圆锥曲线与方程椭圆双曲线抛物线课后限时作业(五)含答案人教版高中数学考点大全

合集下载

圆锥曲线与方程椭圆双曲线抛物线一轮复习专题练习(五)附答案人教版高中数学

圆锥曲线与方程椭圆双曲线抛物线一轮复习专题练习(五)附答案人教版高中数学

高中数学专题复习
《圆锥曲线与方程椭圆双曲线抛物线》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.1 .(汇编年高考课标Ⅱ卷(文))设椭圆22
22:1(0)x y C a b a b
+=>>的左、右焦点分别为12,,F F P 是C 上的点21212,30PF F F PF F ⊥∠=︒,则C 的离心率为 ( )
A .
B .
C .
D .
2.(汇编年高考浙江理)若双曲线122
=-y m
x 上的点到左准线的距离是到左焦点距离的3
1,则=m C (A)21 (B)23 (C)81 (D)8
9 【考点分析】本题考查双曲线的第二定义,基础题。

高中数学高考试卷考点之椭圆双曲线抛物线和圆锥曲线的综合应用知识汇总,带参考答案共五十六页

高中数学高考试卷考点之椭圆双曲线抛物线和圆锥曲线的综合应用知识汇总,带参考答案共五十六页

数学高考试卷椭圆双曲线抛物线和圆锥曲线的综合应用,带参考答案本文收集整理了高中数学高考试卷椭圆、双曲线、抛物线和圆锥曲线的综合应用知识知识,并配上详细参考答案,内容全共五十六页。

同学们认真完成这些练习,并对过答案,对学习高中椭圆、双曲线、抛物线和圆锥曲线的综合应用知识知识,一定有很大的帮助,希望大家喜欢这份文档。

一、椭圆知识1.(2018全国Ⅱ,12)已知F 1,F 2是椭圆C : x 2a +y 2b =1 (a >b >0)的左,右焦点,A是C 的左顶点,点P 在过A 且斜率为√36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( )A .23 B .12 C .13 D .141.答案:D 因为△PF 1F 2为等腰三角形,∠F 1F 2P =120°,所以PF 2=F 1F 2=2c,由AP 斜率为√36得,tan∠PAF 2=√36,∴sin∠PAF 2=√13cos∠PAF 2=√12√13,由正弦定理得PF 2AF 2=sin∠PAF 2sin∠APF 2,所以2c a+c =1√13sin(π3−∠PAF 2)1√13√32⋅√12√13−12⋅1√1325∴a =4c,e =14,选D.2.(2017•新课标Ⅲ,10)已知椭圆C : =1(a >b >0)的左、右顶点分别为A 1 , A 2 , 且以线段A 1A 2为直径的圆与直线bx ﹣ay+2ab=0相切,则C 的离心率为( )A. B. C. D.2. 答案:A 以线段A 1A 2为直径的圆与直线bx ﹣ay+2ab=0相切, ∴原点到直线的距离=a ,化为:a 2=3b 2 . ∴椭圆C 的离心率e= = = .故选A .3.(2017•浙江,)椭圆+=1的离心率是( )A. B. C. D.3. 答案:B 椭圆+=1,可得a=3,b=2,则c==,所以椭圆的离心率为: =.故选B .4.(2016·浙江,7)已知椭圆C 1:x 2m 2+y 2=1(m >1)与双曲线C 2:x 2n2-y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则( )A.m >n 且e 1e 2>1B.m >n 且e 1e 2<1C.m <n 且e 1e 2>1D.m <n 且e 1e 2<14.答案: A [由题意可得:m 2-1=n 2+1,即m 2=n 2+2, 又∵m >0,n >0,故m >n . 又∵e 21·e 22=m 2-1m 2·n 2+1n 2=n 2+1n 2+2·n 2+1n 2=n 4+2n 2+1n 4+2n 2=1+1n 4+2n 2>1,∴e 1·e 2>1.] 5.(2016·全国Ⅲ,11)已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) A.13 B.12 C.23 D.345.A [设M (-c ,m ),则E ⎝⎛⎭⎫0,am a -c ,OE 的中点为D ,则D ⎝⎛⎭⎫0,am2(a -c ),又B ,D ,M 三点共线,所以m 2(a -c )=m a +c,a =3c ,e =13.]6.(2014·大纲全国,6)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1、F 2,离心率为33,过F 2的直线l 交C 于A 、B 两点.若△AF 1B 的周长为43,则C 的方程为( ) A.x 23+y 22=1 B.x 23+y 2=1 C.x 212+y 28=1 D.x 212+y 24=1 6.A [由椭圆的性质知|AF 1|+|AF 2|=2a ,|BF 1|+|BF 2|=2a , ∴△AF 1B 的周长=|AF 1|+|AF 2|+|BF 1|+|BF 2|=43,∴a = 3.又e =33,∴c =1.∴b 2=a 2-c 2=2,∴椭圆的方程为x 23+y 22=1,故选A.]7.(2018浙江,17)已知点P (0,1),椭圆x24+y 2=m (m >1)上两点A ,B 满足AP⃑⃑⃑⃑⃑ =2PB ⃑⃑⃑⃑⃑ ,则当m =___________时,点B 横坐标的绝对值最大.7.5 设A(x 1,y 1),B(x 2,y 2),由AP ⃑⃑⃑⃑⃑ =2PB ⃑⃑⃑⃑⃑ 得−x 1=2x 2,1−y 1=2(y 2−1),∴−y 1=2y 2−3, 因为A ,B 在椭圆上,所以x 124+y 12=m,x 224+y 22=m, ∴4x 224+(2y 2−3)2=m,∴x 224+(y 2−32)2=m4,与x 224+y 22=m 对应相减得y 2=3+m 4,x 22=−14(m 2−10m +9)≤4,当且仅当m =5时取最大值.8.(2016·江苏,10)如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.8.63 [联立方程组⎩⎨⎧x 2a 2+y 2b 2=1,y =b2,解得B 、C 两点坐标为B ⎝⎛⎭⎫-32a ,b 2,C ⎝⎛⎭⎫32a ,b2,又F (c ,0),则FB →=⎝⎛⎭⎫-32a -c ,b 2,FC →=⎝⎛⎭⎫3a 2-c ,b 2,又由∠BFC =90°,可得FB →·FC →=0,代入坐标可得:c 2-34a 2+b 24=0①,又因为b 2=a 2-c 2.代入①式可化简为c 2a 2=23,则椭圆离心率为e =ca=23=63. 9.(2014·辽宁,15)已知椭圆C :x 29+y 24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=________.9.12 [设MN 交椭圆于点P ,连接F 1P 和F 2P (其中F 1、F 2是椭圆C 的左、右焦点),利用中位线定理可得|AN |+|BN |=2|F 1P |+2|F 2P |=2×2a =4a =12.] 10.(2014·安徽,14)设F 1,F 2分别是椭圆E :x 2+y 2b 2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为________. 10.x 2+3y 22=1 [设点A 在点B 上方,F 1(-c ,0),F 2(c ,0),其中c =1-b 2,则可设A (c ,b 2),B (x 0,y 0),由|AF 1|=3|F 1B |,可得AF 1→=3F 1B →,故⎩⎪⎨⎪⎧-2c =3(x 0+c ),-b 2=3y 0,即⎩⎨⎧x 0=-53c ,y 0=-13b 2,代入椭圆方程可得25(1-b 2)9+19b 2=1,得b 2=23,故椭圆方程为x 2+3y 22=1.] 11.(2014·江西,15)过点M (1,1)作斜率为-12的直线与椭圆C :x 2a 2+y 2b 2=1(a >b >0)相交于A ,B两点,若M 是线段AB 的中点,则椭圆C 的离心率等于________. 11.22 [设A (x 1,y 1),B (x 2,y 2),分别代入椭圆方程相减得(x 1-x 2)(x 1+x 2)a 2+(y 1-y 2)(y 1+y 2)b 2=0,根据题意有x 1+x 2=2×1=2,y 1+y 2=2×1=2,且y 1-y 2x 1-x 2=-12,所以2a 2+2b 2×⎝⎛⎭⎫-12=0,得a 2=2b 2,所以a 2=2(a 2-c 2),整理得a 2=2c 2得c a =22,所以e =22.] 12.(2018全国Ⅲ,20)已知斜率为k 的直线l 与椭圆C : x 24+y 23=1交于A ,B 两点,线段AB的中点为M(1 , m)(m >0). (1)证明:k <−12;(2)设F 为C 的右焦点,P 为C 上一点,且FP ⃑⃑⃑⃑⃑ +FA ⃑⃑⃑⃑⃑ +FB ⃑⃑⃑⃑⃑ =0.证明:|FA ⃑⃑⃑⃑⃑ |,|FP ⃑⃑⃑⃑⃑ |,|FB ⃑⃑⃑⃑⃑ |成等差数列,并求该数列的公差. 12.(1)设A(x 1,y 1),B(x 2,y 2),则x 124+y 123=1,x 224+y 223=1.两式相减,并由y 1−y2x 1−x 2=k 得x 1+x 24+y 1+y 23⋅k =0. 由题设知x 1+x 22=1,y 1+y 22=m ,于是k =−34m .①由题设得0<m <32,故k <−12. (2)由题意得F(1,0),设P(x 3,y 3),则 (x 3−1,y 3)+(x 1−1,y 1)+(x 2−1,y 2)=(0,0).由(1)及题设得x 3=3−(x 1+x 2)=1,y 3=−(y 1+y 2)=−2m <0. 又点P 在C 上,所以m =34,从而P(1,−32),|FP ⃑⃑⃑⃑⃑ |=32. 于是|FA⃑⃑⃑⃑⃑ |=√(x 1−1)2+y 12=√(x 1−1)2+3(1−x 124)=2−x 12. 同理|FB⃑⃑⃑⃑⃑ |=2−x 22.所以|FA⃑⃑⃑⃑⃑ |+|FB ⃑⃑⃑⃑⃑ |=4−12(x 1+x 2)=3. 故2|FP⃑⃑⃑⃑⃑ |=|FA ⃑⃑⃑⃑⃑ |+|FB ⃑⃑⃑⃑⃑ |,即|FA ⃑⃑⃑⃑⃑ |,|FP ⃑⃑⃑⃑⃑ |,|FB ⃑⃑⃑⃑⃑ |成等差数列. 设该数列的公差为d ,则2|d|=||FB⃑⃑⃑⃑⃑ |−|FA ⃑⃑⃑⃑⃑ ||=12|x 1−x 2|=12√(x 1+x 2)2−4x 1x 2.② 将m =34代入①得k =−1.所以l 的方程为y =−x +74,代入C 的方程,并整理得7x 2−14x +14=0.故x 1+x 2=2,x 1x 2=128,代入②解得|d|=3√2128. 所以该数列的公差为3√2128或−3√2128. 13.(2018天津,19)设椭圆22221x x a b+= (a >b >0)的左焦点为F ,上顶点为B . 已知椭圆的点A 的坐标为(),0b,且FB AB ⋅=(I )求椭圆的方程;(II )设直线l : (0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若sin 4AQ AOQ PQ=∠ (O 为原点) ,求k 的值. 13.(Ⅰ)设椭圆的焦距为2c ,由已知有2259c a =,又由a 2=b 2+c 2,可得2a =3b .由已知可得, FB a =,AB =,由FB AB ⋅=ab =6,从而a =3,b =2.所以,椭圆的方程为22194x y +=. (Ⅱ)设点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2). 由已知有y 1>y 2>0,故12PQ sin AOQ y y ∠=-. 又因为2y AQ sin OAB =∠,而∠OAB =π4,故2AQ =.由4AQ sin AOQ PQ=∠,可得5y 1=9y 2. 由方程组22{ 194y kx x y =+=,,消去x,可得1y =. 易知直线AB 的方程为x +y –2=0, 由方程组{20y kx x y =+-=,,消去x ,可得221ky k =+.由5y 1=9y 2,可得5(k +1)= 两边平方,整理得25650110k k -+=,解得12k =,或1128k =. 所以,k 的值为12或1128.14.(2017•江苏,17)如图,在平面直角坐标系xOy 中,椭圆E : =1(a >b >0)的左、右焦点分别为F 1 , F 2 , 离心率为,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点F 1作直线PF 1的垂线l 1 , 过点F 2作直线PF 2的垂线l 2 . (Ⅰ)求椭圆E 的标准方程;(Ⅱ)若直线l 1 , l 2的交点Q 在椭圆E 上,求点P 的坐标.14.(1)设椭圆的半焦距为c .因为椭圆E 的离心率为12,两准线之间的距离为8,所以12c a =, 228a c =,解得2,1a c ==,于是b ==因此椭圆E 的标准方程是22143x y +=. (2)由(1)知, ()11,0F -, ()21,0F . 设()00,P x y ,因为点P 为第一象限的点,故000,0x y >>. 当01x =时, 2l 与1l 相交于1F ,与题设不符. 当01x ≠时,直线1PF 的斜率为001y x +,直线2PF 的斜率为001y x -.因为11l PF ⊥, 22l PF ⊥,所以直线1l 的斜率为001x y -+,直线2l 的斜率为001x y --, 从而直线1l 的方程: ()0011x y x y +=-+, ① 直线2l 的方程: ()0011x y x y -=--. ② 由①②,解得2001,x x x y y -=-=,所以20001,x Q x y ⎛⎫-- ⎪⎝⎭.因为点Q 在椭圆上,由对称性,得20001x y y -=±,即2201x y -=或22001x y +=. 又P 在椭圆E 上,故2200143x y +=. 由22002201{ 143x y x y-=+=,解得00x y ==; 220022001{ 143x y x y +=+=,无解.因此点P的坐标为⎝⎭15.(2016·全国Ⅱ,20)已知椭圆E :x 2t +y 23=1的焦点在x 轴上,A 是E 的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (1)当t =4,|AM |=|AN |时,求△AMN 的面积; (2)当2|AM |=|AN |时,求k 的取值范围.15.解 (1)设M (x 1,y 1),则由题意知y 1>0.当t =4时,E 的方程为x 24+y 23=1,A (-2,0).由|AM |=|AN |及椭圆的对称性知,直线AM 的倾斜角为π4.因此直线AM 的方程为y =x +2.将x =y -2代入x 24+y 23=1得7y 2-12y =0,解得y =0或y =127,所以y 1=127.因此△AMN 的面积S △AMN =2×12×127×127=14449.(2)由题意t >3,k >0,A (-t ,0),将直线AM 的方程y =k (x +t )代入x 2t +y 23=1得(3+tk 2)x 2+2t ·tk 2x +t 2k 2-3t =0.由x 1·(-t )=t 2k 2-3t 3+tk 2得x 1=t (3-tk 2)3+tk 2,故|AM |=|x 1+t |1+k 2=6t (1+k 2)3+tk 2.由题设,直线AN 的方程为y =-1k (x +t ),故同理可得|AN |=6k t (1+k 2)3k 2+t .由2|AM |=|AN |得23+tk 2=k3k 2+t ,即(k 3-2)t =3k (2k -1),当k =32时上式不成立,因此t =3k (2k -1)k 3-2.t >3等价于k 3-2k 2+k -2k 3-2=(k -2)(k 2+1)k 3-2<0,即k -2k 3-2<0.由此得⎩⎪⎨⎪⎧k -2>0,k 3-2<0,或⎩⎪⎨⎪⎧k -2<0,k 3-2>0,解得32<k <2.因此k 的取值范围是(32,2).16.(2016·四川,20)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线l :y =-x +3与椭圆E 有且只有一个公共点T . (1)求椭圆E 的方程及点T 的坐标;(2)设O 是坐标原点,直线l ′平行于OT ,与椭圆E 交于不同的两点A 、B ,且与直线l 交于点P .证明:存在常数λ,使得|PT |2=λ|P A |·|PB |,并求λ的值. 16.(1)解 由已知,a =2b ,则椭圆E 的方程为x 22b 2+y 2b 2=1.由方程组⎩⎪⎨⎪⎧x 22b 2+y 2b 2=1,y =-x +3,得3x 2-12x +(18-2b 2)=0.①方程①的判别式为Δ=24(b 2-3),由Δ=0,得b 2=3,此时方程①的解为x =2,所以椭圆E 的方程为x 26+y 23=1.点T 的坐标为(2,1).(2)证明 由已知可设直线l ′的方程为y =12x +m (m ≠0),由方程组⎩⎪⎨⎪⎧y =12x +m ,y =-x +3,可得⎩⎨⎧x =2-2m3,y =1+2m 3.所以P 点坐标为⎝⎛⎭⎫2-2m 3,1+2m 3.|PT |2=89m 2. 设点A ,B 的坐标分别为A (x 1,y 1),B (x 2,y 2).由方程组⎩⎨⎧x 26+y 23=1,y =12x +m ,可得3x 2+4mx +(4m 2-12)=0.②方程②的判别式为Δ=16(9-2m 2), 由Δ>0,解得-322<m <322.由②得x 1+x 2=-4m3,x 1x 2=4m 2-123.所以|P A |=⎝⎛⎭⎫2-2m 3-x 12+⎝⎛⎭⎫1+2m 3-y 12=52⎪⎪⎪⎪2-2m 3-x 1,同理|PB |=52⎪⎪⎪⎪2-2m 3-x 2.所以|P A |·|PB |=54⎪⎪⎪⎪⎝⎛⎭⎫2-2m3-x 1⎝⎛⎭⎫2-2m 3-x 2 =54⎪⎪⎪⎪⎪⎪⎝⎛⎭⎫2-2m 32-⎝⎛⎭⎫2-2m 3(x 1+x 2)+x 1x 2 =54⎪⎪⎪⎪⎪⎪⎝⎛⎭⎫2-2m 32-⎝⎛⎭⎫2-2m 3⎝⎛⎭⎫-4m 3+4m 2-123=109m 2. 故存在常数λ=45,使得|PT |2=λ|P A |·|PB |.17.(2015·重庆,21)如图,椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆于P 、Q 两点,且PQ ⊥PF 1.(1)若|PF 1|=2+2,|PF 2|=2-2,求椭圆的标准方程; (2)若|PF 1|=|PQ |,求椭圆的离心率e .17.解 (1)由椭圆的定义,2a =|PF 1|+|PF 2|=(2+2)+(2-2)=4,故a =2. 设椭圆的半焦距为c ,由已知PF 1⊥PF 2,因此2c =|F 1F 2|=|PF 1|2+|PF 2|2=(2+2)2+(2-2)2=23,即c =3,即c =3,从而b =a 2-c 2=1. 故所求椭圆的标准方程为x 24+y 2=1.(2)法一 如图设点P (x 0,y 0)在椭圆上,且PF 1⊥PF 2,则x 20a 2+y 20b2=1,x 20+y 20=c 2, 求得x 0=±a c a 2-2b 2,y 0=±b 2c .由|PF 1|=|PQ |>|PF 2|得x 0>0,从而 |PF 1|2=⎝ ⎛⎭⎪⎫a a 2-2b 2c +c 2+b 4c 2=2(a 2-b 2)+2a a 2-2b 2=(a +a 2-2b 2)2. 由椭圆的定义,|PF 1|+|PF 2|=2a ,|QF 1|+|QF 2|=2a , 从而由|PF 1|=|PQ |=|PF 2|+|QF 2|,有|QF 1|=4a -2|PF 1|. 又由PF 1⊥PF 2,|PF 1|=|PQ |,知|QF 1|=2|PF 1|, 因此,(2+2)|PF 1|=4a ,即(2+2)(a +a 2-2b 2)=4a , 于是(2+2)(1+2e 2-1)=4,解得e =12⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫42+2-12=6- 3. 法二 如图,由椭圆的定义,|PF 1|+|PF 2|=2a ,|QF 1|+|QF 2|=2a .从而由|PF 1|=|PQ |=|PF 2|+|QF 2|,有|QF 1|=4a -2|PF 1|.又由PF 1⊥PQ ,|PF 1|=|PQ |,知|QF 1|=2|PF 1|,因此,4a -2|PF 1|=2|PF 1|,得|PF 1|=2(2-2)a ,从而|PF 2|=2a -|PF 1|=2a -2(2-2)a =2(2-1)a . 由PF 1⊥PF 2,知|PF 1|2+|PF 2|2=|F 1F 2|2=(2c )2,因此e =ca =|PF 1|2+|PF 2|22a =(2-2)2+(2-1)2=9-62=6- 3. 18.(2015·福建,18)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)过点(0,2),且离心率e =22.(1)求椭圆E 的方程;(2)设直线l :x =my -1(m ∈R )交椭圆E 于A ,B 两点,判断点G ⎝⎛⎭⎫-94,0与以线段AB 为直径的圆的位置关系,并说明理由.18.解 法一 (1)由已知得,⎩⎪⎨⎪⎧b =2,c a =22,a 2=b 2+c 2.解得⎩⎨⎧a =2,b=2,c = 2.所以椭圆E 的方程为x 24+y 22=1.(2)设A (x 1,y 1),B (x 2,y 2),AB 的中点为H (x 0,y 0).⎩⎪⎨⎪⎧x =my -1,x 24+y 22=1得(m 2+2)y 2-2my -3=0.所以y 1+y 2=2m m 2+2,y 1y 2=-3m 2+2,从而y 0=mm 2+2.所以|GH |2=⎝⎛⎭⎫x 0+942+y 20=⎝⎛⎭⎫my 0+542+y 20=(m 2+1)y 20+52my 0+2516. |AB |24=(x 1-x 2)2+(y 1-y 2)24 =(1+m 2)(y 1-y 2)24=(1+m 2)[(y 1+y 2)2-4y 1y 2]4=(1+m 2)(y 20-y 1y 2), 故|GH |2-|AB |24=52my 0+(1+m 2)y 1y 2+2516=5m 22(m 2+2)-3(1+m 2)m 2+2+2516=17m 2+216(m 2+2)>0, 所以|GH |>|AB |2.故点G ⎝⎛⎭⎫-94,0在以AB 为直径的圆外. 法二 (1)同法一.(2)设点A (x 1,y 1),B (x 2,y 2),则GA →=⎝⎛⎭⎫x 1+94,y 1,GB →=⎝⎛⎭⎫x 2+94,y 2.由⎩⎪⎨⎪⎧x =my -1,x 24+y 22=1得(m 2+2)y 2-2my -3=0, 所以y 1+y 2=2m m 2+2,y 1y 2=-3m 2+2,从而GA →·GB →=⎝⎛⎭⎫x 1+94⎝⎛⎭⎫x 2+94+y 1y 2=⎝⎛⎭⎫my 1+54⎝⎛⎭⎫my 2+54+y 1y 2 =(m 2+1)y 1y 2+54m (y 1+y 2)+2516=-3(m 2+1)m 2+2+52m2m 2+2+2516=17m 2+216(m 2+2)>0, 所以cos 〈GA →,GB →〉>0.又GA →,GB →不共线,所以∠AGB 为锐角. 故点G ⎝⎛⎭⎫-94,0在以AB 为直径的圆外. 19.(2015·陕西,20)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的半焦距为c ,原点O 到经过两点(c,0),(0,b )的直线的距离为12c .(1)求椭圆E 的离心率;(2)如图,AB 是圆M :(x +2)2+(y -1)2=52的一条直径,若椭圆E 经过A ,B 两点,求椭圆E的方程.19.解 (1)过点(c ,0),(0,b )的直线方程为bx +cy -bc =0, 则原点O 到该直线的距离d =bc b 2+c 2=bc a,由d =12c ,得a =2b =2a 2-c 2,解得离心率c a =32.(2)法一 由(1)知,椭圆E 的方程为x 2+4y 2=4b 2.① 依题意,圆心M (-2,1)是线段AB 的中点,且|AB |=10,易知,AB 与x 轴不垂直,设其方程为y =k (x +2)+1,代入①得(1+4k 2)x 2+8k (2k +1)x +4(2k +1)2-4b 2=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8k (2k +1)1+4k 2,x 1x 2=4(2k +1)2-4b 21+4k 2,由x 1+x 2=-4,得-8k (2k +1)1+4k 2=-4,解得k =12,从而x 1x 2=8-2b 2, 于是|AB |=1+⎝⎛⎭⎫122|x 1-x 2|=52(x 1+x 2)2-4x 1x 2=10(b 2-2),由|AB |=10,得10(b 2-2)=10,解得b 2=3, 故椭圆E 的方程为x 212+y 23=1.法二 由(1)知,椭圆E 的方程为x 2+4y 2=4b 2,②依题意,点A ,B 关于圆心M (-2,1)对称,且|AB |=10,设A (x 1,y 1),B (x 2,y 2),则x 21+4y 21=4b 2,x 22+4y 22=4b 2,两式相减并结合x 1+x 2=-4,y 1+y 2=2,得-4(x 1-x 2)+8(y 1-y 2)=0, 易知AB 与x 轴不垂直,则x 1≠x 2, 所以AB 的斜率k AB =y 1-y 2x 1-x 2=12, 因此直线AB 的方程为y =12(x +2)+1,代入②得x 2+4x +8-2b 2=0,所以x 1+x 2=-4,x 1x 2=8-2b 2, 于是|AB |=1+⎝⎛⎭⎫122|x 1-x 2|=52(x 1+x 2)2-4x 1x 2=10(b 2-2).由|AB |=10,得10(b 2-2)=10,解得b 2=3, 故椭圆E 的方程为x 212+y 23=1.20.(2015·北京,19)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点P (0,1)和点A (m ,n )(m ≠0)都在椭圆C 上,直线P A 交x 轴于点M .(1)求椭圆C 的方程,并求点M 的坐标(用m ,n 表示);(2)设O 为原点,点B 与点A 关于x 轴对称,直线PB 交x 轴于点N .问:y 轴上是否存在点Q ,使得∠OQM =∠ONQ ?若存在,求点Q 的坐标;若不存在,说明理由.20.解 (1)由题意得⎩⎪⎨⎪⎧b =1,c a =22,a 2=b 2+c2解得a 2=2,故椭圆C 的方程为x22+y 2=1.设M (x M ,0).因为m ≠0,所以-1<n <1.直线P A 的方程为y -1=n -1m x .所以x M =m 1-n,即M ⎝⎛⎭⎫m 1-n ,0. (2)因为点B 与点A 关于x 轴对称,所以B (m ,-n ). 设N (x N ,0),则x N =m1+n.“存在点Q (0,y Q )使得∠OQM =∠ONQ ”,等价于“存在点Q (0,y Q )使得|OM ||OQ |=|OQ ||ON |”,即y Q 满足y 2Q =|x M ||x N |.因为x M =m 1-n ,x N =m 1+n ,m 22+n 2=1.所以y 2Q =|x M ||x N |=m 21-n 2=2.所以y Q =2或y Q =- 2.故在y 轴上存在点Q ,使得∠OQM =∠ONQ ,点Q 的坐标为(0,2)或(0,-2). 21.(2015·江苏,18)如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且右焦点F 到左准线l 的距离为3. (1)求椭圆的标准方程;(2)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若PC =2AB ,求直线AB 的方程. 21.解 (1)由题意,得c a =22且c +a 2c=3,解得a =2,c =1,则b =1,所以椭圆的标准方程为x 22+y 2=1.(2)当AB ⊥x 轴时,AB =2,又CP =3,不合题意.当AB 与x 轴不垂直时,设直线AB 的方程为y =k (x -1),A (x 1,y 1),B (x 2,y 2), 将AB 的方程代入椭圆方程,得(1+2k 2)x 2-4k 2x +2(k 2-1)=0, 则x 1,2=2k 2±2(1+k 2)1+2k 2,C 的坐标为⎝ ⎛⎭⎪⎫2k 21+2k 2,-k 1+2k 2,且 AB =(x 2-x 1)2+(y 2-y 1)2=(1+k 2)(x 2-x 1)2=22(1+k 2)1+2k 2.若k =0,则线段AB 的垂直平分线为y 轴,与左准线平行,不合题意. 从而k ≠0,故直线PC 的方程为y +k 1+2k 2=-1k ⎝⎛⎭⎫x -2k 21+2k 2,则P 点的坐标为⎝ ⎛⎭⎪⎫-2,5k 2+2k (1+2k 2),从而PC =2(3k 2+1)1+k 2|k |(1+2k 2).因为PC =2AB ,所以2(3k 2+1)1+k 2|k |(1+2k 2)=42(1+k 2)1+2k 2,解得k =±1.此时直线AB 的方程为y =x -1或y =-x +1.二、双曲线知识1.(2018浙江,2)双曲线x 23−y 2=1的焦点坐标是( ) A .(−√2,0),(√2,0) B .(−2,0),(2,0) C .(0,−√2),(0,√2) D .(0,−2),(0,2)1.B 因为双曲线方程为x 23−y 2=1,所以焦点坐标可设为(±c,0),因为c 2=a 2+b 2=3+1=4,c =2,所以焦点坐标为(±2,0),选B. 2.(2018全国Ⅰ,11)已知双曲线C :x 23−y 2=1,O 为坐标原点,F 为C 的右焦点,过F的直线与C 的两条渐近线的交点分别为M 、N .若△OMN 为直角三角形,则|MN |=( ) A .32 B .3 C .2√3 D .42.B 根据题意,可知其渐近线的斜率为±√33,且右焦点为F(2,0),从而得到∠FON =30°,所以直线MN 的倾斜角为60°或120°,根据双曲线的对称性,设其倾斜角为60°,可以得出直线MN 的方程为y =√3(x −2),分别与两条渐近线y =√33x 和y =−√33x 联立,求得M(3,√3),N(32,−√32),所以|MN |=2)√2)=3,故选B.3.(2018全国Ⅱ,5)双曲线x 2a 2−y 2b 2=1 (a >0, b >0)的离心率为√3,则其渐近线方程为( )A .y =±√2xB .y =±√3xC .y =±√22x D .y =±√32x 3.A ∵e =ca =√3,∴b 2a 2=c 2−a 2a 2=e 2−1=3−1=2,∴ba =√2,因为渐近线方程为y =±ba x ,所以渐近线方程为y =±√2x ,选A. 4.(2018全国Ⅲ,11)设F 1,F 2是双曲线C:x 2a 2−y 2b 2=1()的左、右焦点,O 是坐标原点.过F 2作C 的一条渐近线的垂线,垂足为P .若|PF 1|=√6|OP |,则C 的离心率为( ) A .√5 B .√3 C .2 D .√24.B 由题可知|PF 2|=b,|OF 2|=c ,∴|PO |=a ,在Rt △POF 2中,cos∠PF 2O =|PF 2||OF 2|=bc, ∵在△PF 1F 2中,cos∠PF 2O =|PF 2|2+|F 1F 2|2−|PF 1|22|PF 2||F 1F 2|=bc ,∴b 2+4c 2−(√6a)22b∙2c=bc ⇒c 2=3a 2,∴e =√3.故选C.5.(2018天津,7)已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点. 设A ,B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为( )A .221412x y -= B .221124x y -= C .22139x y -= D .22193x y -=5.C 设双曲线的右焦点坐标为(),0F c (c >0),则A B x x c ==,由22221c y a b-=可得:2b y a =±,不妨设: 22,,,b b Ac B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,双曲线的一条渐近线方程为: 0bx ay -=,据此可得:21bc b d c -==,22bc b d c +==,则12226bcd d b c+===,则23,9b b ==,双曲线的离心率:2c e a ====,据此可得: 23a =,则双曲线的方程为22139x y -=. 本题选择C 选项.6.(2017•新课标Ⅱ,9)若双曲线C : ﹣ =1(a >0,b >0)的一条渐近线被圆(x ﹣2)2+y 2=4所截得的弦长为2,则C 的离心率为( )A.2B.C.D.6. A 双曲线C : ﹣=1(a >0,b >0)的一条渐近线不妨为:bx+ay=0,圆(x ﹣2)2+y 2=4的圆心(2,0),半径为:2,双曲线C : ﹣=1(a >0,b >0)的一条渐近线被圆(x ﹣2)2+y 2=4所截得的弦长为2,可得圆心到直线的距离为: = ,解得:,可得e 2=4,即e=2.故选A .7.(2017•新课标Ⅲ,5)已知双曲线C :﹣ =1 (a >0,b >0)的一条渐近线方程为y= x ,且与椭圆 + =1有公共焦点,则C 的方程为( )A.﹣ =1B.﹣ =1C.﹣=1 D.﹣=17. B 椭圆 +=1的焦点坐标(±3,0),则双曲线的焦点坐标为(±3,0),可得c=3,双曲线C :﹣ =1 (a >0,b >0)的一条渐近线方程为y=x ,可得 ,即 ,可得 = ,解得a=2,b= ,所求的双曲线方程为: ﹣ =1.故选B .8.(2017·天津,5)已知双曲线 ﹣ =1(a >0,b >0)的左焦点为F ,离心率为 .若经过F 和P (0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为( ) A.=1 B.=1 C.=1 D.=18. B 设双曲线的左焦点F (﹣c ,0),离心率e= =,c=a ,则双曲线为等轴双曲线,即a=b , 双曲线的渐近线方程为y=±x=±x ,则经过F 和P (0,4)两点的直线的斜率k= =,则=1,c=4,则a=b=2,∴双曲线的标准方程:;故选B .9.(2016·全国Ⅰ,5)已知方程x 2m 2+n -y 23m 2-n =1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )A.(-1,3)B.(-1,3)C.(0,3)D.(0,3)9.A [∵方程x 2m 2+n -y 23m 2-n =1表示双曲线,∴(m 2+n )·(3m 2-n )>0,解得-m 2<n <3m 2,由双曲线性质,知c 2=(m 2+n )+(3m 2-n )=4m 2(其中c 是半焦距),∴焦距2c =2×2|m |=4,解得|m |=1,∴-1<n <3,故选A.]10.(2016·全国Ⅱ,11)已知F 1,F 2是双曲线E :x 2a 2-y 2b 2=1的左,右焦点,点M 在E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )A.2B.32C.3D.210.A [离心率e =F 1F 2MF 2-MF 1,由正弦定理得e =F 1F 2MF 2-MF 1=sin Msin F 1-sin F 2=2231-13= 2.故选A.]11.(2015·福建,3)若双曲线E :x 29-y 216=1的左、右焦点分别为F 1,F 2,点P 在双曲线E 上,且|PF 1|=3,则|PF 2|等于( )A.11B.9C.5D.311.B [由双曲线定义||PF 2|-|PF 1||=2a ,∵|PF 1|=3,∴P 在左支上,∵a =3,∴|PF 2|-|PF 1|=6,∴|PF 2|=9,故选B.]12.(2015·安徽,4)下列双曲线中,焦点在y 轴上且渐近线方程为y =±2x 的是( ) A.x 2-y 24=1 B.x 24-y 2=1 C.y 24-x 2=1 D.y 2-x 24=112.C [由双曲线性质知A 、B 项双曲线焦点在x 轴上,不合题意;C 、D 项双曲线焦点均在y 轴上,但D 项渐近线为y =±12x ,只有C 符合,故选C.]13.(2015·广东,7)已知双曲线C :x 2a 2-y 2b 2=1的离心率e =54,且其右焦点为F 2(5,0),则双曲线C 的方程为( )A.x 24-y 23=1B.x 216-y 29=1C.x 29-y 216=1D.x 23-y 24=1 13.B [因为所求双曲线的右焦点为F 2(5,0)且离心率为e =c a =54,所以c =5,a =4,b 2=c 2-a 2=9,所以所求双曲线方程为x 216-y 29=1,故选B.] 14.(2015·四川,5)过双曲线x 2-y 23=1的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则|AB |=( ) A.433B.2 3C.6D.4 314.D [焦点F (2,0),过F 与x 轴垂直的直线为x =2,渐近线方程为x 2-y 23=0,将x =2代入渐近线方程得y 2=12,y =±23,∴|AB |=23-(-23)=4 3.选D.]15.(2015·新课标全国Ⅱ,11)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为( ) A. 5 B.2 C. 3 D. 2 15.D [如图,设双曲线E 的方程为x 2a 2-y 2b 2=1(a >0,b >0),则|AB |=2a ,由双曲线的对称性,可设点M (x 1,y 1)在第一象限内,过M 作MN ⊥x 轴于点N (x 1,0),∵△ABM 为等腰三角形,且∠ABM =120°,∴|BM |=|AB |=2a ,∠MBN =60°,∴y 1=|MN |=|BM |sin ∠MBN =2a sin 60°=3a ,x 1=|OB |+|BN |=a +2a cos 60°=2a .将点M (x 1,y 1)的坐标代入x 2a 2-y 2b 2=1,可得a 2=b 2,∴e =ca =a 2+b 2a 2=2,选D.] 16.(2015·新课标全国Ⅰ,5)已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是C 的两个焦点,若MF 1→·MF 2→<0,则y 0的取值范围是( ) A.⎝⎛⎭⎫-33,33 B.⎝⎛⎭⎫-36,36 C.⎝⎛⎭⎫-223,223 D.⎝⎛⎭⎫-233,233 16.A [由题意知M 在双曲线C :x 22-y 2=1上,又在x 2+y 2=3内部,由⎩⎪⎨⎪⎧x 22-y 2=1,x 2+y 2=3,得y =±33,所以-33<y 0<33.] 17.(2014·天津,5)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线平行于直线l :y =2x +10,双曲线的一个焦点在直线l 上,则双曲线的方程为( ) A.x 25-y 220=1 B.x 220-y 25=1 C.3x 225-3y 2100=1 D.3x 2100-3y 225=1 17.A [由题意可知,双曲线的其中一条渐近线y =b a x 与直线y =2x +10平行,所以ba =2且左焦点为(-5,0),所以a 2+b 2=c 2=25,解得a 2=5,b 2=20,故双曲线方程为x 25-y 220=1.选A.]18.(2014·广东,4)若实数k 满足0<k <9,则曲线x 225-y 29-k =1与曲线x 225-k -y 29=1的( )A.离心率相等B.实半轴长相等C.虚半轴长相等D.焦距相等18.D [由0<k <9,易知两曲线均为双曲线且焦点都在x 轴上,由25+9-k =25-k +9,得两双曲线的焦距相等,选D.]19.(2014·新课标全国Ⅰ,4)已知F 为双曲线C :x 2-my 2=3m (m >0)的一个焦点,则点F 到C 的一条渐近线的距离为( ) A. 3 B.3 C.3m D.3m19.A [∵双曲线的方程为x 23m -y 23=1,∴焦点F 到一条渐近线的距离为 3.]20.(2014·重庆,8)设F 1,F 2分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,双曲线上存在一点P 使得|PF 1|+|PF 2|=3b ,|PF 1|·|PF 2|=94ab ,则该双曲线的离心率为( )A.43B.53C.94D.3 20.B [由双曲线的定义得||PF 1|-|PF 2||=2a ,又|PF 1|+|PF 2|=3b ,所以(|PF 1|+|PF 2|)2-(|PF 1|-|PF 2|)2=9b 2-4a 2,即4|PF 1|·|PF 2|=9b 2-4a 2,又4|PF 1|·|PF 2|=9ab ,因此9b 2-4a 2=9ab ,即9⎝⎛⎭⎫b a 2-9b a -4=0,则⎝⎛⎭⎫3b a +1⎝⎛⎭⎫3b a -4=0,解得b a =43⎝⎛⎭⎫b a =-13舍去,则双曲线的离心率e =1+⎝⎛⎭⎫b a 2=53.]21.(2014·山东,10)已知a >b >0,椭圆C 1的方程为x 2a 2+y 2b 2=1,双曲线C 2的方程为x 2a 2-y 2b 2=1,C 1与C 2的离心率之积为32,则C 2的渐近线方程为( ) A.x ±2y =0 B.2x ±y =0 C.x ±2y =0 D.2x ±y =021.A [椭圆C 1的离心率为a 2-b 2a ,双曲线C 2的离心率为a 2+b 2a ,所以a 2-b 2a ·a 2+b 2a =32,所以a 4-b 4=34a 4,即a 4=4b 4,所以a =2b ,所以双曲线C 2的渐近线方程是y =±12x ,即x ±2y =0.]22.(2014·大纲全国,9)已知双曲线C 的离心率为2,焦点为F 1、F 2,点A 在C 上.若|F 1A |=2|F 2A |,则cos ∠AF 2F 1=( ) A.14 B.13 C.24 D.2322.A [由双曲线的定义知|AF 1|-|AF 2|=2a ,又|AF 1|=2|AF 2|,∴|AF 1|=4a ,|AF 2|=2a . ∵e =ca =2,∴c =2a ,∴|F 1F 2|=4a .∴cos ∠AF 2F 1=|AF 2|2+|F 1F 2|2-|AF 1|22|AF 2|·|F 1F 2|=(2a )2+(4a )2-(4a )22×2a ×4a=14,故选A.]23.(2018江苏,8)在平面直角坐标系xOy 中,若双曲线x 2a −y 2b =1(a >0,b >0)的右焦点F(c,0)到一条渐近线的距离为√32c ,则其离心率的值是________.23.2 因为双曲线的焦点F(c,0)到渐近线y =±ba x,即bx ±ay =0的距离为√a 2+b2=bc c=b,所以b =√32c ,因此a 2=c 2−b 2=c 2−34c 2=14c 2, a =12c,e =2.24.(2017•山东,14)在平面直角坐标系xOy 中,双曲线=1(a >0,b >0)的右支与焦点为F 的抛物线x 2=2py (p >0)交于A ,B 两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为________.24. y=± x 把x 2=2py (p >0)代入双曲线=1(a >0,b >0),可得:a 2y2﹣2pb 2y+a 2b 2=0,∴y A +y B =,∵|AF|+|BF|=4|OF|,∴y A +y B +2× =4× ,∴ =p ,∴ = .∴该双曲线的渐近线方程为:y=± x .故答案为:y=± x .25.(2017•北京,9)若双曲线x 2﹣=1的离心率为 ,则实数m=________.25.2 双曲线x 2﹣=1(m >0)的离心率为 ,可得: ,解得m=2.故答案为:2.26.(2017•江苏,8)在平面直角坐标系xOy 中,双曲线﹣y 2=1的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是F 1 , F 2 , 则四边形F 1PF 2Q 的面积是________. 26.2双曲线﹣y 2=1的右准线:x=,双曲线渐近线方程为:y= x ,所以P ( , ),Q ( ,﹣ ),F 1(﹣2,0).F 2(2,0).则四边形F 1PF 2Q 的面积是: =2.故答案为:2.27.(2016·山东,13)已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0),若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是________.27.2 [由已知得|AB |=2b 2a ,|BC |=2c ,∴2×2b 2a =3×2c ,又∵b 2=c 2-a 2,整理得:2c 2-3ac -2a 2=0,两边同除以a 2得2⎝⎛⎭⎫c a 2-3c a-2=0,即2e 2-3e -2=0,解得e =2或e =-1(舍去).] 28.(2015·浙江,9)双曲线x 22-y 2=1的焦距是______,渐近线方程是______.28.23 y =±22x [由双曲线方程得a 2=2,b 2=1,∴c 2=3,∴焦距为23,渐近线方程为y =±22x .]29.(2015·北京,10)已知双曲线x 2a 2-y 2=1(a >0)的一条渐近线为3x +y =0,则a =________.29.33 [双曲线渐近线方程为y =±b a x ,∴b a =3,又b =1,∴a =33.] 30.(2015·湖南,13)设F 是双曲线C :x 2a 2-y 2b 2=1的一个焦点,若C 上存在点P ,使线段PF的中点恰为其虚轴的一个端点,则C 的离心率为________.30.5 [不妨设F (c ,0),则由条件知P (-c ,±2b ),代入x 2a 2-y 2b 2=1得c 2a 2=5,∴e = 5.]31.(2015·江苏,12)在平面直角坐标系xOy 中,P 为双曲线x 2-y 2=1右支上的一个动点.若点P 到直线x -y +1=0的距离大于c 恒成立,则实数c 的最大值为________. 31.22[双曲线x 2-y 2=1的渐近线为x ±y =0,直线x -y +1=0与渐近线x -y =0平行,故两平行线的距离d =|1-0|12+12=22.由点P 到直线x -y +1=0的距离大于c 恒成立,得c ≤22,故c 的最大值为22.] 32.(2014·浙江,16)设直线x -3y +m =0(m ≠0)与双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别交于点A ,B .若点P (m,0)满足|P A |=|PB |,则该双曲线的离心率是________. 32.52 [联立直线方程与双曲线渐近线方程y =±bax 可解得交点为 ⎝⎛⎭⎫am 3b -a ,bm 3b -a ,⎝ ⎛⎭⎪⎫-am 3b +a ,bm 3b +a ,而k AB =13,由|P A |=|PB |,可得AB 的中点与点P 连线的斜率为-3,即bm 3b -a +bm3b +a2-0am3b -a +-am 3b +a2-m=-3,化简得4b 2=a 2,所以e =52.]33.(2014·江西,20)如图,已知双曲线C :x 2a 2-y 2=1(a >0)的右焦点为F ,点A ,B 分别在C的两条渐近线上,AF ⊥x 轴,AB ⊥OB ,BF ∥OA (O 为坐标原点). (1)求双曲线C 的方程;(2)过C 上一点P (x 0,y 0)(y 0≠0)的直线l :x 0x a 2-y 0y =1与直线AF 相交于点M ,与直线x =32相交于点N .证明:当点P 在C 上移动时,|MF ||NF |恒为定值,并求此定值.33.(1)解 设F (c ,0),因为b =1,所以c =a 2+1,直线OB 的方程为y =-1a x ,直线BF 的方程为y =1a (x -c ),解得B ⎝⎛⎭⎫c 2,-c 2a . 又直线OA 的方程为y =1a x ,则A ⎝⎛⎭⎫c ,c a ,k AB =c a -⎝⎛⎭⎫-c 2a c -c 2=3a.又因为AB ⊥OB ,所以3a ·⎝⎛⎭⎫-1a =-1,解得a 2=3,故双曲线C 的方程为x 23-y 2=1.(2)证明 由(1)知a =3,则直线l 的方程为x 0x3-y 0y =1(y 0≠0),即y =x 0x -33y 0.因为直线AF 的方程为x =2,所以直线l 与AF 的交点为M ⎝⎛⎭⎫2,2x 0-33y 0;直线l 与直线x =32的交点为N ⎝ ⎛⎭⎪⎫32,32x 0-33y 0. 则|MF |2|NF |2=(2x 0-3)2(3y 0)214+⎝⎛⎭⎫32x 0-32(3y 0)2=(2x 0-3)29y 204+94(x 0-2)2=43·(2x 0-3)23y 20+3(x 0-2)2, 因为P (x 0,y 0)是C 上一点,则x 203-y 20=1,代入上式得 |MF |2|NF |2=43·(2x 0-3)2x 20-3+3(x 0-2)2=43·(2x 0-3)24x 20-12x 0+9=43, 所求定值为|MF ||NF |=23=233.三、抛物线1.(2018全国Ⅰ,8)设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM ⃑⃑⃑⃑⃑⃑ ⋅FN ⃑⃑⃑⃑⃑ =( ) A .5 B .6 C .7 D .81.D 根据题意,过点(–2,0)且斜率为23的直线方程为y =23(x +2),与抛物线方程联立{y =23(x +2)y 2=4x ,消元整理得:y 2−6y +8=0,解得M(1,2),N(4,4),又F(1,0),所以FM ⃑⃑⃑⃑⃑⃑ =(0,2),FN ⃑⃑⃑⃑⃑ =(3,4),从而可以求得FM⃑⃑⃑⃑⃑⃑ ⋅FN ⃑⃑⃑⃑⃑ =0×3+2×4=8,故选D. 2.(2016·全国Ⅰ,10)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( ) A.2 B.4 C.6 D.82.B [不妨设抛物线C :y 2=2px (p >0),则圆的方程可设为x 2+y 2=r 2(r >0),如图,又可设A (x 0,22),D ⎝⎛⎭⎫-p2,5,点A (x 0,22)在抛物线y 2=2px 上,∴8=2px 0,① 点A (x 0,22)在圆x 2+y 2=r 2上,∴x 20+8=r 2,② 点D ⎝⎛⎭⎫-p 2,5在圆x 2+y 2=r 2上,∴5+⎝⎛⎭⎫p22=r 2,③ 联立①②③,解得p =4,即C 的焦点到准线的距离为p =4,故选B.]3.(2015·天津,6)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线过点(2,3) ,且双曲线的一个焦点在抛物线y 2=47x 的准线上,则双曲线的方程为( ) A.x 221-y 228=1 B.x 228-y 221=1 C.x 23-y 24=1 D.x 24-y 23=1 3.D [双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±b a x ,又渐近线过点(2,3),所以2ba =3,即2b =3a ,①抛物线y 2=47x 的准线方程为x =-7,由已知,得a 2+b 2=7,即a 2+b 2=7②, 联立①②解得a 2=4,b 2=3,所求双曲线的方程为x 24-y 23=1,选D.] 4.(2015·浙江,5)如图,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是( )A.|BF |-1|AF |-1B.|BF |2-1|AF |2-1C.|BF |+1|AF |+1D.|BF |2+1|AF |2+14.A [由图象知S △BCF S △ACF =|BC ||AC |=x B x A ,由抛物线的性质知|BF |=x B +1,|AF |=x A +1,∴x B =|BF |-1,x A =|AF |-1,∴S △BCF S △ACF =|BF |-1|AF |-1.故选A.]5.(2018全国Ⅲ,16)已知点M(−1 , 1)和抛物线C : y 2=4x ,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若∠AMB =90°,则k =________.5.2 设A (x 1,y 1),B(x 2,y 2),则{y 12=4x 1y 22=4x2,所以y 12−y 22=4x 1−4x 2,所以k =y 1−y 2x 1−x 2=4y 1+y 2.取AB 中点M′(x 0,y 0),分别过点A,B 作准线x =−1的垂线,垂足分别为A ′,B′,因为∠AMB =90°,∴|MM ′|=12|AB |=12(|AF |+|BF |)=12(|AA ′|+|BB′|),因为M’为AB 中点,所以MM’平行于x 轴,因为M(-1,1),所以y 0=1,则y 1+y 2=2即k =2.6.(2017•新课标Ⅱ,16)已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN|=________.6. 6 抛物线C :y 2=8x 的焦点F (2,0),M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,可知M 的横坐标为:1,则M 的纵坐标为: ,|FN|=2|FM|=2 =6.故答案为:6.7.(2016·浙江,9)若抛物线y 2=4x 上的点M 到焦点的距离为10,则M 到y 轴的距离是________. 7.9 [抛物线y 2=4x 的焦点F (1,0).准线为x =-1,由M 到焦点的距离为10,可知M 到准线x =-1的距离也为10,故M 的横坐标满足x M +1=10,解得x M =9,所以点M 到y 轴的距离为9.] 8.(2015·陕西,14)若抛物线y 2=2px (p >0)的准线经过双曲线x 2-y 2=1的一个焦点,则p =________.8.22 [由于双曲线x 2-y 2=1的焦点为(±2,0),故应有p2=2,p =2 2.]9.(2014·湖南,15)如图,正方形ABCD 和正方形DEFG 的边长分别为a , b (a <b ),原点O 为AD 的中点,抛物线y 2=2px (p >0)经过C ,F 两点,则b a =________.9.1+2 [由正方形的定义可知BC =CD ,结合抛物线的定义得点D 为抛物线的焦点,所以|AD |=p =a ,D ⎝⎛⎭⎫p 2,0,F ⎝⎛⎭⎫p2+b ,b ,将点F 的坐标代入抛物线的方程得b 2=2p⎝⎛⎭⎫p 2+b =a 2+2ab ,变形得⎝⎛⎭⎫b a 2-2b a -1=0,解得b a =1+2或b a=1-2(舍去),所以ba =1+ 2.]10.(2014·上海,3)若抛物线y 2=2px的焦点与椭圆x 29+y 25=1的右焦点重合,则该抛物线的准线方程为______________. 10.x =-2[∵c 2=9-5=4,∴c =2.∴椭圆x 29+y 25=1的右焦点为(2,0),∴p2=2,即p =4. ∴抛物线的准线方程为x =-2.]。

高中数学高考几何解析(椭圆双曲线抛物线)课本知识讲解及练习(含答案)

高中数学高考几何解析(椭圆双曲线抛物线)课本知识讲解及练习(含答案)

高中数学高考几何解析(椭圆双曲线抛物线)课本知识讲解及练习(含答案)第五节椭圆一、必记3个知识点1.椭圆的定义(1)设椭圆x2a2+y2b2=1(a>b>0)上任意一点P(x,y),则当x=0时,|OP|有最小值b,这时,P在短轴端点处;当x=±a时,|OP|有最大值a,这时,P在长轴端点处.(2)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a是斜边长,a2=b2+c2.(3)已知过焦点F1的弦AB,则△ABF2的周长为4a.(4)若P为椭圆上任一点,F为其焦点,则a-c≤|PF|≤a+c.二、必明3个易误点1.椭圆的定义中易忽视2a>|F1F2|这一条件,当2a=|F1F2|其轨迹为线段F1F2,当2a<|F1F2|不存在轨迹.2.求椭圆的标准方程时易忽视判断焦点的位置,而直接设方程为x2a2+y2b2=1(a>b>0).3.注意椭圆的范围,在设椭圆x2a2+y2b2=1(a>b>0)上点的坐标为P(x,y)时,则|x|≤a,这往往在求与点P有关的最值问题中特别有用,也是容易被忽略而导致求最值错误的原因.三、技法1.求椭圆标准方程的2种常用方法(1)直接求出a,c来求解e.通过已知条件列方程组,解出a,c的值.(2)构造a,c的齐次式,解出e.由已知条件得出关于a,c的二元齐次方程,然后转化为关于离心率e的一元二次方程求解.(3)通过取特殊值或特殊位置,求出离心率.提醒:在解关于离心率e的二次方程时,要注意利用椭圆的离心率e∈(0,1)进行根的取舍,否则将产生增根.3.求解最值、取值范围问题的技巧(1)与椭圆几何性质有关的问题要结合图形进行分析,即使画不出图形,思考时也要联想到一个图形.(2)椭圆的范围或最值问题常常涉及一些不等式.例如,-a≤x≤a,-b≤y≤b,0<e<1,在求椭圆的相关量的范围时,要注意应用这些不等关系.(3)最值问题,将所求列出表达式,构造基本不等式或利用函数单调性求解.4.判断直线与椭圆位置关系的四个步骤第一步:确定直线与椭圆的方程.第二步:联立直线方程与椭圆方程.第三步:消元得出关于x(或y)的一元二次方程.第四步:当Δ>0时,直线与椭圆相交;当Δ=0时,直线与椭圆相切;当Δ<0时,直线与椭圆相离.5.直线被椭圆截得的弦长公式设直线与椭圆的交点坐标为A(x1,y1),B(x2,y2),则|AB|=(1+k2)[(x1+x2)2-4x1x2])=(y1+y2)2-4y1y2])(k为直线斜率).参考答案①F1,F2②|F1F2|③x轴,y轴④坐标原点⑤(-a,0)⑥(a,0)⑦(0,-b)⑧(0,b)⑨(0,-a)⑩(0,a)⑪(-b,0)⑫(b,0)⑬2a⑭2b⑮2c⑯(0,1)⑰c2=a2-b2第六节双曲线一、必记3个知识点1.双曲线的定义(1)平面内与两个定点F1、F2(|F1F2|=2c>0)的距离①________________为非零常数2a(2a<2c)的点的轨迹叫做双曲线.这两个定点叫做双曲线的②________,两焦点间的距离叫做③________.(2)集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.(ⅰ)当④________________时,M点的轨迹是双曲线;(ⅱ)当⑤________________时,M点的轨迹是两条射线;(ⅲ)当⑥________________时,M点不存在.2.双曲线的标准方程和几何性质⑧________x ∈对称轴:⑪________对称中心:⑫________顶点坐标:A 1⑮______,A 2⑯________⑱____________c =⑳________|=21________;线段________;a 叫做双曲线的虚半轴长>b >0)(1)双曲线为等轴双曲线⇔双曲线的离心率e =2⇔双曲线的两条渐近线互相垂直.(2)渐近线的斜率与双曲线的焦点位置的关系:当焦点在x 轴上时,渐近线斜率为±ba,当焦点在y 轴上时,渐近线斜率为±ab.(3)渐近线与离心率.x2a2-y2b2=1(a >0,b >0)的一条渐近线的斜率为ba=e2-1.(4)若P 为双曲线上一点,F 为其对应焦点,则|PF |≥c -a .二、必明4个易误点1.双曲线的定义中易忽视2a <|F 1F 2|这一条件.若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a >|F 1F 2|则轨迹不存在.2.双曲线的标准方程中对a ,b 的要求只是a >0,b >0,易误认为与椭圆标准方程中a ,b 的要求相同.若a >b >0,则双曲线的离心率e ∈(1,2);若a =b >0,则双曲线的离心率e =2;若0<a <b ,则双曲线的离心率e >2.3.注意区分双曲线中的a ,b ,c 大小关系与椭圆a ,b ,c 关系,在椭圆中a 2=b 2+c 2,而在双曲线中c2=a2+b2.4.易忽视渐近线的斜率与双曲线的焦点位置关系.当焦点在x轴上,渐近线斜率为±ba,当焦点在y轴上,渐近线斜率为±ab.三、技法1.双曲线定义的应用(1)判定满足某条件的平面内动点的轨迹是否为双曲线,进而根据要求可求出曲线方程;(2)在“焦点三角形”中,常利用正弦定理、余弦定理,经常结合||PF1|-|PF2||=2a,运用平方的方法,建立|PF1|与|PF2|的关系.[注意]在应用双曲线定义时,要注意定义中的条件,搞清所求轨迹是双曲线,还是双曲线的一支,若是双曲线的一支,则需确定是哪一支.2.求双曲线标准方程的一般方法(1)待定系数法:设出双曲线方程的标准形式,根据已知条件,列出参数a,b,c的方程并求出a,b,c的值.与双曲线x2a2-y2b2=1有相同渐近线时,可设所求双曲线方程为:x2a2-y2b2=λ(λ≠0).(2)定义法:依定义得出距离之差的等量关系式,求出a的值,由定点位置确定c的值.3.求双曲线离心率或其范围的方法(1)求a,b,c的值,由c2a2=a2+b2a2=1+b2a2直接求e.(2)列出含有a,b,c的齐次方程(或不等式),借助于b2=c2-a2消去b,然后转化成关于e的方程(或不等式)求解.4.求双曲线的渐近线方程的方法求双曲线x2a2-y2b2=1(a>0,b>0)的渐近线的方法是令x2a2-y2b2=0,即得两渐近线方程为:xa±yb=0.参考答案①之差的绝对值②焦点③焦距④2a<|F1F2|⑤2a=|F1F2|⑥2a>|F1F2|⑦x≥a或x≤-a⑧y≥a或y≤-a⑨x轴,y轴⑩坐标原点⑪x轴,y轴⑫坐标原点⑬(-a,0)⑭(a,0)⑮(0,-a)⑯(0,a)⑰y=±ba x⑱y=±ab x⑲ca⑳a2+b2212a222b23a2+b2第七节抛物线一、必记2个知识点1.抛物线定义、标准方程及几何性质x轴⑤________y轴⑥________O(0,0)O(0,0)O(0,0)O(0,0)F⑦________⑧________⑨________设AB是过抛物线y2=2px(p>0)的焦点F的弦,若A(x1,y1),B(x2,y2),则(1)x1x2=p24,y1y2=-p2.(2)弦长|AB|=x1+x2+p=2psin2α(α为弦AB的倾斜角).(3)以弦AB为直径的圆与准线相切.(4)通径:过焦点且垂直于对称轴的弦,长等于2p.二、必明2个易误点1.抛物线的定义中易忽视“定点不在定直线上”这一条件,当定点在定直线上时,动点的轨迹是过定点且与直线垂直的直线.2.抛物线标准方程中参数p易忽视,只有p>0,才能证明其几何意义是焦点F到准线l 的距离,否则无几何意义.三、技法1.应用抛物线定义的2个关键点(1)由抛物线定义,把抛物线上点到焦点距离与到准线距离相互转化.(2)注意灵活运用抛物线上一点P(x,y)到焦点F的距离|PF|=|x|+p2或|PF|=|y|+p2.2.求抛物线的标准方程的方法(1)求抛物线的标准方程常用待定系数法,因为未知数只有p,所以只需一个条件确定p值即可.(2)因为抛物线方程有四种标准形式,因此求抛物线方程时,需先定位,再定量.3.确定及应用抛物线性质的技巧(1)利用抛物线方程确定及应用其焦点、准线等性质时,关键是将抛物线方程化为标准方程.(2)要结合图形分析,灵活运用平面几何的性质以图助解.4.解决直线与抛物线位置关系问题的常用方法(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.提醒:涉及弦的中点、斜率时,一般用“点差法”求解.参考答案①相等②y2=-2px(p>0)③x2=-2py(p>0)④x2=2py(p>0)⑤x轴⑥y轴⑦F(-p2,0)⑧F(0,-p2)⑨F(0,p2)⑩e=1⑪x=-p2⑫y=-p2⑬-y0+p2⑭y0+p2⑮y≤0⑯y≥0。

圆锥曲线与方程椭圆双曲线抛物线40分钟限时练(五)含答案新人教版高中数学名师一点通

圆锥曲线与方程椭圆双曲线抛物线40分钟限时练(五)含答案新人教版高中数学名师一点通

高中数学专题复习《圆锥曲线与方程椭圆双曲线抛物线》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.1 .(汇编年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))已知中心在原点的双曲线C 的右焦点为()3,0F ,离心率等于32,在双曲线C 的方程是 ( )A .22145x y -=B .22145x y -=C .22125x y -=D .22125x y -=2.(汇编)若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为( ) A .2-B .2C .4-D .43.(汇编山东文)已知抛物线22(0)y px p =>,过其焦点且斜率为1的直线交抛物线于,A B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的标准方程为( )A .1x =B .1x =-C .2x =D .2x =-4.(1992山东理10)圆心在抛物线y 2=2x 上,且与x 轴和该抛物线的准线都相切的一个圆的方程是 ( ) A . x 2+y 2-x -2y -41=0 B . x 2+y 2+x -2y +1=0(C) x 2+y 2-x -2y +1=0 D . x 2+y 2-x -2y +41=0 5.(汇编)在给定双曲线中,过焦点垂直于实轴的弦长为2,焦点到相应准线的距离为21,则该双曲线的离心率为( ) (A)22(B)2 (C) 2 (D)22 6.(汇编)已知双曲线9322=-y x ,则双曲线右支上的点P 到右焦点的距离与点P到右准线的距离之比等于( ) A. 2 B.332 C. 2 D.4 7.(汇编浙江文)已知双曲线22221x y a b-= (0,0)a b >>的左、右焦点分别为F 1、F 2,P是准线上一点,且PF 1⊥PF 2,|PF 1|⋅|PF 2 |=4ab ,则双曲线的离心率是( ) A .2B . 3C .2D .38.(汇编全国卷Ⅱ理)已知直线()()20y k x k =+>与抛物线2:8C y x =相交于A B 、两点,F 为C 的焦点,若||2||FA FB =,则k =( )A.13B.23C.23D. 223【解析】设抛物线2:8C y x =的准线为:2l x =-直线 ()()20y k x k =+>恒过定点P ()2,0- .如图过A B 、分 别作AM l ⊥于M ,BN l ⊥于N , 由||2||FA FB =,则||2||AM BN =,点B 为AP 的中点.连结OB ,则1||||2OB AF =, ||||OB BF ∴= 点B 的横坐标为1, 故点B 的坐标为22022(1,22)1(2)3k -∴==--, 故选D.9.(汇编山东卷文)设斜率为2的直线l 过抛物线2(0)y ax a =≠的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线方程为( ).A.24y x =±B.28y x =± C. 24y x = D. 28y x =10.(汇编福建卷)已知定点A 、B 且|AB|=4,动点P 满足|PA|-|PB|=3,则|PA|的最小值是( )A .21 B .23 C .27D .5 第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题11. 设1F ,2F 分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,若双曲线左支上存在一点M ,使0)(11=+⋅OF OM M F ,O 为坐标原点,且2133MF MF =,则该双曲线的离心率为 ;12.若椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,线段F 1F 2被抛物线y 2=2bx 的焦点F分成5∶3的两段,则此椭圆的离心率为________.13.设椭圆x y 2225161+=上一点P 到椭圆的一个焦点的距离为3,则P 点到另一焦点的距离为14.已知方程11222=-+-k y k x 表示双曲线,则实数k 的取值范围是 .k>2或k<1 15.过双曲线22221(0,0)x y a b a b-=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为,B C .若12AB BC =,则双曲线的离心率是 16.点P 是抛物线y 2=4x 上一动点,则P 到点(0,-1)的距离与P 到直线x =-1的距离和的最小值是________.解析:由题意知,直线x =-1是抛物线y 2=4x 的准线,则由抛物线的定义可得P 到x=-1的距离等于P 到焦点F (1,0)的距离,则题目转化为P 点到F (1,0)与点(0,-1)的距离和的最小值,易得最小值为(1,0)与(0,-1)的距离,即为 2. 评卷人得分三、解答题17.(汇编年高考重庆卷(文))(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分) 如题(21)图,椭圆的中心为原点O ,长轴在x 轴上,离心率22e =,过左焦点1F 作x 轴的垂线交椭圆于A 、A '两点,4AA '=.(Ⅰ)求该椭圆的标准方程;zhangwlx (Ⅱ)取平行于y 轴的直线与椭圆相较于不同的两点P 、P ',过P 、P '作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外.求PP Q '∆的面积S 的最大值,并写出对应的圆Q 的标准方程.18.已知点M ),(y x 与两个定点O (0,0),A (3,0)的距离之比为21. (1)求点M 轨迹C 的方程;(2)在平面内是否存在异于点A 的定点(,)Q a b ,使得对于轨迹C 上任一点P ,都有||||PQ PA 为一常数.若存在,求出a ,b 的值,若不存在,说明理由.19.已知椭圆E :2221(1)x y a a+=>的上顶点为M (0,1),两条过M 点动弦MA 、MB 满足MA MB ⊥。

圆锥曲线与方程椭圆双曲线抛物线单元过关检测卷(五)含答案新教材高中数学辅导班专用

圆锥曲线与方程椭圆双曲线抛物线单元过关检测卷(五)含答案新教材高中数学辅导班专用

高中数学专题复习《圆锥曲线与方程椭圆双曲线抛物线》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.1 .(汇编年高考广东卷(文))已知中心在原点的椭圆C 的右焦点为(1,0)F ,离心率等于21,则C 的方程是 ( )A .14322=+y x B .13422=+y x C .12422=+y x D .13422=+y x 2.2 .(汇编年高考课标Ⅱ卷(文))设抛物线C:y 2=4x 的焦点为F,直线L 过F 且与C 交于A, B 两点.若|AF|=3|BF|,则L 的方程为 ( )A .y=x-1或y=-x+1B .y=(X-1)或y=-(x-1)C .y=(x-1)或y=-(x-1)D .y=(x-1)或y=-(x-1)3.(汇编四川理)直线3y x =-与抛物线24y x =交于,A B 两点,过,A B 两点向抛物线的准线作垂线,垂足分别为,P Q ,则梯形APQB 的面积为 (A )48 (B )56 (C )64 (D )724.(汇编湖南理)若双曲线22221x y a b -=(a >0,b >0)上横坐标为32a的点到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是 A.(1,2)B.(2,+∞)C.(1,5)D.(5,+∞) (B)5.(汇编广东)已知双曲线9322=-y x ,则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于 A. 2 B.332 C. 2 D.4 依题意可知 3293,322=+=+==b a c a ,2332===a c e ,故选C. 6.(汇编江西、山西、天津)设坐标原点为O ,抛物线y 2=2x 与过焦点的直线交于A .B 两点,则OB OA ⋅等于( )A .43 B .-43C .3D .-3 7.(1994全国2)如果方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ) A .(0,+∞)B .(0,2)C .(1,+∞)D .(0,1)8.(汇编全国理2)椭圆31222y x +=1的焦点为F 1和F 2,点P 在椭圆上.如果线段PF 1的中点在y 轴上,那么|PF 1|是|PF 2|的( ) A .7倍B .5倍C .4倍D .3倍9.(汇编全国卷Ⅱ理)已知直线()()20y k x k =+>与抛物线2:8C y x =相交于A B 、两点,F 为C 的焦点,若||2||FA FB =,则k =( )A.13B.23C.23D. 223【解析】设抛物线2:8C y x =的准线为:2l x =-直线 ()()20y k x k =+>恒过定点P ()2,0- .如图过A B 、分 别作AM l ⊥于M ,BN l ⊥于N , 由||2||FA FB =,则||2||AM BN =,点B 为AP 的中点.连结OB ,则1||||2OB AF =, ||||OB BF ∴= 点B 的横坐标为1, 故点B 的坐标为22022(1,22)1(2)3k -∴==--, 故选D.10.(汇编全国)设双曲线2222b y a x -=1(0<a <b )的半焦距为c ,直线l 过(a ,0),(0,b )两点.已知原点到直线l 的距离为43c ,则双曲线的离心率为( ) A .2B .3C .2D .332 第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题11. 抛物线y x 42=上一点A 的纵坐标为4,则点A 到抛物线焦点的距离为_________.12.已知方程12122=-+-my m x 表示焦点在y 轴上的椭圆,则m 的取值范围是 _ . 13.抛物线x y 42=的焦点坐标是 .14. 双曲线C :22221(00)x y a b a b-=>>,的离心率为3,则此双曲线的渐近线方程为__________________ .15.椭圆14922=+y x 的焦点1F 、2F ,点P 为其上的动点,当∠1F P 2F 为钝角时,点P 横坐标的取值范围是 .16.若双曲线的一个顶点坐标为(3,0),焦距为10,则它的标准方程为_____.(汇编上海春,5)评卷人得分三、解答题17. (本题满分15分)已知椭圆C :()222210x y a b a b+=>>和 圆O :222x y a +=,()()121,0,1,0F F -分别是椭圆的左、右两焦点,过1F 且倾斜角为α0,2πα⎛⎫⎛⎤∈ ⎪⎥⎝⎦⎝⎭的动直线l 交椭圆C 于,A B 两点,交圆O 于,P Q 两点(如图所示,点A 在x 轴上方).当4πα=时,弦PQ 的长为14.(1)求圆O 与椭圆C 的方程;(2)若点M 是椭圆C 上一点,求当22,,AF BF AB 成等差数列时,MPQ ∆面积的最大值.y xP AQB F 1O F 218.如图,已知过抛物线y 2=2px (p >0)的焦点的直线x -my +m =0与抛物线交于A 、B 两点,且△OAB (O 为坐标原点)的面积为22,求m 6+m 4的值.19.(本题满分14分) 已知焦点在x 轴上的抛物线C 经过点(3,6).(1)求抛物线C 的标准方程;(2)直线l :3y kx =-过抛物线C 的焦点且与抛物线C 交于A 、B 两点,求A 、B 两点距离.20.已知命题p :实数m 满足()0012722><+-a a am m ,命题q :实数m 满足方程12122=-+-my m x 表示焦点在y 轴上的椭圆,且非q 是非p 的充分不必要条件,求a 的取值范围。

圆锥曲线与方程椭圆双曲线抛物线强化训练专题练习(五)含答案新人教版高中数学名师一点通

圆锥曲线与方程椭圆双曲线抛物线强化训练专题练习(五)含答案新人教版高中数学名师一点通

高中数学专题复习《圆锥曲线与方程椭圆双曲线抛物线》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.1 .(汇编年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))满足{},1,0,1,2a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为 ( )A .14B .13C .12D .102.(汇编全国卷2) 双曲线22149x y -=的渐近线方程是( )(A) 23y x =±(B) 49y x =±(C) 32y x =±(D) 94y x =±3.(1994山东理8) 设F 1和F 2为双曲线42x -y 2=1的两个焦点,点P 在双曲线上且满足∠F 1PF 2=90°,则△F 1PF 2的面积是 ( )(A) 1 (B)25(C) 2 (D) 5 4.(汇编全国2理12)设F 为抛物线24y x =的焦点,A B C ,,为该抛物线上三点,若FA FB FC ++=0,则FA FB FC ++=( ) A .9B .6C .4D .35.(汇编辽宁文)方程22520x x -+=的两个根可分别作为( A ) A.一椭圆和一双曲线的离心率 B.两抛物线的离心率 C.一椭圆和一抛物线的离心率D.两椭圆的离心率6.(汇编) 曲线221(6)106x y m m m +=<--与曲线221(59)59x y m m m+=<<--的( )(A)焦距相等 (B) 离心率相等 (C)焦点相同 (D)准线相同7.(汇编重庆理10)已知双曲线22221,(0,0)x y a b a b -=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为:( ) A .43B .53C .2D .738.(汇编全国3理7)设双曲线的焦点在x 轴上,两条渐近线为12y x =±,则双曲线的离心率e =( ) A. 5B. 5C.52D.549.(汇编山东卷理)设双曲线12222=-by a x 的一条渐近线与抛物线y=x 2+1 只有一个公共点,则双曲线的离心率为( ). A. 45B. 5C. 25D.510.(汇编安徽春季理)(3)已知F 1、F 2为椭圆22221x y a b+=(0a b >>)的焦点;M为椭圆上一点,MF 1垂直于x 轴,且∠F 1MF 2=600,则椭圆的离心率为( )(A )21(B )22 (C )33 (D )23第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题11.圆心在抛物线22x y =上,并且和抛物线的准线及y 轴都相切的圆的标准方程为 ▲ .12.若双曲线2214x y b -= (b >0) 的渐近线方程为y =±12x ,则b 等于 . 13.抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界) .若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是 .14.已知两直线a 1x +b 1y +1=0和a 2x +b 2y +1=0的交点为P (2,3),则过两点Q 1(a 1,b 1),Q 2(a 2,b 2)的直线方程是____________.解析:P (2,3)在a 1x +b 1y +1=0上,代入得2a 1+3b 1+1=0.同理2a 2+3b 2+1=0. 故(a 1,b 1),(a 2,b 2)都在直线2x +3y +1=0上,两点确定一条直线,故过Q 1,Q 2两点的直线方程为2x +3y +1=0.15.若正三角形的两个顶点在抛物线22(0)y px p =>上,另一个顶点是坐标原点,则这个三角形的边长为________________16.设双曲线的中心O 关于其右焦点的对称点为G ,以G 为圆心作一个与双曲线的渐近线相切的圆,则双曲线的右准线与圆G 的位置关系是 ▲ . 评卷人得分三、解答题17.椭圆C 的中心为坐标原点O ,焦点在y 轴上,离心率22e =,椭圆上的点到焦点的最短距离为212-, 直线l 与y 轴交于点(0,)P m ,与椭圆C 交于相异两点,A B ,且AP PB λ=.(1)求椭圆方程;(2)若4OA OB OP λ+=,求m 的取值范围.18. (16分)椭圆方程为x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,2),离心率e =63.(1)求椭圆的方程;(2)直线l : y =kx -2(k≠0)与椭圆相交于不同的两点M ,N 满足MP →=PN →,AP →·MN →=0,求k.19.一个截面为抛物线形的旧河道,河口宽AB =4米,河深2米,现要将其截面改造为等腰梯形,要求河道深度不变,而且施工时只能挖土,不准向河道填土, 试求当截面梯形的下底长为多少米时,才能使挖出的土最少?20.如图,直角三角形ABC 中,()π,2,02B A ∠=- ,点B 是y 轴上的动点,BC 的中点P 在x 轴上.(1)求点C 的轨迹E 的方程;(2)设过点1(,0)4F 的直线l 交轨迹E 于A 、B 两点,且AB=4,求直线l 的方程.AByxOPCBA【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.B 2.C 3.A 4.B 5.A解析:方程22520x x -+=的两个根分别为2,12,故选A 6.A7.B 8.C 9.D解析:D 双曲线12222=-b y a x 的一条渐近线为x a b y =,由方程组21b y x a y x ⎧=⎪⎨⎪=+⎩,消去y,得210b x x a -+=有唯一解,所以△=2()40ba-=, 所以2b a =,2221()5c a b b e a a a+===+=,故选D.10.C第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题11.; 12.; 13.[[]—2, 解析:[—2,12 ]【解析】抛物线2x y =在1=x 处的切线易得为y =2x —1,令z =y x 2+,y =—12 x +z 2 .画出可行域如下,易得过点(0,—1)时,z min =—2,过点(12 ,0)时,z max =12 .15.43p16.相离 评卷人得分三、解答题17.(1)设C :y 2a 2+x 2b 2=1(a >b >0),设c >0,c 2=a 2-b 2,由条件知a-c =22,c a=22, ∴a =1,b =c =22,故C 的方程为:y 2+x 212=1 5′(2)由AP → =λPB →,OA +OB = 4OP λ∴λ+1=4,λ=3 或O 点与P 点重合OP → =0→7′ 当O 点与P 点重合OP → =0→时,m=0当λ=3时,直线l 与y 轴相交,则斜率存在。

圆锥曲线与方程椭圆双曲线抛物线强化训练专题练习(五)附答案人教版高中数学

圆锥曲线与方程椭圆双曲线抛物线强化训练专题练习(五)附答案人教版高中数学

高中数学专题复习
《圆锥曲线与方程椭圆双曲线抛物线》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.(汇编陕西理)双曲线22
221x y a b
-=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜角为30的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为( )
A .6
B .3
C .2
D .33
2.(汇编宁夏理)已知点P 在抛物线2
4y x =上,那么点P 到点(21)Q -,
的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( ) A .114⎛⎫- ⎪⎝⎭,
B .114⎛⎫ ⎪⎝⎭,
C .(12),
D .(12)-,。

圆锥曲线与方程椭圆双曲线抛物线单元过关检测卷(五)含答案人教版高中数学高考真题汇编

圆锥曲线与方程椭圆双曲线抛物线单元过关检测卷(五)含答案人教版高中数学高考真题汇编

高中数学专题复习《圆锥曲线与方程椭圆双曲线抛物线》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.1 .(汇编年普通高等学校招生统一考试天津数学(理)试题(含答案))已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A ,B 两点, O 为坐标原点. 若双曲线的离心率为2, △AOB 的面积为3, 则p =( )A .1B .32C .2D .32.2 .(汇编年高考四川卷(理))抛物线24y x =的焦点到双曲线2213yx -=的渐近线的距离是 ( )A .12B .32C .1D .33.(汇编全国2理)设1a >,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是( )A .(22),B .(25),C .(25),D .(25),4.(汇编上海理)过抛物线24y x =的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线( )(A)又且仅有一条 (B)有且仅有两条 (C)有无穷多条 (D)不存在 5.(汇编)双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m= ( ) A .-41 B .-4 C .4 D .41 6.(汇编浙江文)已知双曲线22221x y a b-= (0,0)a b >>的左、右焦点分别为F 1、F 2,P是准线上一点,且PF 1⊥PF 2,|PF 1|⋅|PF 2 |=4ab ,则双曲线的离心率是( ) A .2B . 3C .2D .37.(汇编四川卷理)已知直线1:4360l x y -+=和直线2:1l x =-,抛物线24y x=上一动点P 到直线1l 和直线2l 的距离之和的最小值是( ) A.2 B.3 C.115 D.3716【解析1】直线2:1l x =-为抛物线24y x =的准线,由抛物线的定义知,P 到2l 的距离等于P 到抛物线的焦点)0,1(F 的距离,故本题化为在抛物线24y x =上找一个点P 使得P 到点)0,1(F 和直线2l 的距离之和最小,最小值为)0,1(F 到直线1:4360l x y -+=的距离,即25|604|min =+-=d ,故选择A 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学专题复习《圆锥曲线与方程椭圆双曲线抛物线》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.1 .(汇编年高考四川卷(理))抛物线24y x =的焦点到双曲线2213yx -=的渐近线的距离是 ( )A .12 B .32C .1D .32.2 .(汇编年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))已知中心在原点的双曲线C 的右焦点为()3,0F ,离心率等于32,在双曲线C 的方程是 ( )A .22145x y -=B .22145x y -= C .22125x y -=D .22125x y -=3.(汇编浙江理)若双曲线22221x y a b-=的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是( ) A .3B .5C .3D .54.(汇编福建理)又曲线22221x y a b==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为 A.(1,3)B.(]1,3C.(3,+∞)D.[)3,+∞5.3 .(汇编福建文)已知双曲线22x a-25y =1的右焦点为(3,0),则该双曲线的离心率等于 A 31414B .324C .32D .436.(汇编浙江理数)(8)设1F 、2F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点.若在双曲线右支上存在点P ,满足212PF F F =,且2F 到直线1PF 的距离等于双曲线的实轴长,则该双曲线的渐近线方程为( )(A )340x y ±= (B )350x y ±= (C )430x y ±= (D )540x y ±=7.(汇编江西理7)已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=的点M 总在椭圆内部,则椭圆离心率的取值范围是 ( ) A .(0,1) B .1(0,]2 C .2(0,)2D .2[,1)2 8.(汇编江西文7)连接抛物线24x y =的焦点F 与点(10)M ,所得的线段与抛物线交于点A ,设点O 为坐标原点,则三角形OAM 的面积为( ) A.12-+B.322-C.12+D.322+ 9.(汇编福建卷文)若双曲线()222213x y a o a -=>的离心率为2,则a 等于( )A. 2B. 3C.32D. 110.中心在原点,准线方程为x =±4,离心率为21的椭圆方程是( ) A .3422y x +=1B .4322y x +=1 C .42x +y 2=1D .x 2+42y=1(汇编全国文,9)第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题11. 过双曲线x 2-122=y 的右焦点作直线交双曲线于A 、B 两点,且4=AB ,则这样的直线有___________条.12.抛物线2x y -=的焦点坐标为___________. 13.若椭圆1C :1212212=+b y a x (011>>b a )和椭圆2C :1222222=+b y a x (022>>b a )的焦点相同且12a a >.给出如下四个结论: ①椭圆1C 和椭圆2C 一定没有公共点; ②1122a b a b >; ③ 22212221b b a a -=-; ④1212a a b b -<-.其中,所有正确结论的序号是___________.14. 椭圆22221(0)x y a b a b+=>>的中心、右焦点、右顶点、及右准线与x 轴的交点依次为o 、F 、G 、H ,则||||FG OH 的最大值为 . 15.已知1F ,2F 是双曲线的两个焦点,以线段12F F 为边作正12MF F ∆,若边1MF 的中点在此双曲线上,则此双曲线的离心率为 ▲ .16.已知双曲线22122:1(0,0)x y C a b a b-=>>,抛物线22:2C y px =上任意一点到直线x a =-与到点(,0)a 的距离相等,抛物线2C 与1C 的两条渐近线分别交于A B 、两点,且直线AB 经过1C 的右顶点,则双曲线1C 的离心率为_________ 关键字:抛物线的定义;抛物线与直线相交;双重身份;求离心率 来源:示范卷(七)14 评卷人得分三、解答题17.已知椭圆2222:1x y C a b +=()0a b >>的右焦点F (1,0),长轴的左、右端点分别为12,A A ,且121FA FA ⋅=-.(Ⅰ)求椭圆C 的方程;(Ⅱ)过焦点F 斜率为k (0)k ≠的直线l 交椭圆C 于,A B 两点,弦AB 的垂直平分线与x 轴相交于点D . 试问椭圆C 上是否存在点E 使得四边形ADBE 为菱形?若存在,试求点E 到y 轴的距离;若不存在,请说明理由.18.已知以双曲线22221(0,0)x y a b a b-=>>的右焦点2F 为圆心的一个圆经过双曲线的中心,该圆与双曲线的一个交点为P ,且1PF (1F 为左焦点)恰为圆的切线,求双曲线的离心率。

19.在△ABC 中,已知A (0,1),B (0,-1),AC 、BC 两边所在的直线分别与x 轴交于E 、F 两点,且OF OE ·=4.(1)求点C 的轨迹方程;(2)若CF BC 8-=, ①试确定点F 的坐标;②设P 是点C 的轨迹上的动点,猜想△PBF 的周长最大时点P 的位置,并证明你的猜想.20.已知直线l 与x 轴正方向、y 轴正方向交于A ,B 两点,M ,N 是线段AB 的三等分点,椭圆C 经过M ,N 两点.(1)若直线l 的方程为260x y +-=,求椭圆C 的标准方程;(2)若椭圆的中心在原点,对称轴在坐标轴上,其离心率)21,0(∈e ,求直线l 的斜率k 的取值范围.【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.B 2.B 3.D 4.B 5.C【解析】由2235322c a a e a +=⇒=⇒==,C 答案正确. 6.C 7.C 8.B9.AD解析:D 由22223123x y a a a+-===c 可知虚轴b=3,而离心率e=a ,解得a =1或a =3,参照选项知而应选D. 10.BC 解析:A解析:由已知有⇒⎪⎪⎩⎪⎪⎨⎧==2142a c c a a =2,c =1,b 2=3,于是椭圆方程为3422y x +=1,故选A.评述:本题考查了椭圆的方程及其几何性质,以及待定系数法和运算能力.第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题11. 12.; 13. 14. 15. 16.5 评卷人得分三、解答题17. 解:(Ⅰ)依题设1(,0)A a -,2(,0)A a ,则1(1,0)FA a =--,2(1,0)FA a =-. 由121FA FA ⋅=-,解得22a =,所以21b =.所以椭圆C 的方程为2212x y +=. …………………………………………4分 (Ⅱ)依题直线l 的方程为(1)y k x =-.由22(1),22y k x x y =-⎧⎨+=⎩得()2222214220k x k x k +-+-=. 设11(,)A x y ,22(,)B x y ,弦AB 的中点为00(,)M x y ,则2122421k x x k +=+,21222(1)21k x x k -=+,202221k x k =+,0221ky k -=+, 所以2222(,)2121k kM k k -++. 直线MD 的方程为22212()2121kk y x k k k +=--++, 令0y =,得2221D k x k =+,则22(,0)21k D k +. 若四边形ADBE 为菱形,则02E D x x x +=,02E D y y y +=.所以22232(,)2121k k E k k -++. 若点E 在椭圆C 上,则2222232()2()22121k kk k -+=++. 整理得42k =,解得22k =.所以椭圆C 上存在点E 使得四边形ADBE 为菱形.此时点E 到y 的距离为12327-. ………………………………………………14分18.13e =+19.(1)如图,设点C (x ,y )(x≠0),E (x E ,0),F (x F ,0),由A ,C ,F 三点共线,0)1()1(·=---⇒E x y x AE AC ,x E =yx-1.同理,由B 、C 、F 三点共线可得x F =yx+1. 化简,得点C 的轨迹方程为x 2+4y 2-4(x ≠0).∵OF OE ·=4,∴x E ·x F =yxy x +-1·1=4. (2)若CF BC 8-=,①设F (x F ,0),C (x C ,y C ),∴CF BC 8-=⇒(x c ,y c +1)=-8(x F -x c ,y c ). ∴x c =F x 78,y C =71.代入x 2+4y 2=4, 得x F =±3.∴F (±3,0),即F 为椭圆的焦点.②猜想:取F (3,0),设F 1(-3,0)是左焦点,则当P 点位于直线BF 1与椭圆的交点处时,△PBF 周长最大,最大值为8. 证明如下:|PF|+|PB|=4-|PF 1|+|PB|≤4+|BF 1|, ∴△PBF 的周长≤4+|BF 1|+|BF|≤8.20.解:(1)依题意A (3,0),B (0,6),∵M 、N 是线段AB 的三等分点,∴不妨记M (1,4),N (2,2) ……………3分 设椭圆方程为122=+by ax (),0,0b a b a ≠>>,则⎩⎨⎧=+=+116144b a b a ,解得⎪⎪⎩⎪⎪⎨⎧==51201a b , ……………6分 ∴椭圆方程为152022=+x y . ……………7分 (2)设A (m ,0),B (0,n ),()0,0m n >>,则M (3m ,32n ),N (32m ,3n), ……………8分①当焦点在x 轴上时,设椭圆方程为12222=+by a x ()0>>b a ,则⎪⎪⎩⎪⎪⎨⎧=+=+1994194922222222b n a m b n a m ,∴⎪⎪⎩⎪⎪⎨⎧==22229595n b m a ,得222222221e a c a a b m n -=-==,……………11分 又∵m n k -=,)21,0(∈e , ∴∈k (-1,-23); ……………13分②当焦点在y 轴上时,同法可得∈k (-233,-1), 综上∈k (-1,-23)∪(-233,-1). ……………16分。

相关文档
最新文档