氧化碳、提供能量
*参与TG和磷脂的合成
甘油→3-磷酸甘油→磷酸二羟丙酮→氧化分解,供能
↓↓
合成磷脂和TG 糖异生
脂酸的氧化分解
概念:脂酸在胞液中活化成脂酰辅酶A,在肉碱的帮助下进入线粒体基质进行β--氧化,每次β--氧化可产生1MOL乙酰辅酶A和比原来少两个碳原子的脂酰辅酶A,偶数碳脂酸最终产生乙酰辅酶A,奇数碳脂酸除乙酰辅酶A外还有1MOL 丙酰辅酶A.
部位:肝、肌肉(脑和成熟红细胞不行)
反应阶段:1)脂酸的活化(胞液)
2)脂酰辅酶A进入线粒体
3)脂酰COA的β--氧化(线粒体)
过程及酶;
有关能量的计算:脂酰COA+7FAD+7NAD++7COA-SH+7H2O→8乙酰COA+7FADH2+7(NADH+H+)
1)软脂酸(16C饱和脂酸的)活化—2ATP
2)7次β--氧化4*7ATP
3)8乙酰COA进入TCA循环彻底氧化10*8ATP
净生成106ATP
脂酰辅酶Aβ--氧化小结
部位:线粒体
四部连续反应:脱氢、加水、再脱氢、硫解
脱氢酶的辅酶:FAD和NAD
产物:偶数碳脂酸乙酰辅酶A
奇数碳脂酸乙酰辅酶A和一分子丙酰COA
一次β--氧化生成ATP数目(1.5+2.5)ATP=4ATP
酮体
定义是脂酸在肝脏中不完全氧化产生的中间代谢产物,包括乙酰乙酸、β-羟丁酸,丙酮酸。

生成与利用:生成部位:肝脏的线粒体
原料:乙酰COA
限速酶:HMGCoA合成酶(羟甲基戊二酸单酰辅酶A合成酶
利用:部位:心、肾、脑、骨骼肌(线粒体)利用酮体的酶:琥珀酰CoA转硫酶(心、肾、脑、骨骼肌
乙酰乙酸硫激酶(心、肾、脑)
乙酰乙酰辅酶A硫解酶(心、肾、脑、骨骼肌酮体代谢的特点:肝内生成肝外用
生理意义:1)酮体是肝脏输出能源的一种形式。

在饥饿、运动的条件下,酮体是脑组织和肌肉的主要能源。

2)酮体利用的增加可减少糖的利用,有利于维持血糖水平恒定、节省蛋白质的消耗。

甘油三脂的合成代谢-脂酸合成酶系催化
(一)合成部位:小肠粘膜:利用脂肪消产物再合成脂肪肝脏:肝内质网合成的TG,组成VLDL入血,肝细胞能合成脂肪,但不能储存脂肪
脂肪细胞:主要以葡萄糖为原料合成脂肪,也利用CM 和VLDL中的脂酸合成脂肪
(二)合成原料:1:甘油和脂酸主要来自于普通糖代谢
2:CM中的FFA
(三)基本合成途径:
1:甘油一酯途径(小肠粘膜细胞)
2:甘油二酯途径(肝、脂肪细胞)
磷脂代谢:
甘油磷脂的组成:由甘油、脂肪酸、磷酸及含氮化合物组成。

其基本结构
磷脂酰胆碱及磷脂酰乙醇胺
合成的原料:脂酸、甘油、磷酸盐、和乙醇胺。

供能物质:ATP、CTP
重要的中间物质:CDP-胆碱、CDP-乙醇胺
合成过程:甘油二酯途径
降解:以磷脂酰胆碱为例
磷脂在磷脂酶的作用下。

水解为组成成分,然后进一步代谢。

胆固醇代谢:
合成部位:脑组织,成熟红细胞不能
肝脏最强,肠次之
胞液和内质网
原料:18乙酰CoA+36ATP+16(NADPH+H+)
限速酶:HMGCoA还原酶
合成过程:1)甲羟戊酸的合成胞液、
2)鲨烯的合成胞液
3)胆固醇的合成内质网
在体内的代谢转化:在肝脏内转变成胆汁酸(主要去路)
转变为类固醇
转变成VB3
转变成粪固醇排出体外
血浆脂蛋白
血脂:血浆中所含脂类的总称包括甘油三脂、磷脂、胆固醇、胆固醇脂脂和游离脂酸。

血脂蛋白的概念:脂类水溶性差、必须与水溶性强的蛋白质
结合形成脂蛋白(lipoprotein,LP),才能在血液中运输。

血浆脂蛋白是脂类的运输形式(除了游离脂酸由血浆清蛋白结合而运输外)
脂蛋白:脂类
载脂蛋白
分类:(电泳法、超速离心法)
乳糜微粒CM、极低脂蛋白VLDL、低脂蛋白LDL、高脂蛋白HDL
组成特点
熟悉
脂类消化和吸收的特点
消化:1)胆汁酸盐的乳化作用
2)酶的催化作用(辅酯酶的作用)
吸收:1)中短链脂酸和甘油直接吸收
2)长链脂酸重新酯化与磷脂、胆固醇、及载脂蛋白形成CM吸收
脂酸的合成代谢(原料、部位、限速酶)1合成部位
组织:肝(主要)、脂肪等组织
亚细胞:
胞液:主要合成16碳的软脂酸(棕榈酸)
肝线粒体、内质网:碳链延长
2合成原料
乙酰CoA(主要来自糖代谢)
NADPH+H+(供氢体)
ATP 、HCO3-(CO2)、Mn离子、生物素
限速酶:乙酰CoA羧化酶(生物素)
乙酰辅酶A全部在线粒体中产生,而脂酸合成酶系在胞液中,乙酰CoA不能透过线粒体内膜,乙酰辅酶A的循环由柠檬酸-丙酮酸循环完成
了解:脂类的生理功能;脂酸的其他氧化方式8了解:
酮体生成的调节;几种多不饱和脂酸衍生物;磷脂的种类、功能及组成特点。

相关文档
最新文档