集合与常用逻辑用语复习 PPT课件

合集下载

第一章 集合与常用逻辑用语(共137张PPT)

第一章 集合与常用逻辑用语(共137张PPT)

高考第一轮复习用书·数学(文科)
第一章
(2)描述法,用集合所含元素的__共同特征__表示集合 的方法称为描述法. (3)韦恩图,在数学中,经常用平面上__一个封闭__曲 线的内部代表集合,这种图称为 Venn 图. 1.在解决集合中含字母的问题时,一定要返回代入验 证,防止与集合中元素的互异性相矛盾. 2.以数为元素的集合叫作数集,如 A={y|y=x2+1,x ∈R};以点为元素的集合叫作点集,如 B= {(x,y)|y=x2 +1,x∈R}.A 与 B 不相同,它们的代表元素是不同的. 3.注意区分∅、{0}与{∅}:∅是空集,是不含任何元素的集 合;{0}不是空集,它是以一个 0 为元素的单
第一章
1.下列关系中,不正确的是( ). A.0∈N B. 2∈R C.∅⊆A D.0∈∅ 选项 A 中, 由于 0 是自然数, 那么说明 0∈N, 正确. 选项 B 中,因为 2是无理数,那么说明 2∈R ,正确. 选项 C 中,空集是任何集合的子集,正确. 选项 D 中, 左边是元素, 右边是空集, 根据空集的定义, 它是没有任何元素的集合,显然不成立. D 2.已知集合 U=Z,S={1,2,3,4,5},T={1,3, 5,7,9},则图中阴影部分表示的集合是( ).
高考第一轮复习用书·数学(文科)
第一章
§1.1


1.集合的含义与表示 (1)了解集合的含义、元素与集合的属于关系.
高考第一轮复习用书·数学(文科)
第一章
(2)能用自然语言、图形语言、集合语言(列举法或描述 法)描述不同的具体问题. 2.集合间的基本关系 (1)理解集合之间包含与相等的含义,能识别给定集合 的子集. (2)在具体情境中,了解全集与空集的含义. 3.集合的基本运算 (1)理解两个集合的并集与交集的含义,会求两个简单 集合的并集与交集. (2)理解在给定集合中一个子集的补集的含义,会求给 定子集的补集.

《集合的基本运算》集合与常用逻辑用语PPT(第1课时并集与交集)

《集合的基本运算》集合与常用逻辑用语PPT(第1课时并集与交集)

设集合 A={1,3,5,7},B={x|2≤x≤5},则 A∩B=( )
A.{1,3}
B.{3,5}
C.{5,7}
D.{1,7}
解析:选 B.因为 A={1,3,5,7},B={x|2≤x≤5},所以 A∩B ={3,5}.
栏目 导引
第一章 集合与常用逻辑用语
已知集合 M={x|-1<x<3},N={x|-2<x<1},则 M∩N= ________. 解析:在数轴上表示出集合,如图所示,
并集与交集 掌握并集与交集的相关 逻辑推理、数学运算、
的性质
性质,并会应用
数学抽象
第一章 集合与常用逻辑用语
问题导学 预习教材 P10-P12,并思考以下问题: 1.两个集合的并集与交集的含义是什么? 2.如何用 Venn 图表示集合的并集和交集? 3.并集和交集有哪些性质?
栏目 导引
1.并集
第一章 集合与常用逻辑用语
栏目 导引
第一章 集合与常用逻辑用语
2.已知集合 A={x|-3≤x<4},B={x|-2≤x≤5},则 A∩B=
() A.{x|-3≤x≤5} C.{x|-2≤x≤5}
B.{x|-2≤x<4} D.{x|-3≤x<4}
解析:选 B.因为集合 A={x|-3≤x<4},集合 B={x|-2≤x≤5}, 所以 A∩B={x|-2≤x<4}.
1.若集合 A={x|-2<x<1},B={x|0<x<2},则集合 A∩B=( ) A.{x|-1<x<1} B.{x|-2<x<1} C.{x|-2<x<2} D.{x|0<x<1} 解析:选 D.如图,

集合与常用逻辑用语PPT优秀课件

集合与常用逻辑用语PPT优秀课件

1
1
∵q≠1,∴q=-2 .综上所述,q=-2 .
2.(1)若集合P={x|x2+x-6=0},S={x|ax+1=0},且SP ,
求a
(2)若集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},
且B
A,求由m的可取值组成的集合.
解 (1)P={-3,2}.当a=0时,S= ,满足S P
的集合,而后根据已知条件求参数.
解 由x2-3x+2=0得x=1或x=2,故集合A={1,2}.
(1)∵A∩B={2},∴2∈B,代入B中的方程,
得a2+4a+3=0,∴a=-1或a=-3.
1分
当a=-1时,B={x|x2-4=0}={-2,2},满足条件;
当a=-3时,B={x|x2-4x+4=0}={2},满足条件;
失误与防范 1.解答集合题目,认清集合元素的属性(是点集、数集或其他
情形)和化简集合是正确求解的两个先决条件. 2.韦恩图示法和数轴图示法是进行集合交、并、补运算的常
用方法,其中运用数轴图示法要特别注意端点是实心还是 空心.
3.要注意A B、A∩B=A、A∪B=B、UAUB、A∩( UB) =
1
当a≠0时,方程ax+1=0的解为x=-a

1
1
为满足S P,可使- a =-3或- a =2
1
1
即a=
3
2
或a=-
.
1
1
故所求集合为{0,3 ,- 2 }.
(2)当m+1>2m-1,即m<2时,B = ,满足 B A
若B≠ ,且满足B A,如图所示,
m+1≤2m-1

第1单元-集合与常用逻辑用语(130张PPT)-

第1单元-集合与常用逻辑用语(130张PPT)-

表示法 _N___ N*_或___N+ __Z__
__Q__
__R__
返回目录
第1讲 集合及其运算


4. 集合有三种表示法:_列__举__法___,_描__述__法___,
固 基
_图__示__法___.

5. 集合的分类:按集合中元素个数划分,集合可以分
为__有__限__集__、__无__限__集__、__空__集____.
2012年湖南T1(A)
说明:A表示简单题,B表示中等题,C表示难题,考频
分析2012年课标地区真题情况.
返回目录
第1讲 集合及其运算
► 探究点一 集合的基本概念的理解
例 1 (1)已知 A={a+2,(a+1)2,a2+3a+3},若 1∈A,
点 则实数 a 构成的集合 B 的元素个数是( )
面 讲
={0,1}=N.
返回目录
第1讲 集合及其运算
考点统计
题型(考频)
题型示例(难度)

1.集合的基本概念
填空(1) 解答(1)
2009年天津T9(A)
面 讲 考
2.集合间基本关系
选择(3)
2012年课标T1(A), 2012年福建T2(A)

2012年广东T2(A),
3.集合的基本运算
选择(9)
2012年北京T1(A), 2012年浙江T1(A),
返回目录
第1讲 集合及其运算


—— 知 识 梳 理 ——
固 基
一、元素与集合

1.集合中的元素有三个性质:确定性 , 互异性 ,
无序性.
2.集合中元素与集合的关系分为属__于__和 不属于 两

《集合》集合与常用逻辑用语PPT

《集合》集合与常用逻辑用语PPT
方法点睛 x2是集合中的元素,则它既可能是1,也可能是0,或者是x,
需对其进行分类讨论.
课堂篇
探究学习
探究一
探究二
探究三
思维辨析
当堂检测
1.(多选)下列对象能构成集合的是(
)
A.所有的正数 B.等于2的数
C.接近0的数 D.不等于0的偶数
答案:ABD
2.若a是R中的元素,但不是Q中的元素,则a可以是(
合中元素的互异性;
3
2
当 2x2+5x=-3 时,x=- 或 x=-1(舍去),
3
2
3
x=- .
2
7
2
当 x=- 时,集合的三个元素分别为- ,-3,12,满足集合中元素的互
异性,故
课堂篇
探究学习
探究一
探究二
探究三
思维辨析
当堂检测
反思感悟解决此类问题的通法是:根据元素的确定性建立分类讨
论的标准,求得参数的值,然后将参数值代入检验是否满足集合中
(2)无限集:含有无限个元素的集合.
(3)一般地,我们把不含任何元素的集合称为空集.空集可以看作
是包含0个元素的集合.
(4)给定两个集合A和B,如果组成它们的元素完全相同,就称这两
个集合相等,记作A=B.
课前篇
自主预习




知识点四、常用数集及其表示
1.思考
我们曾经学习了哪些常见的数集?
提示:我们都学习过自然数集、正整数集、整数集、有理数集、
为聪明是没有明确划分标准的.
课前篇
自主预习




2.填空
(1)集合:把一些能够确定的、不同的对象看成一个整体,就说这

2023高考数学基础知识综合复习第1讲集合与常用逻辑用语 课件(共21张PPT)

2023高考数学基础知识综合复习第1讲集合与常用逻辑用语 课件(共21张PPT)
因为∁RA=(-∞,-3)∪(1,+∞),
所以(∁RA)∩B=(1,3).
(2)由(1)知A=[-3,1].
∁RA=(-∞,-3)∪(1,+∞),B=(-2a,3a).
又(∁RA)∪B=R,

-2 < -3,
3
解得 a> .
2
3 > 1,
3
2
即 a 的取值范围为( ,+∞).
考点一
考点二
考点三
则其否定“∃x∈R,x2-2x≤0”是真命题,C满足;对于选项D,因为
x2+2x+2=(x+1)2+1>0恒成立,所以“∃x∈R,x2+2x+2≤0”是假命题,
所以其否定“∀x∈R,x2+2x+2>0”,是真命题,所以D满足.故选CD.
考点一
考点二
考点三
全称量词命题的否定是存在量词命题,存在量词命题的否定是全称
素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A
是集合B的子集,记作A⊆B(或B⊇A),读作A包含于B(或B包含A).
(2)真子集的概念:如果集合A⊆B,但存在元素x∈B且x∉A,我们称集
合A是集合B的真子集,记作A⫋B(或B⫌A),读作A真包含于B(或B真
包含A).
(3)空集的概念:不含任何元素的集合叫作空集,记作⌀.空集是任何
集合的子集,是任何非空集合的真子集.
3.集合的运算
(1)并集的定义:A∪B={x|x∈A,或x∈B};
(2)交集的定义:A∩B={x|x∈A,且x∈B};
(3)补集的定义:∁UA={x|x∈U,且x∉A}.
4.充分条件、必要条件

集合与常用逻辑用语ppt课件


1 x
<2”,此命题为真
命题,例如当x=-2时,x∈R且x≠0,x+1x<2.
27
充要条件的集合观点:若满足命题p的集合为A, 满足命题q的集合为B.当A是B的真子集时,p是q的充 分不必要条件;当B是A的真子集时,p是q的必要不充 分条件;当A=B时,p与q互为充要条件;当集合A,B 互不包含时,p是q的既不充分也不必要条件.
37
下列选项中,p是q的必要不充分条件的是
()
A.p:a+c>b+d, q:a>b且c>d
B.p:a>1,b>1,
q:f(x)=ax-b(a>0,且a≠1)的图象不过第二象限
C.p:x=1, q:x2=x
D.p:a>1,
q:f(x)=logax(a>0,且a≠1)在(0,+∞)上为增函数
38
解析: ac>>db⇒a+c>b+d(不等式的性质), 反之不成立,例如:8+2>6+3,a=8,b=6,c=2,d=3. a>b但c<d,∴p是q的必要不充分条件. 答案:A
()
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
解析:因为|a|>0⇔a>0或a<0,所以a>0⇒|a|>0, 但|a|>0 a>0,所以a>0是|a|>0的充分不必要条件.
答案:A
7
3.(2010·湖南高考)下列命题中的假命题是
()
A.∃x∈R,lgx=0
B.∃x∈R,tanx=1
B.命题“a、b都是数,则a+b是偶数”的逆否命题是
“若a+b不是偶数,则a、b都不是偶数”
C.若“p或q”为假命题,则“非p且非q”是真命题

《集合的概念》集合与常用逻辑用语PPT(第二课时集合的表示)

由①②知 m=0 或 m≥13.
栏目 导引
第一章 集合与常用逻辑用语
1.(变条件)若将本例中的“至多只有一个”改为“恰有一 个”,如何求解? 解:当 m=0 时,A=32,即集合 A 中只有一个元素32,符合题 意;
当 m≠0 时,Δ=4-12m=0,
即 m=13. 综上可知,m=0 或 m=13.
素时,m 的取值范围为mm≤13.
栏目 导引
第一章 集合与常用逻辑用语
此题容易漏解 m=0,漏解的原因是默认所给的方程一定是一元 二次方程.其实,当 m=0 时,所给的方程是一个一元一次方 程;当 m≠0 时,所给的方程才是一个一元二次方程,求解时 要注意对 m 进行分类讨论.
栏目 导引
第一章 集合与常用逻辑用语
已知集合 A={x|x2+px+q=x},B={x|(x-1)2
+p(x-1)+q=x+3},当 A={2}时,集合 B=( )
A.{1}
B.{1,2}
C.{2,5}
D.{1,5}
解析:选 D.由 A={x|x2+px+q=x}={2}知,22+2p+q=2,且 Δ=(p-1)2-4q=0.计算得出,p=-3,q=4.
A.{0,1,2,3,4}
B.{1,2,3,4}
C.{0,1,2,3,4,5} D.{1,2,3,4,5}
解析:选 B.因为 x-3<2,x∈N*,
所以 x<5,x∈N*,所以 x=1,2,3,4.
栏目 导引
第一章 集合与常用逻辑用语
由大于-1 小于 5 的自然数组成的集合用列举法表示为 ________,用描述法表示为________. 解析:大于-1 小于 5 的自然数有 0,1,2,3,4.故用列举法 表示集合为{0,1,2,3,4},用描述法表示可用 x 表示代表元 素,其满足的条件是 x∈N 且-1<x<5.故用描述法表示集合为 {x∈N|-1<x<5}. 答案:{0,1,2,3,4} {x∈N|-1<x<5}

1.1集合与常用逻辑用语PPT课件


目难度中等偏下.
主干知识梳理
专题一 第1讲
1.集合的概念、关系与运算 (1)集合中元素的特性:确定性、互异性、无序性,求解含

讲 参数的集合问题时要根据互异性进行检验.
栏Hale Waihona Puke 目 (2)集合与集合之间的关系:A⊆B,B⊆C⇒A⊆C,空集是

关 任何集合的子集,含有 n 个元素的集合的子集数为 2n,真 子集数为 2n-1,非空真子集数为 2n-2. (3)集合的运算:∁U(A∪B)=(∁UA)∩(∁UB),∁U(A∩B)= (∁UA)∪(∁UB),∁U(∁UA)=A.
讲 栏
(2)设全集 U=R,集合 P={x|y=ln(1+x)},集
目 开
合 Q={y|y=
x},则右图中的阴影部分表示的
关 集合为________.
热点分类突破
专题一 第1讲
解析 (1)x-y∈-2,-1,0,1,2,即 B 中元素有 5 个.
本 (2)由 1+x>0 得 x>-1,即 P={x|x>-1};Q={y|y≥0},
押题精练
专题一 第1讲
3.已知函数 f(x)=4sin2π4+x-2 3cos 2x-1,且给定条件 p: x<π4或 x>π2,x∈R.若条件 q:-2<f(x)-m<2.且綈 p 是 q 的
本 充分条件,求实数 m 的取值范围.
(2)结合图形与性质,从充要条件的判定方法入手. 解析 (1)命题的否命题是原命题的条件与结论分别否定后组
本 成的命题,
讲 栏
所以应填“a+b+c≠3,则 a2+b2+c2<3”.
目 开
(2)如图:x2+y2≥9 表示以原点为圆心,3 为半径

高三数学(文 新课标)一轮复习课件:第一章 集合与常用逻辑用语 ppt


2019年6月1日
缘分让我们相遇,缘分让我们在一起
1
2.常用逻辑用语 (1)理解命题的概念.
(2)了解“若 p,则 q”形式的命题及其逆命题、否命题
与逆否命题,会分析四种命题的相互关系. (3)理解必要条件、充分条件与充要条件的含义. (4)了.解逻辑联结词“或”“且”“非”的含义. (5)理解全称量词和存在量词的意义.
第一章 集合与常用逻辑用语
考纲链接
1.集合 (1)集合的含义与表示 ①了解集合的含义,体会元素与集合的属于关系. ②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题. (2)集合间的基本关系 ①理解集合之间包含与相等的含义,能识别给定集合的子集. ②在具体情境中,了解全集与空集的含义. (3)集合的基本运算 ①理解两.个集合的并集与交集的含义,会求两个简单集合的并集与交集. ②理解在给定集合中一个子集的补集的含义,会求给定子集的补集. ③能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算.
=∅,则实数 a 的取值范围为________.
2019年6月1日
缘分让我们相遇,缘分让我们在一起
19
解:(1)因为{1,a+b,a}=0,ba,b,a≠0, 所以 a+b=0,ba=-1,从而 b=1, 所以 a=-1,b=1,所以 b-a=2.故填 2. (2)由 A=∅知方程 ax2+3x-2=0 无实根, 当 a=0 时,x=23不合题意,舍去;
(6)能正确地对含一个量词的命题进行否定 .
2019年6月1日
缘分让我们相遇,缘分让我们在一起
2
• 1.1 集合及其运算
2019年6月1日
缘分让我们相遇,缘分让我们在一起
3
1.集合的基本概念
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
含有全称量词的命题,叫做全称命题.
全称命题的形式为“对M中任意一个x,有p(x)成立”,记 为“∀x∈M,p(x)”.
2.存在量词:短语“_存__在__着___”、“___有_______”、 “__有__些____”、“__某__个____”、“至_少__一__个____”在逻辑中通常叫做 存在量词,用符号“∃________”表示.
全称命题的否定是____特__称____命题,特称命题的否定是 ___全__称___命题.
基础自测
1.(2012·肇庆市期末)命题“∃(x,y),x,y∈R,2x+3y+3<0”
的否定是
()
A.∃(x,y),x,y∈R,2x+3y+3<0
B.∃(x,y),x,y∈R,2x+3y+3≥0
C.∀(x,yBiblioteka ,x∈R,y∈R,2x+3y+3≥0
故选 A.
答案:A
考点三 否命题与命题的否定的区分
【例3】 (1)写出复合命题“若x=1且y=2,则x+y=3”的 否命题与“非”命题(即命题的否定),并判断真假.
(2)写出下列全称命题或特称命题的否定形式,并判断真假: ①至少存在一个四边形没有外接圆;
②关于x的不等式x2-ax+2a2≥0恒成立. 思路点拨:“且”的否定形式为“或”,“都不”的否定 形式为“不都”,反之亦然.注意区分否命题和命题的否定形式 的不同.
()
A.( p)∨q
B.p∧q
C.( p)∧(q)
D.( p)∨(q)
思路点拨:先判定简单命题p,q的真假,再根据真值表确定 复合命题的真假.
解析:不难判断命题p为真命题,命题q为假命题,从而
上述叙述中只有(p)∨( q)为真命题,故选D.
答案:D 点评:会运用真值表判定复合命题的真假.
变式探究
D.∀(x,y),x∈R,y∈R,2x+3y+3>0
解析:∃(x,y)的否定是∀(x,y),2x+3y+3<0的否定是 2x+3y+3≥0.故选C. 答案:C
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
2.(2012·河北五校联盟调研)下列结论错误的是
()
A.命题:“若x2-3x+2=0,则x=2”的逆否命题为:
变式探究
3.(2012·广东金山中学综合测试)下列有关命题的说法正确的是 ()
A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1” B.“x=-1”是“x2-5x-6=0”的必要不充分条件 C.命题“∃x∈R,使得x2+x+1<0”的否定是:“∀x∈R均
有x2+x+1<0” D.命题“若x=y,则sin x=sin y”的逆否命题为真命题
综上所述,实数a的取值范围为{a|a≤-2或a=1}.
变式探究
4.(2012·厦门市模拟改编)设有两个命题p:函数f(x)=x2+2ax +4的图象与x轴没有交点,q:a<x2-1恒成立,若“p或q” 为真,“p且q为假”,则实数a的取值范围是 ()
A. (-∞,-2] (-1,2)
B.( -∞,-2]∪[-1,2)
4. (2012·北京市海淀区模拟)已知命题p:∃x∈R,x2+2ax+a≤0. 若命题p是假命题,则实数a的取值范围是________(_0_,1. )
考点探究
考点一 复合命题真假的判定
【例1】 (2012·南昌市模拟)已知命题p:所有有理数都是实 数,命题q:正数的对数都是负数,则下列命题中为真命题的是
第一章 集合与常用逻辑用语
第三节 简单的逻辑联结词、全称量词 与存在量词
考纲要求
1.了解逻辑联结词“或”、“且”、“非”的含义. 2.理解全称量词与存在量词的意义. 3.能正确地对含有一个量词的命题进行否定.
课前自修
知识梳理
一、简单的逻辑联结词
常用的逻辑联结词:“且”、“或”、 “非”.不含逻辑 联结词的命题称为简单命题.
解析:(1)否命题:“若x≠1或y≠2,则x+y≠3”.是假命 题.
“非”命题为:“若x=1且y=2,则x+y≠3”.是假命题. (2)①该命题的否定形式为:没有一个四边形有外接圆.是 假命题. ②∃x,使关于x的不等式x2-ax+2a2≥0不成立.是假命 题. 点评:掌握逻辑联结词和量词用法,区分否命题与命题的 否定形式是不同的.
答案:C
变式探究
2.(2012·东北三校联考)已知命题 p:∃x∈0,π2,sin x=12,则
p 为
()
A.∀x∈0,π2,sin x≠12
B.∀x∈0,π2,sin x=12
C.∃x∈0,π2,sin x≠12
D.∃x∈0,π2,sin
1 x>2
解析:根据特称命题的否定的概念可知,p 为:∀x∈0,π2,sin x≠12.
二、复合命题
由简单命题和逻辑联结词构成的命题称为复合命题.
1.“且”命题:用联结词“且”把命题p和命题q联结起 来,构成一个新命题,记作p∧q,可理解为命题p和命题q同时 满足.当p,q都是真命题时,p∧q是真命题;当p,q两个命题 中有一个命题是假命题时,p∧q是假命题.记忆口诀为“一假 必假”.
解析:命题“若x2=1,则x=1”的否命题为“若x2≠1,则 x≠1”,选项A错;“x=-1”是“x2-5x-6=0”的充分不必 要条件,选项B错;命题“∃x∈R,使得x2+x+1<0”的否 定是“∀x∈R均有x2+x+1≥0”,选项C错.故选D. 答案:D
考点四 复合命题真假判定的综合运用
【例4】已知命题p:“∀x∈[1,2],x2-a≥0”,命题q: “∃x∈R,x2+2ax+2-a=0”,若命题“p且q”是真命题,求实 数a的取值范围.
课时升华
1.命题与集合之间可以建立对应关系,在这样的对应下, 逻辑联结词与集合的运算具有一致性,命题的“且”、“或”、 “非”恰好分别对应集合的“交”、“并”、“补”.因此, 可以从集合的角度进一步认识有关这些逻辑联结词的规定.(1) 集合中的交集是用“且”定义的,A∩B={x∈A且x∈B};(2)集 合中的并集是用“或”定义的,A∪B={x∈A或x∈B};(3)集合 中的补集与“非”密切相关,∁UA={x∈U且x∉A}.
的否定形式是“( p)∨( q)”,“p∨q”的否定形式是 “( p)∧( q)”.(2)含量词的命题的否定规律是“改量词,否结
论”,即把全称量词与存在量词互换,然后否定原命题的结论, 对于某些省略了量词的命题,可以在理解命题的基础上,添上量 词,再按规律写出命题的否定.
感悟高考
品味高考
1.(2012·辽宁卷)已知命题p:∀x1,x2∈R,(f(x2)-f(x1))(x2-
思路点拨:先由全称命题p和特称命题q分别确定a的取值范 围,再由“p且q”是真命题列出关于a的不等式,解不等式即得a 的取值范围.
解析:由“p且q”是真命题知,p为真命题,q也为真命题.
p为真命题时,a≤x2恒成立,∵x∈[1,2],∴a≤1.
q为真命题时,x2+2ax+2-a=0有实根,则Δ=4a2-4(2- a)≥0,即a≥1或a≤-2.
高考预测
1.(2012·韶关市一模)下列命题正确的是( )
A.∃x0∈R,x
2 0
+2x0+3=0
B.∀x∈N,x3>x2
C.“x>1”是“x2>1”的充分不必要条件
-f(x1))(x2-x1)≥0的否定为(f(x2)-f(x1))(x2-x1)<0.故选C.
答案:C
2.(2012·福建卷)下列命题中,真命题是
A.∃x∈R,ex≤0
B.∀x∈R,2x>x2
C.a+b=0的充要条件是 a =-1 b
D.a>1,b>1是ab>1的充分条件
()
解析:∵ex>0对任意x∈R恒成立,选项A错误.∵当x =3时,23=8,32=9且8<9, ∴选项B错误.∵当a=b=0时, a+b=0,而无意义,∴选项C错误.故选D. 答案:D
题p∨q对应着“并联”电路,命题 p对应着线路的“断开与闭
合”. 三、常见词语的否定
四、全称命题与全称量词、特称命题与存在量词
1.全称量词:短语“__全__部____”、“所_有__的_____”、 “_一__切_____”、“_任__何_____”、“任_意_______”、每“一__个______”在逻 辑中通常叫做全称量词,用符号“∀ ________”表示.
x1)≥0,则 p是
()
A.∃x1,x2∈R,(f(x2)-f(x1))(x2-x1)≤0
B.∀x1,x2∈R,(f(x2)-f(x1))(x2-x1)≤0
C.∃x1,x2∈R,(f(x2)-f(x1))(x2-x1)<0
D.∀x1,x2∈R,(f(x2)-f(x1))(x2-x1)<0 解析:命题p为全称命题,所以其否定应是特称命题,又(f(x2)
3.(2012·黄冈中学模拟)命题“∀x∈[1,2],x2-a≤0”为真命题的
一个充分不必要条件是
()
A.a≥4 B.a≤4 C.a≥5 D.a≤5
解析:因为∀x∈[1,2],x2-a≤0是真命题,所以a≥(x2)max =4,因为{a|a≥5}⊇{a|a≥4},所以“a≥5”是“∀x∈[1,2], x2-a≤0为真命题”的充分不必要条件.故选C. 答案:C
2.“或”命题:用联结词“或”把命题p和命题q联结起 来,构成一个新命题,记作p∨q,可理解为命题p和命题q至少 满足其中一个.当p,q两个命题中有一个命题是真命题时, p∨q是真命题;当p,q都是假命题时,p∨q是假命题.记忆口 诀为“一真必真”.
3.“非”命题:对一个命题p全盘否定,构成一个新命
2.全称命题为真时,表示所限定的集合中的每个元素都具 有某种属性,因此能通过“举反例”来判断一个全称命题为假命 题;特称命题为真时,表示在限定的集合中有一些元素(至少一 个)具有某种属性,因此能通过“举特例”来确定一个特称命题 为真命题.
相关文档
最新文档