实数课后测试题BC

合集下载

实数试卷参考答案

实数试卷参考答案

实数试卷参考答案实数试卷参考答案在数学考试中,实数是一个重要的概念,涉及到数轴、绝对值、有理数和无理数等知识点。

本文将为大家提供一份实数试卷的参考答案,帮助大家更好地理解和掌握实数的概念和相关运算。

一、选择题1. 下列数中,不属于实数的是:A. 0B. 1C. √2D. i答案:D2. 下列数中,是有理数的是:A. 2πB. √3C. -5D. e答案:C3. 若a和b都是实数,且a > b,则下列不等式成立的是:A. a + b > a - bB. a - b > a + bC. a + b < a - bD. a - b < a + b答案:A4. 若a和b都是正实数,且a > b,则下列不等式成立的是:A. a^2 > b^2B. a^2 < b^2C. a^2 = b^2D. a^2 + b^2 = 0答案:A5. 若a和b都是实数,且a ≠ 0,则下列等式成立的是:A. a * b = a + bB. a * b = a - bC. a * b = a / bD. a * b = a^2 / b答案:C二、填空题1. π是一个________数。

答案:无理数2. -√5是一个________数。

答案:负实数3. 若a是正实数,则a的倒数是________。

答案:正实数4. 若a是负实数,则a的相反数是________。

答案:正实数5. 若a是实数,且a ≠ 0,则a的绝对值是________。

答案:正实数三、计算题1. 计算:√9 + √16 - √25答案:3 + 4 - 5 = 22. 计算:(√5 + √2)^2答案:(√5)^2 + 2 * √5 * √2 + (√2)^2 = 5 + 2√10 + 2 = 7 + 2√103. 计算:(2 + √3)(2 - √3)答案:(2)^2 - (√3)^2 = 4 - 3 = 14. 计算:(2√2 + √3)^2答案:(2√2)^2 + 2 * 2√2 * √3 + (√3)^2 = 8 + 4√6 + 3 = 11 + 4√65. 计算:(3 - √2)(3+ √2)答案:(3)^2 - (√2)^2 = 9 - 2 = 7通过以上的选择题、填空题和计算题,我们可以更好地理解实数的概念和运算规律。

实数的练习题带答案

实数的练习题带答案

实数的练习题带答案实数是数学中的一个重要概念,是整数、有理数和无理数的集合。

在数学学习中,实数概念的掌握是非常重要的,因为它涉及到我们日常生活中很多实际问题的解决。

下面,我将给大家带来一些实数的练习题,并附上答案,希望可以帮助大家更好地理解实数的概念和应用。

一、选择题1. 下列哪个数是有理数?A. √3B. 2πC. 0.618D. e答案:C2. 已知a、b是实数,且a>b,那么下列哪个不等式成立?A. a+b < aB. a/b > 1C. |a| > |b|D. a-b < 0答案:D3. 下列哪个数是无理数?A. 0.5B. -2C. 4/5D. √2答案:D4. 已知a是整数,b是有理数但不是整数,那么a+b一定是:A. 整数B. 有理数但不是整数C. 无理数D. 不能确定答案:B二、填空题1. 若x是实数,那么方程2x+1=5的解为______。

答案:x=22. 实数-√3的绝对值是______。

答案:√33. 若a是有理数,且a的平方等于4,那么a的值可能为______。

答案:±24. 若x是实数,那么不等式x-3 > 2的解集为______。

答案:(3, +∞)三、计算题1. 计算(√5+1)(√5-1)的值。

答案:(√5+1)(√5-1) = (√5)^2 - 1 = 5 - 1 = 42. 计算下列各式的值:√7 + √7 - √7 + √7 - √7答案:√7 + √7 - √7 + √7 - √7 = √73. 若a、b是实数,且a的平方+b的平方=29,且ab=6,求a和b的值。

答案:由第一个条件可得a^2 + b^2 = 29,由第二个条件可得ab = 6。

将第一个等式两边同时平方得到(a^2 + b^2)^2 = (29)^2,即a^4 + 2a^2b^2 + b^4 = 841。

将第二个等式代入,得到a^4 + 2(6^2) + b^4 = 841,即a^4 + 72 + b^4 = 841。

实数测试题及答案

实数测试题及答案

实数测试题及答案一、选择题(每题2分,共10分)1. 实数集R中,最小的正整数是:A. 0B. 1C. 2D. 3答案:B2. 下列哪个数不是实数?A. πB. -√2C. √4D. 0.33333(无限循环)答案:无3. 若a, b, c是实数,且a > b,则下列哪个不等式一定成立?A. a + c > b + cB. a - c > b - cC. a × c > b × cD. a ÷ c > b ÷ c答案:A4. 实数x满足|x - 1| < 2,则x的取值范围是:A. -1 < x < 3B. -2 < x < 0C. 0 < x < 2D. 1 < x < 3答案:A5. 若实数x满足x² - 4x + 4 = 0,则x的值为:A. 2B. -2C. 0D. 4答案:A二、填空题(每题2分,共10分)1. 一个实数的绝对值等于它本身,那么这个实数一定是______。

答案:非负数2. 若实数x满足x² = 1,则x的值是______。

答案:±13. 实数-3的相反数是______。

答案:34. 若实数a和b满足a² + b² = 0,则a和b的值分别是______。

答案:05. 一个实数的平方根是它本身,那么这个实数只能是______。

答案:1或0三、解答题(每题10分,共20分)1. 已知实数a和b满足a² - 4a + 4 = 0,求a的值。

答案:由于(a - 2)² = 0,所以a = 2。

2. 证明:对于任意实数x,x² ≥ 0。

答案:设x² = y,由于平方总是非负的,所以y ≥ 0,即x² ≥0。

四、综合题(每题15分,共30分)1. 已知实数x和y满足x² + y² = 1,求证x + y ≤ √2。

初二实数基础测试题及答案

初二实数基础测试题及答案

初二实数基础测试题及答案实数是数学中最基本的数集,包括有理数和无理数。

本次初二实数基础测试题旨在帮助学生巩固对实数概念的理解,掌握实数的运算规则。

以下是测试题及答案。

一、选择题(每题2分,共20分)1. 实数包括以下哪些数?A. 有理数B. 无理数C. 有理数和无理数D. 只有有理数答案:C2. 下列哪个数不是实数?A. πB. -3C. √2D. 1/3答案:无(所有选项都是实数)3. 实数a和b的和为正数,那么a和b必须满足以下哪个条件?A. 都是正数B. 都是负数C. 至少有一个是正数D. 至少有一个是负数答案:C4. 以下哪个数是有理数?A. πB. √3C. 0.33333(无限循环)D. √2答案:C5. 实数的绝对值总是:A. 正数B. 零C. 负数D. 非负数答案:D6. 如果a > b,且a和b都是实数,那么|a - b|等于:A. a - bB. b - aC. a + bD. 0答案:A7. 实数的相反数是:A. 它的平方B. 它的倒数C. 它的绝对值D. 它的负数答案:D8. 以下哪个运算不能在实数范围内完成?A. 加法B. 减法C. 乘法D. 除法(除数为0)答案:D9. 实数的平方总是:A. 正数B. 零C. 负数D. 非负数答案:D10. 实数的幂运算中,指数为分数时,结果可能是:A. 有理数B. 无理数C. 有理数或无理数D. 都不是答案:C二、填空题(每题2分,共20分)11. √9 = ______答案:312. -√4 = ______答案:-213. |-5| = ______答案:514. 1/2 的倒数是 ______答案:215. 2π 的相反数是 ______答案:-2π16. 如果a = -3,那么a的绝对值是 ______答案:317. 3 + 4i 是一个 ______答案:复数18. √16的两个解是 ______答案:4 和 -419. √(-1)^2 = ______答案:120. 如果x^2 = 9,那么x的两个解是 ______答案:3 和 -3三、解答题(每题10分,共30分)21. 计算下列表达式的值:(3 + √5)^2答案:[(3 + √5) + (3 - √5)] * [(3 + √5) - (3 - √5)] = (6) * (2√5) = 12√522. 解方程:2x^2 - 5x + 2 = 0答案:使用求根公式,x = [5 ± √(5^2 - 4*2*2)] / (2*2) = [5 ± √17] / 423. 证明:对于任何实数a和b,(a + b)^2 = a^2 + b^2 + 2ab答案:(a + b)^2 = a^2 + 2ab + b^2(根据平方差公式)四、简答题(每题10分,共30分)24. 描述实数的分类。

实数测试题及答案

实数测试题及答案

实数测试题及答案一、选择题(每题3分,共30分)1. 下列哪个数不是实数?A. πB. -2C. √2D. i2. 两个负数相加,结果是什么?A. 正数B. 负数C. 零D. 无法确定3. 绝对值的定义是什么?A. 一个数的平方B. 一个数的平方根C. 一个数距离0的距离D. 一个数的倒数4. 哪个数是无理数?A. 1/3B. 0.33333(无限循环小数)C. √3D. 25. 下列哪个表达式的结果不是实数?A. 2 + 3C. √(-1)D. 1/26. 有理数和无理数的总称是什么?A. 整数B. 有理数C. 无理数D. 实数7. 实数的运算中,哪个操作是不允许的?A. 加法B. 减法C. 乘法D. 除以08. 下列哪个数是实数?A. 2.71828B. 0.1010010001...(无限不循环小数)C. 1/2D. √29. 一个数的相反数是什么?A. 它的绝对值B. 它的倒数C. 它的平方D. 它的负数10. 下列哪个数是实数集的边界?A. 0B. 1D. 无边界二、填空题(每题2分,共20分)11. √9 = ______12. -√9 = ______13. 绝对值 |-5| = ______14. 1/0 的结果是 ______15. 两个负数相乘的结果是 ______16. 无理数的特点是 ______17. 实数包括 ______18. √(-1) 的结果是 ______19. 0的相反数是 ______20. 一个数的绝对值总是 ______三、解答题(每题10分,共50分)21. 证明:对于任意实数x,|x| ≥ 0。

22. 解释有理数和无理数的区别。

23. 计算:(-2)^2 + √(-4)。

24. 证明:对于任意实数a和b,如果a < b,则a + c < b + c(对于任意实数c)。

25. 解释实数的连续性。

答案:一、选择题1. D2. B3. C4. C5. C6. D7. D8. D9. D10. D二、填空题11. 312. -313. 514. 无定义(或无穷大)15. 正数16. 不能表示为两个整数的比17. 有理数和无理数18. 无定义(或复数i)19. 020. 非负数三、解答题21. 证明:根据绝对值的定义,对于任意实数x,|x| 表示x到0的距离,距离总是非负的,因此|x| ≥ 0。

实数测试题及答案

实数测试题及答案

实数测试题及答案一、选择题1. 下列各数中,是无理数的是()A. πB. √2C. 0.33333(无限循环)D. 1/32. 如果a是一个实数,且a < 0,那么下列哪个不等式是正确的?A. -a > aB. a + 1 > 0C. -a < aD. a - 1 < 03. 实数集R中,下列哪个数是有理数?A. πB. eC. √3D. 1/2二、填空题4. 如果x² = 4,那么x的值是_________。

5. 一个数的相反数是-5,那么这个数是_________。

三、解答题6. 证明:对于任意实数x,x² ≥ 0。

7. 已知a和b是实数,a > b,证明:a² > b²。

四、计算题8. 计算下列表达式的值:(3 + √2)²。

9. 已知x = √3 - 1,求x²的值。

答案:一、选择题1. B2. A3. D二、填空题4. ±25. 5三、解答题6. 证明:对于任意实数x,x² = (x)(x)。

由于实数乘法满足交换律,我们有x² = x * x。

无论x是正数、负数还是零,x * x总是非负的。

如果x是正数或零,x²自然是非负的;如果x是负数,x * x = (-|-x|)(|-x|) = |-x|²,这同样是一个非负数。

因此,x²总是大于或等于0。

7. 证明:已知a > b,我们可以对两边进行平方,得到a² > b²。

这是因为平方函数是单调递增的,即如果a > b,则a² > b²。

四、计算题8. (3 + √2)² = 3² + 2 * 3 * √2 + (√2)² = 9 + 6√2 + 2 = 11 + 6√2。

9. x² = (√3 - 1)² = 3 - 2√3 + 1 = 4 - 2√3。

实数练习题及答案

实数练习题及答案

实数练习题及答案一、选择题1. 已知实数a和b,若a+b=5,且a-b=3,则a和b的值分别是:A. 1和4B. 2和3C. 4和1D. 3和22. 以下哪个数不是实数?A. πB. √2C. 0.1010010001...D. i3. 假设实数x满足-3≤x≤3,那么x的平方x²的取值范围是:A. 0≤x²≤9B. -9≤x²≤0C. -9≤x²≤9D. 无法确定二、填空题1. 计算实数1.5的平方根,结果为______。

2. 若实数a的立方根为-2,则a的值为______。

3. 将实数-3.14转化为分数形式,结果为______。

三、解答题1. 证明:对于任意实数x,x²≥0。

2. 已知实数x满足x²-4x+4=0,求x的值。

3. 若实数y满足y²-4y+4=0,求y的值。

四、综合题1. 已知实数a和b,若a²+b²=25,a+b=7,求a和b的值。

2. 假设实数x满足方程x³-3x²+2x+1=0,求x的值。

3. 已知实数z满足z³-3z²+z+1=0,求z的值。

答案:一、选择题1. C2. D3. A二、填空题1. ±√1.52. -83. -22/7三、解答题1. 证明:对于任意实数x,x²≥0。

因为平方总是非负的,所以x²≥0。

2. 解:x²-4x+4=0,可以分解为(x-2)²=0,所以x=2。

3. 解:y²-4y+4=0,可以分解为(y-2)²=0,所以y=2。

四、综合题1. 解:由a²+b²=25和a+b=7,我们可以得到(a+b)²=a²+2ab+b²=49,由于a²+b²=25,我们可以得到2ab=49-25=24,从而ab=12。

人教版数学七年级下册:第六章《实数》测试题及答案(期末考好题精选)

人教版数学七年级下册:第六章《实数》测试题及答案(期末考好题精选)

第6章实数期末一、选择题1. 下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的个数有()A.0个B.1个C.2个D.3个2.如图,在数轴上标注了四段范围,则表示的点落在()A.段①B.段②C.段③D.段④3.如果x2=2,有;当x3=3时,有,想一想,从下列各式中,能得出的是()A.x2=±20 B.x20=2 C.x±20=20 D.x3=±204.已知a=,b=,c=,则下列大小关系正确的是()A.a>b>c B.c>b>a C.b>a>c D.a>c>b5.下列选项中正确的是()A.27的立方根是±3 B.的平方根是±4C.9的算术平方根是3 D.立方根等于平方根的数是16.下列结论正确的是()A.B.C.D.①无理数一定是无限不循环小数②算术平方根最小的数是零③﹣6是(﹣6)2的一个算术平方根④﹣=其中正确的是()A.①②③B.②③④C.①②④D.①③④8.比较2,,的大小,正确的是()A.B.2C.2D.<29.下列命题中:①有理数是有限小数;②有限小数是有理数;③无理数都是无限小数;④无限小数都是无理数.正确的是()A.①②B.①③C.②③D.③④10.下列说法:①﹣2是4的平方根;②16的平方根是4;③﹣125的平方根是15;④0.25的算术平方根是0.5;⑤的立方根是±;⑥的平方根是9,其中正确的说法是()A.1个B.2个C.3个D.4个二、填空题11.若a=b2﹣3,且a的算术平方根为1,则b的值是.12.已知a,b是正整数,若+是不大于2的整数,则满足条件的有序数对(a,b)为.13.已知实数m满足+=,则m=.14.已知≈2.078,≈20.78,则y=.15.若的值在两个整数a与a+1之间,则a=.16.如图,正方形ABCD被分成两个小正方形和两个长方形,如果两个小正方形的面积分别是6cm2和2cm2,那么两个长方形的面积和为cm2.17.若一个实数的算术平方根等于它的立方根,则这个数是.18.数轴上有A、B、C三个点,B点表示的数是1,C点表示的数是,且AB=BC,则A点表示的数是.三、解答题19.已知x是的整数部分,y是的小数部分,求x(﹣y)的值.20.计算:(1)+×﹣÷(2)3+|﹣3|﹣(﹣3)2﹣(﹣1)21.请用下表中的数据填空:x2525.125.225.325.425.525.625.725.825.926x 2625630.01635.04640.09645.16650.25655.36660.49665.64670.81676(1)655.36的平方根是.(2)=.22.设的小数部分为a,的倒数为b,求a+b2的值.23.已知+|y﹣2|=0,且与互为相反数,求yz﹣x的平方根.24.小明和小华做游戏,游戏规则如下:(1)每人每次抽取四张卡片,如果抽到白色卡片,那么加上卡片上的数或算式;如果抽到底板带点的卡片,那么减去卡片上的数或算式.(2)比较两人所抽的4张卡片的计算结果,结果大者为胜者.请你通过计算判断谁为胜者?25.我们知道a+b=0时,a3+b3=0也成立,若将a看成a3的立方根,b看成b3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子来判断上述猜测结论是否成立;(2)若与互为相反数,求1﹣的值.参考答案及解析一、选择题1. 下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的个数有()A.0个B.1个C.2个D.3个【解答】解:∵负数没有平方根,一个正数有两个平方根,0只有一个平方根是0,∴①错误;∵一个正数有两个平方根,它们互为相反数,而一个正数的算术平方根只有一个,∴②错误;∵一个负数有一个负的立方根,∴③错误;即正确的个数是0个,故选A.2.如图,在数轴上标注了四段范围,则表示的点落在()A.段①B.段②C.段③D.段④【解答】解:∵≈1.414,∴2≈2.828,∴2.8<2<2.9,故选:C.3.如果x2=2,有;当x3=3时,有,想一想,从下列各式中,能得出的是()A.x2=±20 B.x20=2 C.x±20=20 D.x3=±20【解答】解:根据题意,可知x20=2,能得出.故选B.A.a>b>c B.c>b>a C.b>a>c D.a>c>b【解答】解:∵a==,b==,c==,且<<,∴>>,即a>b>c,故选A.5.下列选项中正确的是()A.27的立方根是±3 B.的平方根是±4C.9的算术平方根是3 D.立方根等于平方根的数是1【解答】解:A、27的立方根是3,故选项错误;B、的平方根是±2,故选项错误;C、9的算术平方根是3,故选项正确;D、立方根等于平方根的数是1和0,故选项错误.故选C.6.下列结论正确的是()A.B.C.D.【解答】解:A.因为,故本选项正确;B.因为=3,故本选项错误;C.因为,故本选项错误;D.因为,故本选项错误;故选A.7.有下列说法②算术平方根最小的数是零③﹣6是(﹣6)2的一个算术平方根④﹣=其中正确的是()A.①②③B.②③④C.①②④D.①③④【解答】解:①无理数一定是无限不循环小数,正确;②算术平方根最小的数是零,正确;③﹣6是(﹣6)2的一个平方根,故错误;④﹣=,正确;其中正确的是:①②④.故选:C.8.比较2,,的大小,正确的是()A.B.2C.2D.<2【解答】解:∵2=,∴2;∵,∴,∴<.故选:A.9.下列命题中:①有理数是有限小数;③无理数都是无限小数;④无限小数都是无理数.正确的是()A.①②B.①③C.②③D.③④【解答】解:①有理数不一定是有限小数,整数也是有理数,故说法错误,②有限小数是有理数,故说法正确;③无理数都是无限小数,故说法正确;④无限小数都不一定是无理数,其中无限循环小数为有理数,故说法错误.故选C.10.下列说法:①﹣2是4的平方根;②16的平方根是4;③﹣125的平方根是15;④0.25的算术平方根是0.5;⑤的立方根是±;⑥的平方根是9,其中正确的说法是()A.1个B.2个C.3个D.4个【解答】解:①﹣2是4的平方根,正确;②16的平方根是±4,故错误;③﹣125的平方根是﹣5,故错误;④0.25的算术平方根是0.5,正确;⑤的立方根是,故错误;⑥=9,9的平方根是±3,故错误;其中正确的说法是:①④,共2个,故选:B.二、填空题11.若a=b2﹣3,且a的算术平方根为1,则b的值是.【解答】解:∵1的算术平方根是1,∴a=1.∴b2﹣3=1,即b2=4.∴b=±2.故答案为:±2.12.已知a,b是正整数,若+是不大于2的整数,则满足条件的有序数对(a,b)为.【解答】解:∵+是整数,∴a=7,b=10或a=28,b=40,因为当a=7,b=10时,原式=2是整数;当a=28,b=40时,原式=1是整数;即满足条件的有序数对(a,b)为(7,10)或(28,40),故答案为:(7,10)或(28,40).13.已知实数m满足+=,则m=.【解答】解:因为实数m满足+=,可得:m﹣2+=m,可得:m﹣3=4,解得:m=7,故答案为:714.已知≈2.078,≈20.78,则y=.【解答】解:∵≈2.078,≈20.78,∴y=8996,故答案为:8996.15.若的值在两个整数a与a+1之间,则a=.【解答】解:∵的值在两个整数a与a+1之间,4<<5,∴5<<6,∴a=5.故答案为:5.16.如图,正方形ABCD被分成两个小正方形和两个长方形,如果两个小正方形的面积分别是6cm2和2cm2,那么两个长方形的面积和为cm2.【解答】解:∵两个小正方形的面积分别是6cm2和2cm2,∴两个正方形的边长分别为和,∴两个矩形的长是,宽是,∴两个长方形的面积和=2××=4cm2.故答案为:4.17.若一个实数的算术平方根等于它的立方根,则这个数是.【解答】解:1的算术平方根是1,1额立方根是1,0的算术平方根是0,0的立方根是0,即算术平方根等于立方根的数只有1和0,故答案为:0和1.18.数轴上有A、B、C三个点,B点表示的数是1,C点表示的数是,且AB=BC,则A点表示的数是.【解答】解:设A点表示x,∵B点表示的数是1,C点表示的数是,且AB=BC,∴1﹣x=﹣1.解得:x=2﹣故答案为:2﹣.三、解答题19.已知x是的整数部分,y是的小数部分,求x(﹣y)的值.【解答】解:∵3<<4,∴的整数部分x=3,小数部分y=﹣3,∴﹣y=3,∴x(﹣y)=3×3=9.20.计算:(1)+×﹣÷(2)3+|﹣3|﹣(﹣3)2﹣(﹣1)【解答】解:(1)+×﹣÷=9+4﹣×(﹣)=13+=14;(2)3+|﹣3|﹣(﹣3)2﹣(﹣1)=3+3﹣﹣18﹣2+=3﹣17.21.请用下表中的数据填空:x2525.125.225.325.425.525.625.725.825.926x 2625630.01635.04640.09645.16650.25655.36660.49665.64670.81676(1)655.36的平方根是.(2)=.(3)<<.【解答】解:(1)∵由表可知,=25.6,∴655.36的平方根是±25.6.故答案为:±25.6;(2)∵=25.9,∴=25.9.故答案为:25.9;(3)∵=25.2,=25.3,∴25.2<<25.3.故答案为:25.2;25.3.22.设的小数部分为a,的倒数为b,求a+b2的值.【解答】解:∵的小数部分为a,∴a=﹣1,∵的倒数为b,∴b=,∴a+b2=﹣1+()2=﹣.23.已知+|y﹣2|=0,且与互为相反数,求yz﹣x的平方根.【解答】解:∵+|y﹣2|=0,∴x+1=0,y﹣2=0,∴x=﹣1,y=2.∵且与互为相反数,∴1﹣2z+3z﹣5=0,解得z=4.∴yz﹣x=2×4﹣(﹣1)=9,∴yz﹣x的平方根是±3.24.小明和小华做游戏,游戏规则如下:(1)每人每次抽取四张卡片,如果抽到白色卡片,那么加上卡片上的数或算式;如果抽到底板带点的卡片,那么减去卡片上的数或算式.(2)比较两人所抽的4张卡片的计算结果,结果大者为胜者.请你通过计算判断谁为胜者?【解答】解:(1)小明抽到卡片的计算结果:﹣﹣+=3﹣﹣2+=;小华抽到卡片的计算结果:﹣3+﹣=2﹣+3﹣=,(2)∵<,∴小华获胜.25.我们知道a+b=0时,a3+b3=0也成立,若将a看成a3的立方根,b看成b3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子来判断上述猜测结论是否成立;(2)若与互为相反数,求1﹣的值.【解答】解:(1)∵2+(﹣2)=0,而且23=8,(﹣2)3=﹣8,有8﹣8=0,∴结论成立;∴即“若两个数的立方根互为相反数,则这两个数也互为相反数.”是成立的.(2)由(1)验证的结果知,1﹣2x+3x﹣5=0,∴x=4,∴1﹣=1﹣2=﹣1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实数测验B
姓名
1. 若某数的立方根等于这个数的算术平方根,则这个数等于()
A .0
B .±1
C .-1或0
D .0或 1
2. 一个数的算术平方根是a ,比这个数大3的数为()
A 、a+3
3
C. D.a 2+3
3. 一个自然数的算术平方根是x,则下一个自然数的平方根是()
A.x+1
B. x 2+1
1
D.4.
______327的平方根是_________
5. 一个正方体A 的体积是棱长为4厘米的正方体B 的体积的127,这个正方体A
的棱长是______厘米.
6. 31-a=2,那么(1-a)3=______________
7. 如果3x+16 的立方根是4,试求2x+4的平方根.
8. 已知(x-2)2
,求xyz 的值.
9. 已知y=x 3-3,且y 的算术平方根为4,求x .
10.
11.
试求x 、y 、z 的值。

32220022002x y z x y z x y x y +--++-=+-+--当,时,求的值。

x y x x y xy y xy x y ==++
+++281414
322322设、、适合关系式
x y z
实数测试题C
一. 选择题。

1.
若与均有意义,则()
A. B. C. D.
2. 若则这四个数有下列关系()
A. B.
C.
D. 3. 要
成立,那么x 的取值范围是()
A. B. C.
D. 一切实数 4. 若有意义,则x 的取值范围是()
A. B.
C. D. 且
5. 如果是一个无理数,那么a 是()
A. 正实数
B. 非负实数
C. 非完全平方数
D. 正的非完全平方数 二. 已知x 、y 都为有理数,且,求的平方根。

三. 已知是M 的立方根,而是x 的相反数,且,求x 与y 的平方和的立方根。

四. 求当a 、b 为何实数时,有最小值,最小值是多少?
五.已知a ,b-1是400的算术平方根, a -11-a a ≥1a ≤1a =1a ≠101<<b b b b b 21,,,b b b b 21<<<
b b b b 21<<<12b b b b <<<b b b b <<<12()101033-=-x x x ≤10x ≥10x =10x x
x ++-1233x >0x ≥-1x ≤2x ≤2x ≠0a y x x =-+-+333y x x M a b =+y b =-63M a =-37a b ab a b 22
2++--。

相关文档
最新文档