应用题综合归纳二次方程及二次函数空
二次函数方程的应用题解析

二次函数方程的应用题解析二次函数方程是高中数学中重要的一部分,它在实际生活和各个领域中有着广泛的应用。
本文将从实际问题出发,通过解析具体的应用题,介绍二次函数方程的应用方法和解题思路。
1. 弹射物体的高度计算假设一球从地面上以速度v0垂直上抛,经过时间t后,求球的高度h。
根据物理知识,球的高度h与时间t之间的关系可以用二次函数方程h=-gt^2+vt表示,其中g是自由落体加速度。
解题步骤:(1)确定二次函数的三要素,即开口方向、平移和伸缩等。
(2)将问题中已知的速度v0和时间t代入二次函数方程,解得球的高度h。
2. 投影问题假设有一个斜抛运动,以速度v0沿着夹角α斜抛出去,求物体的水平位移x和垂直位移y。
解题步骤:(1)将水平方向和垂直方向的速度分解,分别为v0cosα和v0sinα。
(2)根据时间t的不同,将x和y分别表达为关于t的函数。
(3)令y=0,求解方程得到物体落地的时间t0。
(4)将t0代入x的函数中,求解物体的水平位移x。
3. 关于顶点的最值问题对于二次函数方程f(x)=ax^2+bx+c,其中a>0,顶点的横坐标为x0=-b/2a。
(1)最值问题:若a>0,则f(x)在x0处取得最小值,最小值为f(x0)。
(2)最值问题:若a<0,则f(x)在x0处取得最大值,最大值为f(x0)。
通过上述例题,我们不难发现,二次函数方程在解决实际问题中起到了重要的作用。
掌握二次函数方程的应用方法和解题思路,将有助于我们更好地理解和应用数学知识。
总结:二次函数方程在实际应用中具有广泛的应用价值。
本文从弹射物体的高度计算、投影问题以及关于顶点的最值问题等方面,解析了二次函数方程的应用方法和解题思路。
通过深入理解和练习实际问题的解析,我们可以更好地掌握二次函数方程的应用技巧,提高数学解题能力。
二次方程,二次函数应用题

一)传播问题1.市政府为了解决市民看病难的问题,决定下调药品的价格。
某种药品经过连续两次降价后,由每盒200元下调至128元,则这种药品平均每次降价的百分率为2.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了个人。
3.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出小分支。
二)增长率问题1.青山村种的水稻2001年平均每公顷产7200公斤,2003年平均每公顷产8450公斤,水稻每公顷产量的年平均增长率为。
2.某种商品经过两次连续降价,每件售价由原来的90元降到了40元,求平均每次降价率是。
3.某种商品,原价50元,受金融危机影响,1月份降价10%,从2月份开始涨价,3月份的售价为64.8元,求2、3月份价格的平均增长率。
三)定价问题1.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克。
现该商品要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?2、商场某种商品平均每天可销售30件,每件盈利50元. 为了尽快减少库存,商场决定采取适当的降价措施. 经调查发现,每件商品每降价1元,商场平均每天可多售出 2件.设每件商品降价x元. 据此规律,请回答:(1)商场日销售量增加件,每件商品盈利元(用含x的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?1.如图,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,所截去的小正方形的边长是。
2.张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15立方米的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已购买这种铁皮每平方米需20元钱,问张大叔购买这张铁皮共花了是元钱四)3.如图,在宽为20m ,长为30m ,的矩形地面上修建两条同样宽且互相垂直的道路,余分作为耕地为551㎡。
二次函数应用题专题(带答案)

二次函数应用题专题(带答案)0)时,可用交点式y=a(x-x1x-x2求其解析式。
4)根据问题要求,利用解析式求出所需的未知量。
三、练1、一枚炮弹在发射点上空爆炸,爆炸点离发射点水平距离1800米,爆炸高度为400米,求炮弹的初速度和仰角。
2、一架飞机以900km/h的速度飞行,飞行高度为2km,发现前方有一座山峰,山顶离飞机水平距离为10km,求飞机的爬升率和俯冲率。
3、一个人从距离地面20米的悬崖上抛出一个物体,物体抛出初速度为20m/s,抛出角度为60度,求物体落地点到悬崖的水平距离。
XXX:1、设炮弹飞行时间为t,初速度为v,仰角为θ,则可列出方程组:x=vtcosθy=vtsinθ-1/2gtx2y21800)2400)=xxxxxxx解得v600m/s,θ≈48.6°。
2、设飞机的爬升率和俯冲率分别为a和b,则可列出方程组:tan(θ-a)=4000/tan(θ+b)=2000/解得a≈2.5°,b≈1.4°。
3、设物体落地点到悬崖的水平距离为d,则可列出方程:d=vcosθtt=2vsinθ/g代入可得d≈40.8m。
评析:二次函数应用题需要学生熟练掌握建立坐标系、求解析式、利用解析式求未知量的方法,同时也需要学生对物理知识有一定的掌握,如抛物线运动、平抛运动等。
练中的例题和练题都体现了这些要点,可以帮助学生加深对二次函数应用的理解和掌握。
在教学过程中,可以引导学生多思考实际问题中的数学应用,提高他们的应用能力和解决问题的能力。
例2、某商场购进一批单价为16元的日用品,经试验发现,若按每件20元的价格销售时,每月能卖360件,若按每件25元的价格销售时,每月能卖210件,假定每月销售件数y(件)是价格x(元/件)的一次函数.1)求y与x之间的关系式;2)在商品不积压,且不考虑其他因素的条件下,问销售价格定为多少时,才能使每月获得最大利润?每月的最大利润是多少?解:(1)依题意设y=kx+b,则有 y= -30x+960 (16≤x≤32).2)每月获得利润P=(-30x+960)(x-16)=30(-x+32)(x-16)=-30+48x-512+1920.所以当x=24时,P有最大值,最大值为1920.答:当价格为24元时,才能使每月获得最大利润,最大利润为1920元.注意:数学应用题来源于实践,用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识,总利润等于总收入减去总成本,然后再利用一次函数求最值.例3、在体育测试时,初三的一名高个子男同学推铅球,已知铅球所经过的路线是某个二次函数图像的一部分,如图所示,如果这个男同学的出手处A点的坐标为(0,2),铅球路线的最高处B点的坐标为(6,5)1)求这个二次函数的解析式;2)该男同学把铅球推出去多远?(精确到0.01米)解:(1)设二次函数的解析式为 y=ax^2+bx+c。
二次函数知识点、考点、典型试题集锦(带详细解析答案)

二次函数知识点、考点、典型试题集锦(带详细解析答案)一、中考要求:1.经历探索、分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系.2.能用表格、表达式、图象表示变量之间的二次函数关系,发展有条理的思考和语言表达能力;能根据具体问题,选取适当的方法表示变量之间的二次函数关系.3.会作二次函数的图象,并能根据图象对二次函数的性质进行分析,逐步积累研究函数性质的经验.4.能根据二次函数的表达式确定二次函数的开口方向,对称轴和顶点坐标.5.理解一元二次方程与二次函数的关系,并能利用二次函数的图象求一元二次方程的近似根.6.能利用二次函数解决实际问题,能对变量的变化趋势进行预测.二、中考卷研究(一)中考对知识点的考查::(二)中考热点:二次函数知识是每年中考的重点知识,是每卷必考的主要内容,本章主要考查二次函数的概念、图象、性质及应用,这些知识是考查学生综合能力,解决实际问题的能力.因此函数的实际应用是中考的热点,和几何、方程所组成的综合题是中考的热点问题. 三、中考命题趋势及复习对策二次函数是数学中最重要的内容之一,题量约占全部试题的10%~15%,分值约占总分的10%~15%,题型既有低档的填空题和选择题,又有中档的解答题,更有大量的综合题,近几年中考试卷中还出现了设计新颖、贴近生活、反映时代特征的阅读理解题、开放探索题、函数应用题,这部分试题包括了初中代数的所有数学思想和方法,全面地考查学生的计算能力,逻辑思维能力,空间想象能力和创造能力。
针对中考命题趋势,在复习时应首先理解二次函数的概念,掌握其性质和图象,还应注重其应用以及二次函数与几何图形的联系,此外对各种函数的综合应用还应多加练习. ★★★(I)考点突破★★★考点1:二次函数的图象和性质 一、考点讲解:1.二次函数的定义:形如c bx ax y ++=2(a ≠0,a ,b ,c 为常数)的函数为二次函数. 2.二次函数的图象及性质:⑴ 二次函数y=ax 2 (a ≠0)的图象是一条抛物线,其顶点是原点,对称轴是y 轴;当a >0时,抛物线开口向上,顶点是最低点;当a <0时,抛物线开口向下,顶点是最高点;a 越小,抛物线开口越大.y=a(x -h)2+k 的对称轴是x=h ,顶点坐标是(h ,k )。
二次函数、二次方程及二次不等式的关系关系

题目 高中数学复习专题讲座二次函数、二次方程及二次不等式的关系高考要求三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具高考试题中近一半的试题与这三个“二次”问题有关本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法重难点归纳1 二次函数的基本性质(1)二次函数的三种表示法y =ax 2+bx +c ;y =a (x -x 1)(x -x 2);y =a (x -x 0)2+n (2)当a >0,f (x )在区间[p ,q ]上的最大值M ,最小值m ,令x 0=21 (p +q ) 若-ab 2<p ,则f (p )=m ,f (q )=M ; 若p ≤-a b 2<x 0,则f (-ab 2)=m ,f (q )=M ; 若x 0≤-a b 2<q ,则f (p )=M ,f (-ab 2)=m ; 若-ab 2≥q ,则f (p )=M ,f (q )=m 2 二次方程f (x )=ax 2+bx +c =0的实根分布及条件(1)方程f (x )=0的两根中一根比r 大,另一根比r 小⇔a ·f (r )<0;(2)二次方程f (x )=0的两根都大于r ⇔⎪⎪⎩⎪⎪⎨⎧>⋅>->-=∆0)(,2,042r f a r a b ac b (3)二次方程f (x )=0在区间(p ,q )内有两根⎪⎪⎪⎩⎪⎪⎪⎨⎧>⋅>⋅<-<>-=∆⇔;0)(,0)(,2,042p f a q f a q a b p ac b (4)二次方程f (x )=0在区间(p ,q )内只有一根⇔f (p )·f (q )<0,或f (p )=0(检验)或f (q )=0(检验)检验另一根若在(p ,q )内成立(5)方程f (x )=0两根的一根大于p ,另一根小于q (p <q )⇔⎩⎨⎧>⋅<⋅0)(0)(q f a p f a 3 二次不等式转化策略(1)二次不等式f (x )=ax 2+bx +c ≤0的解集是(-∞,α])∪[β,+∞)⇔a <0且f (α)=f (β)=0;(2)当a >0时,f (α)<f (β)⇔ |α+a b 2|<|β+ab 2|,当a <0时,f (α)<f (β)⇔|α+a b 2|>|β+ab 2|; (3)当a >0时,二次不等式f (x )>0在[p ,q ]恒成立 ⎪⎩⎪⎨⎧><-⇔,0)(,2p f p a b 或⎪⎩⎪⎨⎧≥≥-⎪⎪⎩⎪⎪⎨⎧>-<-≤;0)(;2,0)2(,2q f p a b a b f q a b p 或 (4)f (x )>0恒成立⎩⎨⎧<==⎩⎨⎧<∆<⇔<⎩⎨⎧>==⎩⎨⎧<∆>⇔.00,0,00)(;0,0,0,0c b a a x f c b a a 或恒成立或 典型题例示范讲解例1已知二次函数f (x )=ax 2+bx +c 和一次函数g (x )=-bx ,其中a 、b 、c 满足a >b >c ,a +b +c =0,(a ,b ,c ∈R )(1)求证两函数的图象交于不同的两点A 、B ;(2)求线段AB 在x 轴上的射影A 1B 1的长的取值范围 命题意图 本题主要考查考生对函数中函数与方程思想的运用能力 知识依托 解答本题的闪光点是熟练应用方程的知识来解决问题及数与形的完美结合 错解分析 由于此题表面上重在“形”,因而本题难点就是一些考生可能走入误区,老是想在“形”上找解问题的突破口,而忽略了“数” 技巧与方法 利用方程思想巧妙转化(1)证明由⎩⎨⎧-=++=bxy c bx ax y 2消去y 得ax 2+2bx +c =0Δ=4b 2-4ac =4(-a -c )2-4ac =4(a 2+ac +c 2)=4[(a +43)22+c c 2] ∵a +b +c =0,a >b >c ,∴a >0,c <0 ∴43c 2>0,∴Δ>0,即两函数的图象交于不同的两点 (2)解设方程ax 2+bx +c =0的两根为x 1和x 2,则x 1+x 2=-a b 2,x 1x 2ac |A 1B 1|2=(x 1-x 2)2=(x 1+x 2)2-4x 1x 22222224444()4()b c b ac a c ac a a a a ----=--== 22134[()1]4[()]24c c c a a a =++=++ ∵a >b >c ,a +b +c =0,a >0,c <0∴a >-a -c >c ,解得ac ∈(-2,-21) ∵]1)[(4)(2++=a c a c a c f 的对称轴方程是21=a c a c ∈(-2,-21)时,为减函数 ∴|A 1B 1|2∈(3,12),故|A 1B 1|∈(32,3)例2已知关于x 的二次方程x 2+2mx +2m +1=0(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的范围(2)若方程两根均在区间(0,1)内,求m 的范围 命题意图 本题重点考查方程的根的分布问题 知识依托 解答本题的闪光点是熟知方程的根对于二次函数性质所具有的意义 错解分析用二次函数的性质对方程的根进行限制时,条件不严谨是解答本题的难点 技巧与方法 设出二次方程对应的函数,可画出相应的示意图,然后用函数性质加以限制 解 (1)条件说明抛物线f (x )=x 2+2mx +2m +1与x 轴的交点分别在区间(-1,0)和(1,2)内,画出示意图,得 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧->-<∈-<⇒⎪⎪⎩⎪⎪⎨⎧>+=<+=>=-<+=65,21,21056)2(,024)1(,02)1(,012)0(m m R m m m f m f f m f ∴2165<<-m (2)据抛物线与x 轴交点落在区间(0,1)内,列不等式组⎪⎪⎩⎪⎪⎨⎧<-<≥∆>>10,0,0)1(,0)0(m f f ⎪⎪⎪⎩⎪⎪⎪⎨⎧<<--≤+≥->->⇒.01,2121,21,21m m m m m 或 (这里0<-m <1是因为对称轴x =-m 应在区间(0,1)内通过)例3已知对于x 的所有实数值,二次函数f (x )=x 2-4ax +2a +12(a ∈R )的值都是非负的,求关于x 的方程2+a x =|a -1|+2的根的取值范围 解由条件知Δ≤0,即(-4a )2-4(2a +12)≤0,∴-23≤a ≤2 (1)当-23≤a <1时,原方程化为 x =-a 2+a +6,∵-a 2+a +6=-(a -21)2425 ∴a =-23时,x mi n =49,a =21时,x max 425 ∴49≤x 425 (2)当1≤a ≤2时,x =a 2+3a +2=(a +23)2-41 ∴当a =1时,x mi n =6,当a =2时,x max =12,∴6≤x ≤12综上所述,49≤x ≤12 学生巩固练习 1 若不等式(a -2)x 2+2(a -2)x -4<0对一切x ∈R 恒成立,则a 的取值范围是( ) A (-∞,2] B [-2,2] C (-2,2] D (-∞,-2) 2 设二次函数f (x )=x 2-x +a (a >0),若f (m )<0,则f (m -1)的值为( ) A 正数 B 负数 C 非负数 D 正数、负数和零都有可能 3 已知二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,若在区间[-1,1]内至少存在一个实数c ,使f (c )>0,则实数p 的取值范围是_________ 4 二次函数f (x )的二次项系数为正,且对任意实数x 恒有f (2+x )=f (2-x ),若f (1-2x 2)<f (1+2x -x 2),则x 的取值范围是_________ 5 已知实数t 满足关系式33log log ay a t a a = (a >0且a ≠1) (1)令t=a x ,求y =f (x )的表达式;(2)若x ∈(0,2]时,y 有最小值8,求a 和x 的值 6 如果二次函数y =mx 2+(m -3)x +1的图象与x 轴的交点至少有一个在原点的右侧,试求m 的取值范围 7 二次函数f (x )=px 2+qx +r 中实数p 、q 、r 满足mr m q m p ++++12=0,其中m >0,求证 (1)pf (1+m m )<0; (2)方程f (x )=0在(0,1)内恒有解 8 一个小服装厂生产某种风衣,月销售量x (件)与售价P (元/件)之间的关系为P =160-2x ,生产x 件的成本R =500+30x 元(1)该厂的月产量多大时,月获得的利润不少于1300元?(2)当月产量为多少时,可获得最大利润?最大利润是多少元? 参考答案 1 解析当a -2=0即a =2时,不等式为-4<0,恒成立∴a =2,当a -2≠0时,则a 满足⎩⎨⎧<∆<-002a ,解得-2<a <2,所以a 的范围是-2<a ≤2 答案 C 2解析∵f (x )=x 2-x +a 的对称轴为x =21,且f (1)>0,则f (0)>0,而f (m )<0,∴m ∈(0,1), ∴m -1<0,∴f (m -1)>0 答案A 3 解析只需f (1)=-2p 2-3p +9>0或f (-1)=-2p 2+p +1>0即-3<p <23或-21<p <1∴p ∈(-3, 23) 答案 (-3,23) 4 解析由f (2+x )=f (2-x )知x =2为对称轴,由于距对称轴较近的点的纵坐标较小,∴|1-2x 2-2|<|1+2x -x 2-2|,∴-2<x <0答案-2<x <0 5 解 (1)由log a 33log ay a t t =得log a t -3=log t y -3log t a 由t =a x 知x =log a t ,代入上式得x -3=x x y a 3log -, ∴log a y =x 2-3x +3,即y =a 332+-x x(x ≠0) (2)令u =x 2-3x +3=(x -23)2+43 (x ≠0),则y =a u ①若0<a <1,要使y =a u 有最小值8,则u =(x -23)2+43在(0,2]上应有最大值,但u 在(0,2]上不存在最大值 ②若a >1,要使y =a u 有最小值8,则u =(x -23)2+43,x ∈(0,2]应有最小值 ∴当x =23时,u mi n =43,y mi n =43a 由43a =8得a =16∴所求a =16,x 23 6 解 ∵f (0)=1>0(1)当m <0时,二次函数图象与x 轴有两个交点且分别在y 轴两侧,符合题意 (2)当m >0时,则⎪⎩⎪⎨⎧>-≥∆030mm 解得0<m ≤1 综上所述,m 的取值范围是{m |m ≤1且m ≠0} 7 证明(1)])1()1([)1(2r m m q m m p p m m pf ++++=+ ])2()1()1()2([]2)1([]1)1([22222+++-+=+-+=++++=m m m m m m p m p m pm pm m r m q m pm pm)2()1(122++-=m m pm ,由于f (x )是二次函数,故p ≠0,又m >0,所以,pf (1+m m )<0 (2)由题意,得f (0)=r ,f (1)=p +q +r①当p <0时,由(1)知f (1+m m )<0 若r >0,则f (0)>0,又f (1+m m )<0,所以f (x )=0在(0,1+m m )内有解; 若r ≤0,则f (1)=p +q +r =p +(m +1)=(-m r m p -+2)+r =mr m p -+2>0,又f (1+m m )<0,所以f (x )=0在(1+m m ,1)内有解 ②当p <0时同理可证 8 解 (1)设该厂的月获利为y ,依题意得y =(160-2x )x -(500+30x )=-2x 2+130x -500由y ≥1300知-2x 2+130x -500≥1300∴x 2-65x +900≤0,∴(x -20)(x -45)≤0,解得20≤x ≤45 ∴当月产量在20~45件之间时,月获利不少于1300元(2)由(1)知y =-2x 2+130x -500=-2(x -265)2+16125 ∵x 为正整数,∴x =32或33时,y 取得最大值为1612元, ∴当月产量为32件或33件时,可获得最大利润1612元 课前后备注。
2024中考备考热点05 二次函数的图象及简单应用(8大题型+满分技巧+限时分层检测)

热点05 二次函数的图象及简单应用中考数学中《二次函数的图象及简单应用》部分主要考向分为五类:一、二次函数图象与性质(每年1道,3~4分)二、二次函数图象与系数的关系(每年1题,3~4份)三、二次函数与一元二次方程(每年1~2道,4~8分)四、二次函数的简单应用(每年1题,6~10分)二次函数是初中数学三中函数中知识点和性质最多的一个函数,也是中考数学中的重点和难点,考简答题时经常在二次函数的几何背景下,和其他几何图形一起出成压轴题;也经常出应用题利用二次函数的增减性考察问题的最值。
此外,二次函数的性质、二次函数与系数的关系、二次函数上点的坐标特征也是中考中经常考到的考点,都需要大家准确记忆二次函数的对应考点。
只有熟悉掌握二次函数的一系列考点,才能在遇到对应问题时及时提取有用信息来应对。
考向一:二次函数图象与性质【题型1 二次函数的图象与性质】满分技巧1. 对于二次函数y =ax 2+bx +c (a ≠0)的图象:形状:抛物线; 对称轴:直线ab x 2-=;顶点坐标:)442(2a b ac a b --,; 2、抛物线的增减性问题,由a 的正负和对称轴同时确定,单一的直接说y 随x 的增大而增大(或减小)是不对的,必须在确定a 的正负后,附加一定的自变量x 取值范围;3、当a>0,抛物线开口向上,函数有最小值;当a<0,抛物线开口向下,函数有最大值;而函数的最值都是定点坐标的纵坐标。
1.(2023•沈阳)二次函数y=﹣(x+1)2+2图象的顶点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.(2023•兰州)已知二次函数y=﹣3(x﹣2)2﹣3,下列说法正确的是()A.对称轴为直线x=﹣2B.顶点坐标为(2,3)C.函数的最大值是﹣3D.函数的最小值是﹣33.(2023•陕西)在平面直角坐标系中,二次函数y=x2+mx+m2﹣m(m为常数)的图象经过点(0,6),其对称轴在y轴左侧,则该二次函数有()A.最大值5B.最大值C.最小值5D.最小值【题型2 二次函数图象上点的坐标特征】满分技巧牢记一句话,“点在图象上,点的坐标符合其对应解析式”,然后,和哪个几何图形结合,多想与之结合的几何图形的性质1.(2023•广东)如图,抛物线y=ax2+c经过正方形OABC的三个顶点A,B,C,点B在y轴上,则ac的值为()A.﹣1B.﹣2C.﹣3D.﹣42.若点P(m,n)在抛物线y=ax2(a≠0)上,则下列各点在抛物线y=a(x+1)2上的是()A.(m,n+1)B.(m+1,n)C.(m,n﹣1)D.(m﹣1,n)3.(2023•十堰)已知点A(x1,y1)在直线y=3x+19上,点B(x2,y2),C(x3,y3)在抛物线y=x2+4x ﹣1上,若y1=y2=y3,x1<x2<x3,则x1+x2+x3的取值范围是()A.﹣12<x1+x2+x3<﹣9B.﹣8<x1+x2+x3<﹣6C.﹣9<x1+x2+x3<0D.﹣6<x1+x2+x3<1【题型3 二次函数图象与几何变换】满分技巧1、二次函数的几何变化,多考察其平移规律,对应方法是:①将一般式转化为顶点式;②根据口诀“左加右减,上加下减”去变化。
求二次函数的解析式及二次函数的应用
求二次函数的解析式及二次函数的应用2014.6.8一、求二次函数的解析式:最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:(1)已知抛物线上三点的坐标,一般选用一般式;(2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;(3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;(4)已知抛物线上纵坐标相同的两点,常选用顶点式。
二、二次函数的应用:(1)应用二次函数解决实际问题的一般思路:理解题意;建立数学模型;解决题目提出的问题。
(2)应用二次函数求实际问题中的最值:即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
求最值时,要注意求得答案要符合实际问题。
三、二次函数的三种表达形式:1、一般式:y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为[,]把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。
2、顶点式:y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
有时题目会指出让你用配方法把一般式化成顶点式。
例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
具体可分为下面几种情况:当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;当h<0,k<0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k 的图象。
一元二次方程及二次函数应用题练习与讲解资料.
一、增长率应用题
• 1、恒利商厦九月份的销售额为200万元,十月份的销售额 下降了20%,商厦从十一月份起加强管理,改善经营,使 销售额稳步上升,十二月份的销售额达到了193.6万元,求 这两个月的平均增长率.
解: 设这两个月的平均增长率是x,则根据题意, 得 200(1-20%)(1+x)2=193.6, 即 (1+x)2=1.21, 解这个方程,得x1=0.1,x2=-2.1(舍去) 答 这两个月的平均增长率是10%.
二、商品定价
2、益群精品店以每件21元的价格购进一批商品, 若每件商品售价a元,则可卖出(350-10a)件, 但物价局限定每件商品的利润不得超过20%, 商店计划要盈利400元,需要进货多少件?每件 商品应定价多少?
解:根据题意,得(a-21)(350-10a)=400,整理, 得a2-56a+775=0,
解这个方程,得a1=25,a2=31. 因为31×(1+20%)=25.2,所以a2=31不合题意,舍去 . 所以350-10a=350-10×25=100(件). 答 需要进货100件,每件商品应定价25元.
三、比赛类型应用题
• 1、在一个QQ群里有n个网友在线,每个网 友都向其他网友发出一条信息,共有20条
信息,则n为 (C )
• A、10 B、6 C、5 D、4 • 2、一次开会时,同事们见面后,倍感亲切,
相互握手恭贺,这次共握手 28 次,一共有 多少人参加开会?
8人
二次函数应用题
Hale Waihona Puke 1 有一座抛物线形拱桥,正常水位时,桥下水面宽度为20m, 拱顶距离水面4m. (1)在如图所示的直角坐标系中,求出该抛物线的表达式; (2)在正常水位的基础上,当水位上升h(m)时,桥下水 面的宽度为d(m),求出将d表示为h的函数表达式; (3)设正常水位时桥下的水深为2m,为保证过往船只顺利 航行,桥下水面宽度不得小于18m,求水深超过多少米时就 会影响过往船只在桥下的顺利航行.
22版新教材高中数学A版必修第一册练习--专题强化练2 二次函数、二次方程、二次不等式的综合运用
专题强化练2 三个二次(二次函数、二次方程、二次不等式)的综合运用一、选择题1.(2019河南郑州一中高二上期中,)下列不等式的解集为实数集R 的是 ( ) A.x 2+4x +4>0B.√x 2>0C.x 2-x +1≥0D.1x -1<1x 2.()若不等式ax 2+bx +1>0的解集为{x|-1<x <13},则a +b 的值为 ( )A.5B.-5C.6D.-63.(2020吉林长春第八中学高一月考,)已知不等式ax 2+bx +c >0的解集为{x|-13<x <2},则不等式cx 2+bx +a <0的解集为 ( )A.{x|-3<x <12}B.{x|x <-3或x >12}C.{x|-2<x <13}D.{x|x ≤-2或x >13}4.()若对任意实数x ,不等式2kx 2+kx -3<0恒成立,则实数k 的取值范围是 ( ) A.-24<k <0 B.-24<k ≤0C.0<k ≤24D.k ≥245.()若关于x 的方程x 2+(m -1)x +m 2-2=0的一个实数根小于-1,另一个实数根大于1,则实数m 的取值范围是 ( )A.{m |-2<m <2}B.{m |-2<m <0}C.{m |-2<m <1}D.{m |0<m <1}6.(2020江苏南京人民中学高一月考,)定义在R 上的运算:x*y =x (1-y ).若不等式(x -a )*(x +a )<1对任意实数x 都成立,则 ( )A.-32<a <12B.-12<a <32C.-1<a <1D.0<a <27.(多选)()已知a ∈Z,关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则a 的值可以是( )A.6B.7C.8D.9二、填空题8.(2021北京交通大学附属中学高一上期中,)若不等式x2-ax+2<0在x∈{x|1<x<2}时恒成立,则a的取值范围是.9.(2021湖南师范大学附属中学高一上期中,)设关于x的不等式ax2+8(a+1)x+7a+16≥0(a∈Z)只有有限个整数解,且0是其中一个解,则全部不等式的整数解的和为.三、解答题10.()在一个限速40 km/h的弯道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相碰了.事发后现场测得甲车的刹车距离略超过12 m,乙车的刹车距离略超过10 m.又知甲、乙两种车型的刹车距离s m与车速x km/h之间分别有如下关系:s甲=0.1x+0.01x2,s乙=0.05x+0.005x2.问谁应负主要责任?11.()(1)若不等式ax2+3x+2>0的解集为{x|b<x<1},求a,b的值;(2)求关于x的不等式ax2+3x+2>-ax-1(其中a>0)的解集.12.(2021广东中山纪念中学高一上段考,)已知不等式x2-2x-3<0的解集为A,不等式ax2+ax-6<0的解集为B.(1)若a=1,求A∩B;(2)在(1)的前提下,若不等式x2+mx+n<0的解集为A∩B,求不等式mx2+x+n<0的解集;(3)∀x∈R,ax2+ax-6<0,求a的取值范围.答案全解全析一、选择题1.C 当x =-2时,选项A 中的不等式不成立;当x =0时,选项B 中的不等式不成立;对于选项C,Δ=1-4<0,且y =x 2-x +1的图象开口向上,故y =x 2-x +1的图象与x 轴无交点,所以不等式x 2-x +1≥0的解集为R;当x =0时,选项D 中的不等式不成立.故选C.2.B 由题意知-1,13是关于x 的方程ax 2+bx +1=0的两个根,且a <0,∴{a -b +1=0,19a +13b +1=0, 解得{a =-3,b =-2,∴a +b =-5.3.A 由题意知,ax 2+bx +c =0的两根分别为x 1=-13,x 2=2,且a <0,则{a 9-b 3+c =0,4a +2b +c =0,解得{a =-32c ,b =52c ,代入cx 2+bx +a <0,得cx 2+52cx -32c <0.因为a <0,所以c >0,所以cx 2+52cx -32c <0可化为2x 2+5x -3<0,解得-3<x <12,故不等式cx 2+bx +a <0的解集为{x|-3<x <12}.故选A .4.B 当k =0时,不等式为-3<0,不等式恒成立;当k ≠0时,若不等式恒成立,则{k <0,Δ<0,解得-24<k <0.综上所述,-24<k ≤0,故选B.5.D 令y =x 2+(m -1)x +m 2-2,作出函数的大致图象如图所示,由图象知,当x =-1时,y =m 2-m <0,解得0<m <1;当x =1时,y =m 2+m -2<0,解得-2<m <1.综上可得,0<m <1,故选D.6.B 不等式(x -a )*(x +a )<1可化为(x -a )·(1-x -a )<1,即x 2-x +a -a 2+1>0对任意实数x 都成立,∴Δ=1-4×(a -a 2+1)<0,解得-12<a <32.故选B.7.ABC 设y =x 2-6x +a ,其图象开口向上,对称轴是直线x =3,如图所示.若关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则{22-6×2+a ≤0,12-6×1+a >0,解得5<a ≤8,又a ∈Z,故a 的值可以为6,7,8.故选ABC .二、填空题8.答案 a ≥3解析 根据函数y =x 2-ax +2的图象可知,只要保证在x =1和x =2时的函数值均小于等于0即可, 即{1-a +2≤0,4-2a +2≤0,解得a ≥3. 故答案为a ≥3.9.答案 -10解析 设y =ax 2+8(a +1)x +7a +16,对于任意一个给定的a 值,只有其图象开口向下时才能满足y ≥0的整数解只有有限个,∴a <0,∵0是其中一个解,∴可求得a ≥-167. 又a ∈Z,∴a =-2或a =-1,则不等式为-2x 2-8x +2≥0或-x 2+9≥0,解得-2-√5≤x ≤√5-2或-3≤x ≤3.∵x ∈Z,∴x =-4,-3,-2,-1,0或x =-3,-2,-1,0,1,2,3,∴全部不等式的整数解的和为-10.故答案为-10.三、解答题10.解析 设甲车车速为x 甲km/h,乙车车速为x 乙km/h .由题意列出不等式s 甲=0.1x 甲+0.01x 甲2>12,s 乙=0.05x 乙+0.005x 乙2>10,分别求解,得x 甲<-40或x 甲>30,x 乙<-50或x 乙>40.由于x >0,从而得x 甲>30,x 乙>40.经比较知乙车超过限速,故乙应负主要责任.11.解析 (1)由不等式ax 2+3x +2>0的解集为{x |b <x <1}可知1为ax 2+3x +2=0的一个根且a <0,将x =1代入ax 2+3x +2=0,可得a =-5,所以不等式ax 2+3x +2>0即为不等式-5x 2+3x +2>0,可转化为(x -1)(5x +2)<0,所以原不等式的解集为{x|-25<x <1},所以b =-25.(2)不等式ax 2+3x +2>-ax -1可化为ax 2+(a +3)x +3>0,即(ax +3)(x +1)>0.当-3a <-1,即0<a <3时,原不等式的解集为{x|x >-1或x <-3a };当-3a =-1,即a =3时,原不等式的解集为{x |x ≠-1};当-3a >-1,即a >3时,原不等式的解集为{x|x <-1或x >-3a }.综上所述,当0<a <3时,原不等式的解集为{x|x >-1或x <-3a };当a =3时,原不等式的解集为{x |x ≠-1};当a >3时,原不等式的解集为{x|x <-1或x >-3a }.12.解析 (1)由题可知A ={x |-1<x <3},当a =1时,B ={x |-3<x <2},∴A ∩B ={x |-1<x <2}.(2)∵不等式x 2+mx +n <0的解集为A ∩B ={x |-1<x <2},∴-1和2是方程x 2+mx +n =0的两个根,∴{-1+2=-m ,-1×2=n ,解得{m =-1,n =-2,∴mx 2+x +n <0即-x 2+x -2=-(x -12)2-74<0,其解集为R . (3)当a =0时,-6<0恒成立,符合题意;当a ≠0时,∵∀x ∈R,ax 2+ax -6<0,∴{a <0,Δ=a 2+24a <0,解得-24<a <0. 综上可得,a 的取值范围是{a |-24<a ≤0}.。
二次函数应用题归纳
二次函数应用类问题二次函数的表达式:一般式:)0(2≠++=a c bx ax ya 的正负表示开口方向,a 表示开口大小,对称轴ab x 2-=,c 表示截距.顶点式:()a b ac a b x a k h x a y 442222-+⎪⎭⎫⎝⎛+=++=()0≠a()k h ,-表示二次函数的顶点,即对称轴为h x -=,最值为k .交点式:()()21x x x x a y --=()0≠a21,x x 为函数与x 轴交点的横坐标.二次函数配方:)0(2≠++=a c bx ax y ab ac a b x a ca ba b x a ca b a b x a b x a cx a b x a 44242442222222222-+⎪⎭⎫ ⎝⎛+=+-⎪⎭⎫ ⎝⎛+=+⎪⎪⎭⎫⎝⎛-++=+⎪⎭⎫⎝⎛+=二次函数的求法:给顶点→设顶点式()k h x a y ++=2()0≠a给两个交点→设交点()()21x x x x a y --=()0≠a过原点→设bx ax y +=2()0≠a任意三点→设一般式)0(2≠++=a c bx ax y实际应用类题型:一、如果题目中已建立好直角坐标系,按题目要求来:①② ③ 由题意可设2ax y =()0≠a ,由题可设k ax y +=2()0≠a , 由题意可设()()02≠+=a h x a y , 再找一个非原点带入求出a 即可再找两点带入解方程组即可 再找两点带入解方程组即可④⑤ 由题意可设()02≠+=a bx ax y ,由题意可设()02≠++=a c bx ax y , 再找两个非原点带去解方程组即可找三点带去解方程组即可例1、施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系(如图1所示).(1)求出这条抛物线的函数解析式,并写出自变量x的取值范围;(2)隧道下的公路是双向行车道(正中间是一条宽1米的隔离带),其中的一条行车道能否行驶宽2.5米、高5米的特种车辆?请通过计算说明;(3)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB,使A、D点在抛物线上.B、C点在地面OM线上(如图2所示).为了筹备材料,需求出“脚手架”三根木杆AB、AD、DC的长度之和的最大值是多少,请你帮施工队计算一下.例2、如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米.(1)求S与x的函数关系式及自变量的取值范围;(2)当x取何值时所围成的花圃面积最大,最大值是多少?(3)若墙的最大可用长度为8米,则求围成花圃的最大面积.例3、如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣x2+bx+c表示,且抛物线的点C到墙面OB 的水平距离为3m时,到地面OA的距离为m.(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?例4、横跨松花江两岸的阳明滩大桥是我市首座悬索桥,夜色中的璀璨灯光已成为一道亮丽的风景线,桥梁双塔间的悬索成抛物线型,如图,以桥面为x轴,以抛物线的对称轴为y轴,以1米为一个单位长度,建立平面直角坐标系.已知大桥的双塔AE和BF 与桥面垂直,且它们的高度均是83米,悬索抛物线上的点C、D的坐标分别为(0,3)、(50,8).(1)求抛物线的解析式;(2)李大爷以每秒0.8米的速度沿桥散步,那么从点E走到点F所用时间为多少秒?二、如果题目中没有建立直角坐标系:(这种情况比较少)按题目要求,建立最简便的坐标系,方便计算.例1、如图是一座抛物线拱形桥,在正常水位时,水面AB宽是20m,水位上升3m就达到警戒线CD,这是水面宽度为10m,请构建适当的水平直角坐标系求抛物线所对应的函数表达式,并求水位到达警戒线时拱顶与水面之间的距离.经济利润类型问题利润=单件利润×件数(常考)利润=总收入—总成本(通用)利润=单件利润×件数—额外支出这类问题一般分为两问到三问,第一问常考求件数与销售单件的方程,最后一问常考最大利润问题,只要把利润化成二次函数顶点式来求最大利润即可.注意点:1、可以写出自变量的取值范围.2、写出最大利润时要进行一个简单的讨论(a开口方向,对称轴,增减性)3、如果出题人设陷阱,通常是①对称轴不在取值范围内,根据二次函数图像性质来求解②如自变量必须是整数,如衣服件数,但是对称轴不是整数,对称轴最近的整数即为最值的横坐标.4、如果每提高1元,少卖5件 每提高a元,少卖a5件.例1、为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y(件)与销售单价x(元)满足一次函数关系:y=﹣10x+1200.(1)求出利润S(元)与销售单价x(元)之间的关系式(利润=销售额﹣成本);(2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?例2、鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?例3、小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元)(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?例4、某市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y(万元)与年产量x(万件)之间的函数图象是顶点为原点的抛物线的一部分(如图①所示);该产品的销售单价z(元/件)与年销售量x(万件)之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为w 万元.(毛利润=销售额﹣生产费用)(1)请直接写出y与x以及z与x之间的函数关系式;(2)求w与x之间的函数关系式;并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?(3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润?例5、一种进价为每件40元的T恤,若销售单价为60元,则每周可卖出300件,为提高利益,就对该T恤进行涨价销售,经过调查发现,每涨价1元,每周要少卖出10件,请确定该T恤涨价后每周销售利润y(元)与销售单价x(元)之间的函数关系式,并求出销售单价定为多少元时,每周的销售利润最大?例6、“淮南牛肉汤”是安徽知名地方小吃。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21.3 实际问题与一元二次方程 第1课时 用一元二次方程解决传播问题01 基础题知识点1 传播问题1.鸡瘟是一种传播速度很快的传染病,一轮传染为一天时间,红发养鸡场于某日发现一例,两天后发现共有169只鸡患有这种病.若每只病鸡传染健康鸡的只数均相同,则每只病鸡传染健康鸡的只数为( )A .10只B .11只C .12只D .13只知识点2 握手问题3.在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x 人参加这次聚会,则列出方程正确的是( )A .x(x -1)=10B .x (x -1)2=10C .x(x +1)=10D .x (x +1)2=104.某市体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?学习以下解答过程,并完成填空.知识点3 数字问题6.一个两位数,个位数字比十位数字少1,且个位数字与十位数字的乘积等于72,则这个两位数是 . 7.若两个连续整数的积是56,则它们的和是 .8.一个两位数,个位数字比十位数字大3,且个位数字的平方刚好等于这个两位数,求这个两位数是多少?02 中档题9.某航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有飞机场( )A .4个B .5个C .6个D .7个10.在一次商品交易会上,参加交易会的每两家公司之间都要签订一份合同,会议结束后统计共签订了78份合同,问有多少家公司出席了这次交易会?11.如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和是多少?12.(襄阳中考)有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?第2课时用一元二次方程解决增长率问题01基础题知识点1平均变化率问题1.(随州中考)随州市尚市“桃花节”观赏人数逐年增加,据有关部门统计,2014年约为20万人次,2016年约为28.8万人次.设观赏人数年均增长率为x,则下列方程中正确的是( )A.20(1+2x)=28.8B.28.8(1+x)2=20C.20(1+x)2=28.8D.20+20(1+x)+20(1+x)2=28.82.(巴中中考)某种品牌运动服经过两次降价,每件零售价由560元降为315元.已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是( )A.560(1+x)2=315B.560(1-x)2=315C.560(1-2x)2=315D.560(1-x2)=3153.(新疆中考)某加工厂九月份加工了10吨干果,十一月份加工了13吨干果.设该厂加工干果重量的月平均增长率为x,根据题意可列方程为.4.(十堰中考)某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,则这个百分率是.5.(广东中考)某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元.求3月份到5月份营业额的月平均增长率.知识点2市场经济问题6.(泰安中考)某种花卉每盆的盈利与每盆的株数有一定的关系.每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元.要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是( )A.(3+x)(4-0.5x)=15B.(x+3)(4+0.5x)=15C.(x+4)(3-0.5x)=15D.(x+1)(4-0.5x)=157.(达州中考)新世纪百货大楼“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”儿童节,商场决定采取适当的降价措施.经调査,如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1 200元,则每件童装应降价多少元?设每件童装应降价x元,可列方程为.8.某商店从厂家以21元的价格购进一批商品,该商店可以自行定价,若每件商品售价为a元,则可卖(350-10a)件,但物价局限定每件加价不能超过进价的20%.商店计划要赚400元,需要卖出多少件商品?每件商品的售价为多少元?02中档题9.(黔西南中考)某机械厂七月份生产零件50万个,第三季度生产零件196万个,如果每月的增长率x相同,那么( )A.50(1+x2)=196B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196D.50+50(1+x)+50(1+2x)=19611.据报道,某省农作物秸秆的资源巨大,但合理利用量十分有限,2015年的利用率只有30%,大部分秸秆被直接焚烧了,假定该省每年产出的农作物秸秆总量不变,且合理利用量的增长率相同,要使2017年的利用率提高到60%,求每年的增长率.(取2≈1.41)13.一学校为了绿化校园环境,向某园林公司购买一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元,该校最终向园林公司支付树苗款8 800元,请问该校共购买了多少棵树苗?第3课时用一元二次方程解决几何图形问题01基础题知识点1一般图形的问题1.(衡阳中考)绿苑小区在规划设计时,准备在两幢楼房之间设置一块面积为900平方米的矩形绿地,并且长比宽多10米.设绿地的宽为x米,根据题意,可列方程为( )A.x(x-10)=900 B.x(x+10)=900C.10(x+10)=900 D.2[x+(x+10)]=9002.(白银中考)用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x米,则根据题意可列出关于x的方程为( )3.(宿迁中考)一块矩形菜地的面积是120 m2,如果它的长减少2 m,那么菜地就变成正方形,则原菜地的长是()4.一个直角三角形的两条直角边相差5 cm,面积是7 cm2,这两条直角边长分别为.5.已知如图所示的图形的面积为24,根据图中的条件,求x.知识点2边框与甬道问题6.(兰州中考)公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1 m,另一边减少了2 m,剩余空地的面积为18 m2,求原正方形空地的边长,设原正方形空地的边长为x m,则可列方程为( )A.(x+1)(x+2)=18B.x2-3x+16=0C.(x-1)(x-2)=18D.x2+3x+16=07.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7 644平方米,则道路的宽应为多少米?设道路的宽为x米,则可列方程为( ) A.100×80-100x-80x=7 644B.(100-x)(80-x)+x2=7 644C.(100-x)(80-x)=7 644D.100x+80x=3568.如图所示,相框长为10 cm,宽为6 cm,内有宽度相同的边缘木板,里面用来夹相片的面积为32 cm2,则相框的边缘宽为多少cm?10.(襄阳中考)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12 m的住房墙,另外三边用25 m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1 m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80 m2?小专题(三)一元二次方程的实际应用1.有一个两位数,它的十位上的数字比个位上的数字小2,十位上的数字与个位上的数字的积的3倍刚好等于这个两位数,求这个两位数.2.(毕节中考)为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6 000万元.2016年投入教育经费8 640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.3.陶铸中学初三某学生聆听了感恩励志主题演讲《不要让爱你的人失望》后,写了一份《改变,从现在开始》的倡议书在微信朋友圈传播,规则为:将倡议书发表在自己的朋友圈,再邀请n个好友转发倡议书,每个好友转发倡议书之后,又邀请n个互不相同的好友转发倡议书,依此类推,已知经过两轮传播后,共有421人参与了传播活动,求n的值.4.如图,在矩形ABCD中,AB=6 cm,BC=12 cm,点P从点A出发沿AB以1 cm/s的速度向点B移动;同时,点Q从点B出发沿BC以2 cm/s的速度向点C移动,几秒钟后△DPQ的面积等于28 cm2?5.如图,某市近郊有一块长为60米,宽为50米的矩形荒地,地方政府准备在此建一个综合性休闲广场,其中阴影部分为通道,通道的宽度均相等,中间的三个矩形(其中三个矩形的一边长均为a米)区域将铺设塑胶地面作为运动场地.(1)设通道的宽度为x米,则a=(用含x的代数式表示);(2)若塑胶运动场地总占地面积为2 430平方米.请问通道的宽度为多少米?.6.盐城春秋旅行社为吸引市民组团去盐渎风景区旅游,推出了如图所示的收费标准.某单位组织员工去盐渎风景区旅游,共支付给盐城春秋旅行社旅游费用27 000元.请问该单位这次共有多少员工去盐渎风景区旅游?7.一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的销售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:(1)求y与x的函数关系式;(2)该批发商若想获得4 000元的利润,应将售价定为多少元?8.如图,用同样规格黑白两色的正方形瓷砖铺设长方形地面,请观察下列图形,并解答有关问题:(1)在第n个图中,第一横行共块瓷砖,第一竖列共有块瓷砖,铺设地面所用瓷砖的总块数为()(用含n的代数式表示);(2)上述铺设方案,铺一块这样的长方形地面共用了506块瓷砖,求此时n的值;(3)是否存在黑瓷砖与白瓷砖块数相等的情形?请通过计算加以说明.22.3实际问题与二次函数第1课时二次函数与图形面积01基础题知识点二次函数与图形面积1.(六盘水中考)如图,假设篱笆(虚线部分)的长度为16 m,则所围成矩形ABCD的最大面积是( )A.60 m2B.63 m2C.64 m2D.66 m22.(咸宁中考)用一根长为40 cm的绳子围成一个面积为a cm2的长方形,那么a的值不可能为( )A.20 B.40 C.100 D.1203.(定西中考)如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C 的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是( )4.(衢州中考)某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50 m),中间用两道墙隔开(如图),已知计划中的建筑材料可建墙的总长度为48 m,则这三间长方形种牛饲养室的总占地面积的最大值为m2.5.如图,在△ABC中,∠B=90°,AB=8 cm,BC=6 cm,点P从点A开始沿AB向B点以2 cm/s的速度移动,点Q从点B开始沿BC向C点以1 cm/s的速度移动,如果P,Q分别从A,B同时出发,当△PBQ的面积为最大时,运动时间t为s.6.将一根长为20 cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值cm2.7.已知直角三角形两条直角边的和等于20,两条直角边各为多少时,这个直角三角形的面积最大?最大值是多少?8.(滨州中考)某高中学校为高一新生设计的学生单人桌的抽屉部分是长方体形,抽屉底面周长为180 cm,高为20 cm.请通过计算说明,当底面的宽x为何值时,抽屉的体积y最大?最大为多少?(材质及其厚度等暂忽略不计)10.手工课上,小明准备做一个形状是菱形的风筝,这个菱形的两条对角线长度之和恰好为60 cm,菱形的面积S(单位:cm2)随其中一条对角线的长x(单位:cm)的变化而变化.(1)请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围);(2)当x是多少时,菱形风筝面积S最大?最大面积是多少?第2课时二次函数与商品利润01基础题知识点销售中的最大利润1.某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价.若每件商品售价为x元,则可卖出(350-10x)件商品,那么卖出商品所赚钱y元与售价x元之间的函数关系为( )A.y=-10x2-560x+7 350B.y=-10x2+560x-7 350C.y=-10x2+350xD.y=-10x2+350x-7 3502.一件工艺品进价为100元,标价135元售出,每天可售出100件.根据销售统计,该件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为( )A.5元B.10元C.0元D.6元3.出售某种文具盒,若每个获利x元,一天可售出(6-x)个,则当x=元时,一天出售该种文具盒的总利润最大.4.我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资与收益的关系为:每投入x万元,可获得利润P=-1100(x-60)2+41(万元).每年最多可投入100万元的销售投资,则5年所获利润的最大值是.5.(天水中考)天水“伏羲文化节”商品交易会上,某商人将每件进价为8元的纪念品,按每件9元出售,每天可售出20件.他想采用提高售价的办法来增加利润,经试验,发现这种纪念品每件提价1元,每天的销售量会减少4件.(1)写出每天所得的利润y(元)与售价x(元/件)之间的函数关系式;(2)每件售价定为多少元,才能使一天所得的利润最大?最大利润是多少元?6.(云南中考)草莓是云南多地盛产的一种水果.今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元.经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,下图是y与x的函数关系图象.(1)求y与x的函数解析式,请直接写出x的取值范围;(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.12.(咸宁中考)某网店销售某款童装,每件售价60元,每星期可卖300件.为了促销,该店决定降价销售,市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元.设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少?(3)若该网店每星期想要获得不低于6 480元的利润,每星期至少要销售该款童装多少件?第3课时实物抛物线01基础题知识点1二次函数在桥梁问题中的应用1.(铜仁中考)河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为y=-125x2,当水面离桥拱顶的高度DO是4 m时,这时水面宽度AB为( )2.(绍兴中考)如图的一座拱桥,当水面宽AB为12 m时,桥洞顶部离水面4 m.已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=-19(x-6)2+4,则选取点B为坐标原点时的抛物线的解析式是.3.(潜江、天门、仙桃中考)如图是一个横截面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米.水面下降1米时,水面的宽度为米.知识点2二次函数在隧道问题中的应用4.某隧道横截面由抛物线与矩形的三边组成,尺寸如图所示.以隧道横截面抛物线的顶点为原点,以抛物线的对称轴为y轴,建立直角坐标系,求得该抛物线对应的函数关系式为.知识点3二次函数在其他建筑问题中的应用5.如图,某工厂大门是抛物线形水泥建筑,大门底部地面宽4米,顶部距地面的高度为4.4米,现有一辆满载货物的汽车欲通过大门,其装货宽度为2.4米,该车要想通过此门,装货后的高度应小于( )A.2.80米B.2.816米C.2.82米D.2.826米知识点4二次函数在体育问题中的应用6.比赛中羽毛球的某次运动路线可以看作是一条抛物线(如图).若不考虑外力因素,羽毛球行进高度y(米)与水平距离x(米)之间满足关系y=-29x2+89x+109,则羽毛球飞出的水平距离为米.7.在体育测试时,初三的一名高个子男生推铅球,已知铅球所经过的路线是某二次函数图象的一部分(如图),若这个男生出手处A点的坐标为(0,2),铅球路线的最高处B点的坐标为(6,5).(1)求这个二次函数的解析式;(2)该男生把铅球推出去多远(精确到0.01米)?小专题(九)二次函数的实际应用类型1面积问题在几何中建立函数关系式的方法常见的有两类,一是常用公式,如周长公式、面积公式、体积公式等;二是图形的有关性质,如三角形全等、勾股定理等.如果建立的函数关系式是二次函数,还可以运用二次函数的有关性质求最值.1.(内江中考)某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米.(1)若苗圃园的面积为72平方米,求x;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;(3)当这个苗圃园的面积不小于100平方米时,直接写出x的取值范围.2.如图所示,△ABC与△DEF是两个全等的等腰直角三角形,BC=EF=8,∠C=∠F=90°,且点C、E、B、F在同一条直线上,将△ABC沿CB方向平移,设AB与DE相交于P点,设CE=x,△PBE的面积为S,求:(1)S与x之间的函数关系式,并指出自变量的取值范围;(2)当x=3时,求△PBE的面积.类型2利润问题利用二次函数解决最大利润问题,首先根据利润问题中常用的两个等量关系建立二次函数模型,然后再求二次函数的最大值.求最大值的常用方法:先配方,求出当自变量x为何值时,函数有最大值,然后观察自变量x的取值范围.若x在此范围内,则该最大值符合题意;若x不在此范围内,应根据自变量的取值范围及函数图象的增减性求出函数的最大值.3.一工艺师生产的某种产品按质量分为9个档次.第1个档次(最低档次)的产品一天能生产80件,每件可获利润12元.产品每提高一个档次,每件产品的利润增加2元,但一天产量减少4件.如果只从生产利润这一角度考虑,他生产哪个档次的产品,可获得最大利润?4.(黄冈中考)东坡商贸公司购进某种水果的成本为20元/kg ,经过市场调研发现,这种水果在未来48天的销售单价p(元/kg )与时间t(天)之间的函数关系式为p =⎩⎨⎧14t +30(1≤t ≤24,t 为整数),-12t +48(25≤t ≤48,t 为整数),且其日销售量y(kg )与时间t(天)的关系如下表:(1)已知y 与t (2)问哪一天的销售利润最大?最大日销售利润为多少?类型3 实物抛物线问题解决实物抛物线问题,首先应将已知条件转化为点的坐标,然后代入已知点的坐标,求出函数的解析式,再利用函数的解析式求解问题.5.音乐喷泉(图1)可以使喷水造型随音乐的节奏起伏变化而变化.某种音乐喷泉形状如抛物线,设其出水口为原点,出水口离岸边18 m ,音乐变化时,抛物线的顶点在直线y =kx 上变动,从而产生一组不同的抛物线(图2),这组抛物线的统一形式为y =ax 2+bx(b ≠0).(1)若已知k =1,且喷出的抛物线水线最大高度达3 m ,求此时a 、b 的值;(2)若k =1,喷出的水恰好达到岸边,则此时喷出的抛物线水线最大高度是多少米?(3)若k =3,a =-27,则喷出的抛物线水线能否达到岸边?。