仿生

合集下载

有关仿生学的知识

有关仿生学的知识

有关仿生学的知识1. “哎呀,你们知道吗,蝙蝠可厉害啦!”有一天晚上,我和爸爸妈妈在外面散步,我指着天上飞过的蝙蝠说,“蝙蝠能在黑黑的夜里飞来飞去,还不会撞到东西呢。

”就像我们家的扫地机器人呀,它也能在房间里到处转,却不会撞到家具,这是不是就是仿照蝙蝠来的呀!2. “哇,荷叶的表面好神奇呀!”我和小伙伴们去池塘边玩耍,看着荷叶上的水珠滚来滚去,我惊奇地叫起来,“水在荷叶上怎么都不会渗进去呢。

”那我们的雨伞不也是这样嘛,雨水落在上面就滑落了,肯定也是从荷叶这里学到的呀!3. “嘿,你们看,鸟儿的翅膀多棒呀!”在公园里,我仰头看着天空中飞翔的鸟儿对小伙伴们说,“它们可以自由自在地飞呢。

”这就好像飞机呀,有了像鸟儿翅膀一样的机翼才能在天空中翱翔呢!4. “哎呀呀,鲨鱼的皮肤可真特别!”在海洋馆里,我看着鲨鱼游来游去,兴奋地对旁边的人说,“它的皮肤让它游得好快呀。

”就像运动员穿的那种特殊泳衣,是不是就是仿照鲨鱼皮肤做的,能让运动员游得更快呢!5. “哇塞,章鱼的触手好灵活呀!”我在电视上看到章鱼,忍不住惊叹道,“它能抓住各种东西呢。

”那我们的机械手臂是不是也是学章鱼呀,也能很灵活地抓取物品呢!6. “咦,蝴蝶的颜色好漂亮呀!”我在花园里追逐着蝴蝶,对小伙伴说,“而且它还能保护自己不被发现呢。

”就像军人穿的迷彩服,不也是为了隐藏自己嘛,这肯定和蝴蝶有关系呀!7. “哇,长颈鹿的脖子好长呀!”去动物园的时候,我看着长颈鹿对爸爸妈妈说,“它能吃到好高的树叶呢。

”那我们的吊车不也有长长的臂,能把东西吊到很高的地方,这是不是也和长颈鹿有点像呢!8. “嘿,萤火虫会发光好神奇呀!”晚上在郊外,我看到萤火虫一闪一闪的,激动地喊着,“还能照亮路呢。

”那我们的手电筒不也是发光照亮呀,是不是从萤火虫这里得到的灵感呀!9. “哎呀,袋鼠跳得好远呀!”在电视上看到袋鼠跳跃,我惊讶地说,“它的后腿好有力呀。

”那我们的跳远运动员是不是也学习袋鼠呀,才能跳那么远呢!10. “哇,企鹅在冰上走得好稳呀!”看纪录片的时候,我看着企鹅摇摇摆摆地走在冰上,不禁感叹道,“它们都不会滑倒呢。

仿生学的例子大全

仿生学的例子大全

仿生学的例子大全1、苍蝇讨厌的苍蝇,仿制成功一种十分奇特的小型气体分析仪,试试被安装在宇宙飞船的座舱里,用来检测舱内气体的成分。

2、水母水母的顺风耳,仿照水母耳朵的结构和功能,设计了水母耳风暴预测仪,能提前15小时对风暴作出预报,对航海和渔业的安全都有重要意义。

3、源于“叶”的灵感3.1 叶形的启示相传春秋战国时代(公元前450-500年)的鲁国工匠鲁班,在上山伐木途中,手指被茅草划破,他仔细观察发现,原来茅草叶子两边长着锋利的锯齿,于是受到启发。

经反复实践,制成人类史上第一架带有锯齿的木工锯。

3.2 叶脉的启示浮水植物王莲有“水中花王”之称。

一个体重35kg 的人坐在上面也不会下沉。

原来王莲圆形叶片的直径可达1~2.5m,背面有许多相互交错的叶脉骨架结构,里面还有气室使得叶子稳定地浮在水面。

受叶脉支撑作用的启发,英国著名建筑师约瑟,以钢铁和玻璃为建材,设计了一座顶棚跨度很大的展览大厅──“水晶宫”,它既轻巧、雄伟又经济耐用,不仅成就了1851年的第一届世博会,也为近现代功能主义建筑构建了雏形。

3.3 叶序的启示德国波恩大学的科研人员发现,莲叶上有许多非常微小的绒毛和蜡质凸起物。

这种粗糙的叶片是干净的,而表面光滑的叶片反而需要清洗。

模仿莲叶的自净原理,人们开发出具有防污功能的自净涂层产品,其表面会形成类似茶叶的凹凸形貌,构筑一层疏水层。

这样一来,灰尘颗粒只好在涂层表面“悬空而立”,并最终在风雨冲刷下“一扫而净”。

此外,叶面形状也启迪了人们的思维。

椰子树很高,叶片巨大,但每遇飓风和暴雨也很少被折断。

研究发现,椰子叶面呈“之”字形,可以承受更大的压力。

据此,建筑师设计出了结构薄、面积大的楼房顶棚、薄状石棉板等。

4、源于“茎”的灵感4.1 节与节间的启示禾本科植物竹子,其竹节处有横隔相连,与竹身构成一个整体,这对中空细长的竹竿的刚度和稳定性,可以协调变形,共同参与抗弯作用,这对于中空细长的竹竿的刚度和稳定性很有意义。

仿生生物学例子

仿生生物学例子

仿生生物学例子
以下是 7 条关于仿生生物学例子的内容:
1. 你知道飞机吗?那可是仿照鸟儿飞行设计出来的呀!鸟儿在空中自由翱翔,那流畅的身姿和灵动的翅膀,可不就给了人类灵感嘛!想想看,要是没有对鸟儿的仿生研究,我们怎么能实现像鸟儿一样在空中快速飞行呢。

2. 嘿,潜艇你听说过吧!这就是模仿鱼在水下活动而创造出来的。

鱼在水里游得那么自在,人类就想呀,能不能也弄个类似的东西在水下航行呢,这不就有了潜艇嘛!这多神奇呀!
3. 哇塞,你看雷达,它居然是仿照蝙蝠的回声定位系统来的呢!蝙蝠在黑暗中能精准地飞行和捕食,这本事太厉害了。

所以人类就仿照它发明了雷达,让我们能在许多领域发挥大作用,这仿生生物学可真了不起啊!
4. 哎呀呀,你想想,荷叶表面不沾水的特性,居然也被人类模仿了呢!仿照荷叶制造出了一些防水的材料。

就像荷叶一直那么干净清爽,人类也利用这个特点做出了厉害的东西,是不是很赞呢?
5. 你说神奇不神奇,锯子是仿照茅草边缘的锯齿形状发明的呢!茅草那小小的锯齿居然能给人类这么大的启发。

要是没有茅草,我们怎么能有那么好用的锯子呀,这仿生的力量可真大!
6. 哈哈,迷彩服知道吧!那可是借鉴了变色龙的变色能力呢!变色龙能根据环境随时改变颜色来保护自己,人类就仿照它做出了迷彩服。

穿上迷彩服的战士们,也能更好地隐藏自己了,这多有意思呀!
7. 哇哦,太阳能热水器居然也和仿生生物学有关呢!它是仿照向日葵总是朝着太阳的特点呢!向日葵永远追随太阳的温暖,人类就利用这个原理,让我们有了方便的太阳能热水器,太牛了不是吗!
我觉得仿生生物学真的太神奇了,它让我们从大自然中获得无尽的灵感和智慧,推动着人类不断进步和发展!。

常见仿生学例子100个

常见仿生学例子100个

常见仿生学例子100个常见的仿生学例子有很多,包括但不限于:1. 鸟类的飞行机制启发了飞机的设计。

2. 鲨鱼的皮肤纹理启发了防水材料的设计。

3. 蜻蜓的翅膀结构启发了风力发电机的设计。

4. 蝴蝶的色彩启发了光学材料的设计。

5. 蚂蚁的协作行为启发了无人机的协同工作系统。

6. 海星的吸盘启发了工业机器人的设计。

7. 蝙蝠的超声波导航启发了声纳技术的发展。

8. 蝴蝶的触角启发了化学传感器的设计。

9. 蚂蚁的蚁群智能启发了分布式计算系统的设计。

10. 象鼻的灵活性启发了机器人的抓取技术。

11. 蝙蝠的独特听觉启发了声音定位技术的发展。

12. 蜘蛛的网结构启发了轻质高强度材料的设计。

13. 蝴蝶的迁徙行为启发了无线传感器网络的设计。

14. 蚂蚁的寻路能力启发了优化算法的设计。

15. 鲸鱼的流线型身体形状启发了船舶设计。

16. 蝴蝶的群体行为启发了群体智能算法的发展。

17. 蚂蚁的自组织能力启发了自组织网络的设计。

18. 鸟类的骨骼结构启发了轻质材料的设计。

19. 海豚的超声波通信启发了水下通信技术的发展。

20. 蚂蚁的社会组织启发了分布式系统的设计。

21. 蜘蛛的丝绸启发了高强度纤维材料的设计。

22. 蝴蝶的翅膀纹理启发了光学材料的设计。

23. 蜻蜓的飞行姿态启发了无人机的设计。

24. 蜘蛛的捕食方式启发了捕食性机器人的设计。

25. 蚂蚁的信息传递方式启发了分布式传感网络的设计。

26. 蝴蝶的飞行路径规划启发了无人机的路径规划算法。

27. 蚂蚁的蚁群优化启发了优化算法的设计。

28. 蜘蛛的蜘蛛网结构启发了建筑结构的设计。

29. 蝴蝶的色彩变化启发了光学材料的设计。

30. 蚂蚁的蚁群搜索启发了搜索算法的设计。

31. 蜘蛛的丝绸纤维启发了高强度纤维材料的设计。

32. 蝴蝶的飞行动力学启发了飞行器的设计。

33. 蚂蚁的信息素通信启发了分布式通信系统的设计。

34. 蜘蛛的自修复能力启发了材料自修复技术的发展。

35. 蝴蝶的迁徙行为启发了路径规划算法的设计。

大自然仿生例子

大自然仿生例子

大自然仿生例子
1. 你知道吗,那蝴蝶翅膀的美丽色彩和图案居然给了科学家们灵感!就像迷彩服,不就是仿照蝴蝶翅膀来设计的吗?让士兵们在野外能更好地隐藏自己,这多神奇呀!
2. 嘿,荷叶表面的不沾水特性是不是超厉害?这不就启发人们制造出了超疏水的材料嘛!像我们用的不粘锅,不就是这样的仿生例子吗,这简直太酷了吧!
3. 哇塞,蝙蝠能用超声波定位,这可不得了!后来呀,人们不就仿照这个发明了雷达嘛!这难道不是大自然给我们的超级礼物吗?
4. 你想想看,鲨鱼的皮肤那么光滑,竟然能让人们想到制作阻力更小的泳衣!那些游泳健将穿着鲨鱼皮泳衣在水里就像鱼一样快,多棒呀!
5. 哎呀呀,那壁虎能在墙上自由自在爬行,多厉害呀!然后呢,就有人仿照壁虎的脚制造出了特殊的胶粘材料呢,这可真是大自然的智慧啊!
6. 有没有觉得蜂巢的结构很神奇呢?它启发人们建造出了既坚固又节省材料的建筑!这难道不是大自然给我们的绝妙点子吗?
总之,大自然真的太神奇了,它给我们提供了这么多有趣又实用的仿生例子,我们一定要好好珍惜和利用呀!。

仿生学的经典例子15个

仿生学的经典例子15个

仿生学的经典例子15个篇一:仿生学的例子仿生学的例子1。

由令人讨厌的苍蝇,仿制成功一种十分奇特的小型气体分析仪。

已经被安装在宇宙飞船的座舱里,用来检测舱内气体的成分。

2。

从萤火虫到人工冷光;3。

电鱼与伏特电池;4。

水母的顺风耳,仿照水母耳朵的结构和功能,设计了水母耳风暴预测仪,能提前15小时对风暴作出预报,对航海和渔业的安全都有重要意义。

5。

人们根据蛙眼的视觉原理,已研制成功一种电子蛙眼。

这种电子蛙眼能像真的蛙眼那样,准确无误地识别出特定形状的物体。

把电子蛙眼装入雷达系统后,雷达抗干扰能力大大提高。

这种雷达系统能快速而准确地识别出特定形状的飞机、舰船和导弹等。

特别是能够区别真假导弹,防止以假乱真。

电子蛙眼还广泛应用在机场及交通要道上。

在机场,它能监视飞机的起飞与降落,若发现飞机将要发生碰撞,能及时发出警报。

在交通要道,它能指挥车辆的行驶,防止车辆碰撞事故的发生。

6。

根据蝙蝠超声定位器的原理,人们还仿制了盲人用的“探路仪”。

这种探路仪内装一个超声波发射器,盲人带着它可以发现电杆、台阶、桥上的人等。

如今,有类似作用的“超声眼镜”也已制成。

7。

模拟蓝藻的不完全光合器,将设计出仿生光解水的装置,从而可获得大量的氢气。

8。

根据对人体骨胳肌肉系统和生物电控制的研究,已仿制了人力增强器——步行机。

9。

现代起重机的挂钩起源于许多动物的爪子。

10。

屋顶瓦楞模仿动物的鳞甲。

11。

船桨模仿的是鱼的鳍。

12。

锯子学的是螳螂臂,或锯齿草。

13。

苍耳属植物获取灵感发明了尼龙搭扣。

14。

嗅觉灵敏的龙虾为人们制造气味探测仪提供了思路。

15。

壁虎脚趾对制造能反复使用的粘性录音带提供了令人鼓舞的前景。

16。

贝用它的蛋白质生成的胶体非常牢固,这样一种胶体可应用在从外科手术的缝合到补船等一切事情上。

好运生物学家通过对蛛丝的研究制造出高级丝线,抗撕断裂降落伞与临时吊桥用的高强度缆索。

船和潜艇来自人们对鱼类和海豚的模仿。

响尾蛇导弹等就是科学家模仿蛇的“热眼”功能和其舌上排列着一种似照相机装置的天然红外线感知能力的原理,研制开发出来的现代化武器。

仿生学的例子25篇

仿生学的例子25篇

仿生学的例子25篇《仿生学的例子》仿生学的例子(1):蝙蝠与雷达蝙蝠会释放出一种超声波,这种声波遇见物体时就会反弹回来,而人类听不见。

雷达就是根据蝙蝠的这种特性发明出来的。

在各种地方都会用到雷达,例如:飞机、航空等。

仿生学的例子(2):苍蝇与小型气体分析仪令人厌恶的苍蝇,与宏伟的航天事业似乎风马牛不相及,但仿生学却把它们紧密地联系起来了。

苍蝇是声名狼藉的逐臭之夫,凡是腥臭污秽的地方,都有它们的踪迹。

苍蝇的嗅觉个性灵敏,远在几千米外的气味也能嗅到。

但是苍蝇并没有鼻子,它靠什么来充当嗅觉的呢原先,苍蝇的鼻子嗅觉感受器分布在头部的一对触角上。

每个鼻子只有一个鼻孔与外界相通,内含上百个嗅觉神经细胞。

若有气味进入鼻孔,这些神经立即把气味刺激转变成神经电脉冲,送往大脑。

大脑根据不同气味物质所产生的神经电脉冲的不同,就可区别出不同气味的物质。

因此,苍蝇的触角像是一台灵敏的气体分析仪。

仿生学家由此得到启发,根据苍蝇嗅觉器的布局和功能,仿制成一种非常奇特的小型气体分析仪。

这种仪器的探头不是金属,而是活的苍蝇。

就是把非常纤细的微电极插到苍蝇的嗅觉神经上,将引导出来的神经电信号经电子线路放大后,送给分析器;分析器一经发觉气味物质的信号,便能发出警报。

这种仪器已经被安装在宇宙飞船的座舱里,用来检测舱内气体的身分。

这种小型气体分析仪,也可测量潜水艇和矿井里的有害气体。

利用这种原理,还可用来改善计算机的输入装置和有关气体色层分析仪的结构原理中。

仿生学的例子(3):鲸的前鳍--神奇能量的秘密!10项鲜为人知的仿生学案例-博闻网明白就好-博闻网---XXX探究博客座头鲸前侧有垒球般大崛起的前鳍,能够划过水面,让它悠游在海洋里。

但根据流动力学原理,这崛起就应会妨碍前鳍的运动。

根据他的研究,XXX为风扇设计具突出边缘的叶片,叶片划过空气的效率比一般标准的风扇高百分20.他成立一家叫鲸鱼能量的公司来生产他的产品,很快地会将这项节能的技术授权给世界各地的公司工厂。

仿生学的20个例子

仿生学的20个例子

仿生学的20个例子以下是仿生学的20个例子:1. 鲨鱼皮肤:模仿鲨鱼皮肤纹理的泳衣被称为“快皮”,它可以减少水流阻力,使游泳速度更快。

2. 飞鸟:飞机、直升机等飞行器的设计灵感来源于鸟类。

例如,莱特兄弟的飞机就是仿照鸟类的翅膀设计而成的。

3. 蝙蝠回声定位:模仿蝙蝠回声定位原理的雷达技术可以用于探测障碍物、跟踪目标等。

4. 蜻蜓翅膀:蜻蜓翅膀具有独特的结构,可以使其在飞行时自动调整角度和速度。

模仿蜻蜓翅膀的原理,可以设计出更轻、更高效的飞机和直升机。

5. 鱼类:鱼类的流线型身体可以使其在水中游得更快、更远。

模仿鱼类的身体结构,可以设计出更快的船只和潜水器。

6. 蜘蛛丝:蜘蛛丝具有很高的强度和弹性,可以用于制造高强度材料、生物材料等。

7. 蜜蜂舞蹈:蜜蜂通过特定的舞蹈来交流食物来源的位置信息。

人类通过模仿蜜蜂的舞蹈,可以更好地理解自然界的交流方式和生态系统的运作规律。

8. 蛇的热感应器官:模仿蛇的热感应器官,可以设计出用于寻找目标的红外线传感器。

9. 壁虎足部:壁虎足部具有粘附力强的特点,可以使其在垂直表面上攀爬。

通过模仿壁虎足部的结构和功能,可以制造出更可靠的粘附材料和表面材料。

10. 象鼻:大象的鼻子具有灵活、强壮的特点,可以用于挖掘、吸水等。

通过模仿象鼻的结构和功能,可以设计出更加实用的机械臂和工具手。

11. 鳄鱼夹子:鳄鱼的夹子具有强力的夹持力和自锁功能,可以用于夹持、固定等应用场景。

通过模仿鳄鱼夹子的结构和功能,可以制造出更加可靠的夹具和工具。

12. 鹿角:鹿角具有独特的结构和强度,可以用于防御和攻击。

通过模仿鹿角的结构和功能,可以设计出更加实用的材料和结构。

13. 蝴蝶翅膀:蝴蝶翅膀具有绚丽多彩的色彩和独特的结构,可以用于制造美丽的装饰品和艺术品。

通过模仿蝴蝶翅膀的色彩和结构,可以制造出更加美观的材料和表面处理技术。

14. 鼹鼠爪子:鼹鼠的爪子具有强大的挖掘能力,可以用于挖掘隧道和寻找食物。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

仿生人工肌肉标签:驱动材料聚合物弹性体机械分类:学科建设2011-02-19 17:11自古以来, 自然界就是人类各种技术思想、工程原理及重大发明的源泉。

20 世纪中期, 人们越来越深刻认识到大自然的启发对于开发新材料和新技术的重要性, 从而提出仿生学概念并建立仿生学这一学科。

随着研究的发展, 仿生学已成为自然科学的一个前沿和焦点。

进入21 世纪以来, 随着机器人开发的不断深入以及人们对智能机械系统的强烈需求, 作为机器人和智能机械系统驱动关键的人工肌肉已成为仿生领域的研究重点。

电活性聚合物驱动器具有应变高、柔软性好、质轻、无噪声等特点, 与肌肉有着极为相似的特性, 甚至在一些方面的性能已经超过了肌肉, 被公认为是最合适的仿肌肉材料, 称之为/ 人工肌肉。

近二十年来, 在电活性聚合物驱动材料方面取得的研究进展使得仿生的/ 人工肌肉研究得以飞速发展Progress in Biomimetic Electroactive Polymer Artificial Muscles。

肌肉是生物学上可收缩的组织, 具有信息传递、能量传递、废物排除、能量供给、传动以及自修复功能, 一直以来就是研究者开发驱动器灵感的来源, 人类很早就致力于仿生物肌肉的/ 人工肌肉研发。

上世纪50 年代, McKibben 首次研制了气动驱动器, 并发展成为商业上的McKibben 驱动器[1] , 但是作为人工肌肉材料, McKibben 驱动器体积大, 而且受到辅助系统的限制。

形状记忆合金也被尝试用作人工肌肉材料[ 2] , 与同时代的驱动材料相比, 具有高能量密度和低比重等特点, 但同样存在许多不利因素, 如形变不可预知性,响应速度慢以及使用尺寸受限等, 这些都制约了其在人工肌肉材料方面的发展。

电活性陶瓷是人工肌肉的另一个备选材料, 其响应速度较形状记忆合金快, 但是脆性大, 只能获得小于1% 的应变[ 3] 。

由于受材料的限制, 人工肌肉的研究一直出于缓慢发展阶段, 直到一类新型材料电活性聚合物(Electroactive polymers, EAP) 的出现。

EAP 可以产生的应变比电活性陶瓷大两个数量级, 并且较形状记忆合金响应速度快、密度小、回弹力大, 另外具有类似生物肌肉的高抗撕裂强度及固有的振动阻尼性能等[ 4] 。

EAP 的出现给人工肌肉领域以新的冲击, 从上个世纪90 年代初开始, 基于电活性聚合物材料的人工肌肉驱动器得到快速发展。

电活性聚合物驱动材料是指能够在电流、电压或电场作用下产生物理形变的聚合物材料, 其显著特征是能够将电能转化为机械能。

EAP 开发应用可追溯到1880 年, 伦琴发现一端固定的橡胶条在电场下可以发生长度的改变[ 5] 。

之后在1925 年压电聚合物被发现, 但由于应变和做功很小, 只被用作传感器[ 6] 。

1949 年Katchalsky[ 7] 发现胶原质纤维在酸碱溶液中可重复收缩和膨胀, 这是聚合物材料的化学响应性首次被发现。

1969[ 8] 年, 研究者发现PVDF 材料具有较大的压电效应, 人们开始把目光投向其它聚合物体系, 之后大量具有铁电性质的电活性聚合物材料被开发出来。

人工肌肉研究最大的发展发生在最近十几年, 应变可以达到380% 甚至更大的材料已被研制出[ 9] 。

随着EAP 材料研究的不断深入和发展, 其巨大的应用前景已呈现在人们面前。

EAP 材料可作为人工肢体和人造器官、内窥镜导管、供宇航员和残疾人用的增力外骨架以及制作机器人肌肉, 可用于制造尺寸更加细小的器件用于基因工程来操作细胞。

利用电活性聚合物可实现设备与器件的小型化, 从而推动微电子机械技术的发展。

目前国际上研究目标之一是制造/ 昆虫0机器人, 可用于军事、医疗等领域。

利用电活性聚合物模仿鱼尾作为推进器, 可用于制造无噪声的微型舰船。

基于此构想, 电活性聚合物的第一个商业用途早已实现, 但仅作为玩具) ) ) 2002年12 月, 日本大阪的一家公司生产出一种机械鱼, 可以在水中自由地游弋。

这是聚合物人工肌肉发展史上的一个里程碑。

目前已经被开发的科学应用领域主要有: 人机械面、飞行器应用、可控制织物、机器人、医疗等, 然而大都处于实验阶段。

根据形变产生的机制, 电活性聚合物人工肌肉材料可以分为电子型和离子型两大类[ 10] 。

电子型即电场活性材料, 通过电场以及静电作用( 库仑力) 驱动, 因为驱动体系不需要保持在湿态环境下, 也被称为干驱动体系。

这一类主要包括电介质弹性体、压电聚合物、铁电聚合物、电致伸缩聚合物及液晶弹性体。

电致伸缩纸和电致粘弹性弹性体也属于此类, 但在本文不做详细说明; 离子型聚合物即电流活性材料, 包括聚合物电解质凝胶、碳纳米管复合材料、离子聚合物2金属复合材料和导电聚合物, 因为体系需在湿态环境下工作, 也称湿驱动体系, 主要通过离子的运动所引起的形变来达到驱动的目的。

由于电子比离子移动的更快些, 电子型聚合物的反应时间较短, 仅几微秒, 其能量密度也较大, 并可长时间在空气中运行,而离子材料在必须浸浴在液体溶剂中。

然而, 长期以来电子聚合物要求在很强的电场中才能实现收缩( 150MvPm) 。

由于EAP 材料和体系的开发, 有些材料或体系的驱动机理已经超越这些分类, 于是Otero[11]在2007 年SPIE 会议上提出新的分类方法, 根据其驱动是物理过程还是化学过程分为电机械材料和电化学机械材料。

但考虑到这一新的分类还未得到广泛的接受, 在此文中作者仍将采用之前广为接受的分类来讨论各类电活性聚合物驱动材料的研究进展。

另外, 作者将对介电液体凝胶的线形驱动做一些介绍。

1 电子型人工肌肉电子型EAP 通过分子尺寸上的静电力( 库仑力) 作用使聚合物分子链重新排列以实现体积上各个维度的膨胀和收缩。

这种电机械转化是一种物理过程[ 12] , 包括两种机制, 电致伸缩效应和Maxwell 效应。

两种机制所产生的应力和应变都与电场的平方成正比。

驱动器所产生的应变可能是一种机制所产生, 如电介质弹性体, 或者是两种机制同时作用, 如聚氨酯和接枝弹性体。

电致伸缩是由于材料介电性质的改变而引起的应变。

电极化与机械应变关系如下,Selectrostriction = - QEo2 ( Er - 1) 2 E2 ( 1)Selectrostriction 表示电致伸缩所导致的纵向应变, 即在膜厚方向的应变, Q 是电致伸缩系数, Eo 是真空介电常数, Er 是相对介电常数, E 是电场强度。

介电常数E, 由真空介电常数和相对介电常数相乘所得( E=EoEr ) 。

若要发生电致伸缩现象, 材料结构中必须含有结晶区域。

当材料发生预应变时其介电常数增大则预示着电致伸缩效应出现的可能性。

材料的介电常数可通过介电分析仪测得。

另外, 在电致伸缩聚合物中还发现了一种新的机理, 聚合物偶极子的方向改变会引起体积的变化, 这就是铁电效应。

Maxwell 应力是电介质中电场分布发生变化的结果。

一种解释认为是电极间相反电荷之间的库仑力。

SMaxwell = - sEoErE2P2 ( 2)SMaxwell 是膜厚方向上的应变, s 是弹性柔量, 应力与介电常数成比例。

Ma 等[ 13] 认为丙烯酸类弹性体的场致应变主要由Maxwell 应力导致, 因为试验数据和方程式所得结果符合的很好。

这种机理在低模量材料比如具有高应变的电介质弹性体中起主要作用。

电子型EAP 的优点是形变大, 但是有一个明显的不利因素, 那就是需要很高的电场强度( 150MVPm) , 这就使得驱动电压一般高于1kv, 但是由于电流很低, 电能消耗较低。

111 电介质弹性体电介质弹性体是化学交联的软弹性体, 可以提供很大的场致应变( 10%~ 100%) , 而一般哺乳动物的应变为20% 左右。

电介质弹性体是目前研究人员最为关注的聚合物驱动材料, 具有质轻、价廉、噪音小及柔软可塑性强等特点。

这类材料通过Maxwell 应力产生应变。

电介质弹性体驱动器从原理上讲是一个平行板电容器, 弹性体膜介于两个平行金属电极之间, 类似三明治结构。

当在两金属电极上施加上千伏的高压直流电压时, 两电极之间产生的静电引力在膜厚方向上挤压弹性体膜, 使之在水平方向上扩张, 关闭电压, 弹性体薄膜恢复原来的形状( 见图1) 。

图1 电介质弹性体驱动原理示意图[14]Figure 1 Schematics of the Dielectric elastomer actuators电介质弹性体通过两种方式将电能转化为机械能。

其一, 当电极面积扩大而距离接近时, 正负电极的接近伴随着相反电荷的靠近, 金属电极间的电势能降低, 根据能力守恒定律, 降低的电势能转化为机械能; 其二, 金属电极面积扩大, 电极上分布的同种电荷距离增大, 同样电荷间电势能降低, 电能转化为机械能。

电介质弹性体在驱动时体积保持不变, 因此平行的电极板将两种转换方式很好的结合, 使之能同时发挥最大作用。

驱动应力可定义如下[ 15] :p = EoErE2 = EoEr ( VPt) 2 ( 3)p 为驱动应力, V为电压, t 为膜厚。

应力和场强的平方及介电常数成比例。

场强越大, 其承载的应力越大, 驱动的功效也就越大。

因此, 要想得到有效的驱动就需要很高的电场, 即需要很高的电压。

但是, 驱动电压过高会限制其在很多方面的应用。

在膜比较薄的情况下, 高电场可以由低电压得到, 但是当膜非常薄时, 很难得到大面积的均匀膜。

一般膜的厚度为微米级别, 需要几千伏的驱动电压。

研究人员寻求保持较高的驱动应力而电压尽可能低的方法, 其中包括预应变及使用导电纤维作为支架以制备更薄的膜。

预应变过程降低了介电常数, 但同时提高了击穿场强, 其净效应是驱动应力的增加[ 12] 。

常用的电介质弹性体为硅树脂和丙烯酸树脂橡胶, 这两种弹性体表现出的性能十分接近生物肌肉。

两种橡胶都是无定型态, 不含结晶态, 电机械响应主要是由于Maxwell 应力, 因为电致伸缩需要材料中含有晶态。

测试结果将人们的目光聚焦在两种产品上,CF1921286 硅树脂及VHB4910 丙烯酸树脂, 它们的驱动应变分别达到117% 和215% [16] 。

两种材料的驱动应力都能达到8MPa, 能量密度为3JPcm3 , 最高可达314JPcm3。

由于材料的低模量和高击穿场强, 使得丙烯酸树脂在高电场下的最大应变可以达到380%[ 17] 。

SRI 将多层驱动器重叠起来制成柱形弹簧卷驱动器[ 17] , 这个驱动器可产生约8MPa 的应力, 相当于真人肌肉的30 倍。

驱动器大小与一个手指头相似, 可侧向弯曲, 形变时能举起1kg 重的物体, SRI 成功将此驱动器用于六腿机器人FLEX2[ 18] ,FLEX2 具有类生物的行进步态, 速度可达315cmPs。

相关文档
最新文档