高中数学北师大版选修1-1《简单的逻辑联结词》word导学案
高中数学选修1-1《简单的逻辑联结词》教案

高中数学选修1-1《简单的逻辑联结词》教案高中数学选修1-1《简单的逻辑联结词》教案【一】教学准备教学目标熟练掌握逻辑联结词的使用教学重难点熟练掌握逻辑联结词的使用教学过程一、基础知识(一)逻辑联结词1.命题:可以判断真假的语句叫做命题2.逻辑联结词:“或”、“且”、“非”这些词叫做逻辑联结词。
或:两个简单命题至少一个成立且:两个简单命题都成立,非:对一个命题的否定3.简单命题与复合命题:不含逻辑联结词的命题叫做简单命题;由简单命题与逻辑联结词构成的命题叫做复合命题。
4.表示形式:用小写的拉丁字母p、q、r、s…来表示简单的命题,复合命题的构成形式有三类:“p或q”、“p且q”、“非p”5.真值表:表示命题真假的表叫真值表;复合命题的真假可通过下面的真值表来加以判定。
3.一个命题的真假与其它三个命题的真假有如下四条关系:(1)原命题为真,它的逆命题不一定为真。
(2)原命题为真,它的否命题不一定为真。
(3)原命题为真,它的逆否命题一定为真。
(4)逆命题为真,否命题一定为真。
(三)几点说明1.逻辑联结词“或”的理解是难点,“或”有三层含义:以“P或q”为例:一是p成立但q不成立,二是p不成立但q 成立,三是p成立且q成立,2.对命题的否定只是否定命题的结论,而否命题既否定题设又否定结论3.真值表 P或q:“一真为真”, P且q:“一假为假”4.互为逆否命题的两个命题等价,为命题真假判定提供一个策略。
5.反证法运用的两个难点:1)何时使用反证法 2)如何得到矛盾。
二、举例选讲例1.已知复合命题形式,指出构成它的简单命题,(1)等腰三角形顶角的角平分线垂直平分底边,(2)垂直于弦的直径平分这条弦且平分弦所对的两条弧,(3)(4)平行四边形不是梯形解:(1)P且q形式,其中p:等腰三角形顶角的角平分线垂直底边, q:等腰三角形顶角的角平分线平分底边;(2)P且q形式,其中p:垂直于弦的直径平分这条弦, q:垂直于弦的直径平分这条弦所对的两条弧(3)P或q形式,其中p:4>3,q:4=3(4)非p形式:其中p:平行四边形是梯形。
1.4简单的逻辑联结词课件(北师大版选修1-1)

演绎.
——笛卡尔
考察下列命题: 或6是3的倍数; ① (1)6是2的倍数或 且 6是3的倍数; ② (2)6是2的倍数且 ( 3) 2 不 不是有理数. 这些命题的构成各有什么特点? 非 ③
逻辑联结词
p或 q
p且 q
非p
∟
【例1】分别指出下列命题的形式: (1)8≥7;
(2)2是偶数且2是质数; (3) 不是整数;
(2)如果命题“p且q”和“非p”都是假命题,则命题q
的真假是_________.
1.2 简单的逻辑联结词
刘满霞,张文雅,曾仕玲同学中的 一位在昨晚晚修放学后把教室打扫 干净了,今天早上,姜老师问她们 三个人是谁做的好事。 刘满霞说:“是张文雅做的”; 张文雅说:“不是我做的”; 曾仕玲说:“不是我做的”。 已知只有一个人说的是真话,你能 帮助姜教师找出是谁做的吗?
要想获得真理和知识,惟有两 件武器,那就是清晰的直觉和严格的
命题真假的判断方法
1、“非p”形式的命题
(1) p: 3是正数; 非p:3不是正数. (2) p:1是偶数.
p 真
非p 假 真
假
非p:1不是偶数.
真假相反
“非p”的真假与p相反
2、p且q的形式的命题
(1) p:1是奇数; q:2是偶数.
p 真 真
q 真 假
p且 q 真 假
p且q :1是奇数且2是偶数 (2) p:1是奇数;
(1)命题“6是自然数且6是偶数”______的形式; (2)命题“4的算术平方根不是-2”是_____的形式;
(3)命题“能被5整除的数的末位数字不是0就是5”
是_______的形式. 2. 分别指出下列命题构成形式,构成它的简单命题,并判 断命题的真假. (1) 面积相等或周长相等的圆是等圆. (2) 24既是8的倍数,也是6的倍数; (3)菱形的对角线不相等.
人教课标版高中数学选修1-1《简单的逻辑联结词》教案-新版

1.3简单的逻辑联结词一、教学目标 【核心素养】培养学生的数学抽象,构建基本的数学逻辑体系. 【学习目标】(1)通过数学实例,了解简单的逻辑联结词“或”、“且”、“非”的含义; (2)能正确地利用“或”、“且”、“非”表述相关的数学内容; (3)知道命题的否定与否命题的区别. 【学习重点】逻辑联结词“或”、“且”、“非”的含义; 【学习难点】逻辑联结词“或”的含义; 二、教学设计 (一)课前设计 1.预习任务任务1:阅读教材P 14—P 17,,思考:“或”“且”“非”的含义 任务2:“p ∧q ”、“p ∨q ”、“非p ”形式命题的真假如何判断 2.预习自测1.已知复合命题()p q ∧⌝是真命题,则下列命题中也是真命题的是( ) A .()p q ⌝∨ B .p q ∨ C .p q ∧ D .()()p q ⌝∧⌝ 答案:B解析:由已知得命题p 是真命题,命题q ⌝是真命题,所以命题q 是假命题,根据复合命题的真假判断p q ∨是真命题,其他选项都是假命题,故选B . 考点:复合命题真假的判断.2.已知命题:p 若π6α=,则1sin 2α=;命题:q 若1sin 2α=,则π6α=.下面四个结论中正确的是( ) A .p q ∧是真命题 B .p q ∨是真命题 C .p ⌝是真命题 D .q ⌝是假命题 答案:B解析:由题意可知,命题p 为真命题,命题q 为假命题,所以p q ∨是真命题,故选B .考点:复合命题的真假判断. 3.下列说法错误的是( )A .若命题“p q ∧”为真命题,则“p q ∨”为真命题B .若命题“p q ⌝∨”为假命题,则“p q ∧⌝”为真命题C .命题“若a b >,则22ac bc >”的否命题为真命题D .命题“若0m >,则方程20x x m +-=有实根”的逆命题为真命题 答案:D解析:对于A :若“p q ∧”为真命题,则p ,q 都是真命题,所以“p q ∨”为真命题,故A 正确; 对于B :若“p q ⌝∨”为假命题,则,p q ⌝都是假命题,∴p 是真命题,q ⌝是真命题,所以“p q ∧⌝”为真命题,故B 正确;对于C :“若a b >,则22ac bc >”的否命题为“若a b ≤,则22ac bc ≤”,∵c 2≥0,∴由a b ≤可得到22ac bc ≤,故C 正确;对于D :命题“若0m >,则方程20x x m +-=有实根”的逆命题为“若方程20x x m +-=有实根,则0m >”,方程20x x m +-=有实数根只需1140,,4m m ∆=+≥≥-所以不一定得到0m >,所以D 错.故选D .(二)课堂设计1.知识回顾(1)学生自己写两个命题p,q,并判断其真假.(2)再将两个命题用“或、且、非”联结,能否判断真假?2.问题探究问题探究一:逻辑连接词观察与思考:想一想:从串联电路A B C之间的一些关系,我们能得到什么样的启示?阅读与举例:请大家阅读教材中P14所举例的例子,并试着举一些类似的命题.探究:考察下列命题:(1)6可以被2或3整除;(2)6是2的倍数且6是3的倍数;(3不是有理数;想一想:这些命题的构成各有什么特点?1.逻辑连结词命题中的“或”、“且”、“非”这些词叫做逻辑联结词2.三种命题构成形式的表示常用小写拉丁字母p、q、r、s……表示命题1.用联结词“且(and)”联结命题p和命题q,就得到一个新命题,记作__________,读作__________.2.用联结词“或(or)”联结命题p和命题q,就得到一个新命题,记作__________,读作__________.3.对一个命题p全盘否定(not),就得到一个新命题,记作__________,读作_________或__________.问题探究二:三种命题真假判断1.“p且q”形式的复合命题真假:2.“p或q”形式的复合命题真假:3.“非p”形式的复合命题真假:3.课堂总结【知识梳理】1.逻辑联结词与集合的关系“或、且、非”三个逻辑联结词,对应着集合运算中的“并、交、补”,因此,常常借助集合的“并、交、补”的意义来解答由“或、且、非”三个联结词构成的命题问题.2.正确区别命题的否定与否命题“否命题”是对原命题“若p,则q”的条件和结论分别加以否定而得到的命题,它既否定其条件,又否定其结论;“命题的否定”即“非p”,只是否定命题p的结论.命题的否定与原命题的真假总是对立的,即两者中有且只有一个为真,而原命题与否命题的真假无必然联系.3.“p∧q”“p∨q”“非p”形式命题的真假判断步骤(1)准确判断简单命题p、q的真假;(2)判断“p∧q”“p∨q”“¬p”命题的真假.【重难点突破】含有逻辑联结词的命题的真假判断规律(1)p∨q:当p、q中至少有一个为真时,p或q为真;当p、q都为假时,p或q 为假.(一真必真)(2)p∧q:当p、q为真时,p且q为真;当p、q中至少有一个为假时,p且q 为假.(一假必假)(3)非p:当p为真时,非p为假;当p为假时,非p为真(真假相反)4.随堂检测1.“xy≠0”是指()A.x≠0且y≠0B.x≠0或y≠0C.x,y至少一个不为0D.x,y不都是0解析:【知识点:逻辑联结词】答案:A2.下列命题:①矩形的对角线相等且互相平分;②10的倍数一定是5的倍数;③方程x2=1的解为x=±1;④3∉{1,2}.其中使用逻辑联结词的命题有()A.1个B.2个C.3个D.4个答案:C解析:【知识点:逻辑联结词】①中有“且”;②中没有;③中有“或”;④中有“非”.故选C.3.若条件p:x∈A∩B,则¬p是()A.x∈A且x∉BB.x∉A或x∉BC.x∉A且x∉BD.x∈A∪B答案:B解析:【知识点:逻辑联结词,四种命题】由p:x∈A∩B,得p:x∈A且x∈B,∴¬p是x∉A或x∉B.4.设命题p:函数y=sin2x的最小正周期为π2;命题q:函数y=cos x的图象关于直线x=π2对称.则下列判断正确的是()A.p为真B.¬q为假C.p∧q为假D.p∨q为真答案:C解析:【知识点:逻辑联结词,命题真假的判断】因周期T=2π2=π,故p为假命题.因函数y=cos x的对称轴为x=kπ(k∈Z),故q也为假命题,所以p∧q为假.5.已知P:2+2=5,Q:3>2,则下列判断正确的是()A.“P∨Q”为假,“¬Q”为假B.“P∨Q”为真,“¬Q”为假C.“P∧Q”为假,“¬P”为假D.“P∧Q”为真,“P∨Q”为假答案:B解析:【知识点:逻辑联结词,命题真假的判断】由题意可知,P假、Q真,所以P或Q为真,P且Q为假,非Q为假,非P为真,故选B.(三)课后作业★基础型自主突破1.若p是真命题,q是假命题,则()A.p∧q是真命题B.p∨q是假命题C.⌝p是真命题D.⌝q是真命题答案:D解析:【知识点:逻辑联结词,命题真假的判断】2.若命题“p∧(¬q)”为真命题,则()A.p∨q为假命题B.q为假命题C.q为真命题D.(¬p)∧(¬q)为真命题答案:B解析:【知识点:逻辑联结词,命题真假的判断】p∧(¬q)为真命题,故¬q为真命题,所以q为假命题.3.若p、q是两个简单命题,“p或q”的否定是真命题,则必有()A.p真q真B.p假q假C.p真q假D.p假q真答案:B解析:【知识点:逻辑联结词,命题真假的判断】“p或q”的否定是:“¬p且¬q”是真命题,则¬p、¬q都是真命题,故p、q都是假命题.4.命题p:2不是质数,命题q:2是无理数,在命题“p∧q”、“p∨q”、“¬p”、“¬q”中,假命题是__________________,真命题是__________________.答案:“p∧q”“¬q”;“p∨q”“¬p”解析:【知识点:逻辑联结词,命题真假的判断】因为命题p假,命题q真,所以命题“p∧q”假,命题“p∨q”真,“¬p”真,“¬q”假.5.已知p:x2-x≥6,q:x∈Z.若“p∧q”,“¬q”都是假命题,则x的值组成的集合为_____________.答案:{-1,0,1,2}解析:【知识点:逻辑联结词,命题真假的判断】 因为“p ∧q ”为假,“¬q ”为假,所以q 为真,p 为假.故⎩⎨⎧ x 2-x <6x ∈Z ,即⎩⎨⎧-2<x <3x ∈Z,因此x 的值可以是-1,0,1,2. 6.如果命题“非p 或非q ”是假命题,给出下列四个结论:①命题“p 且q ”是真命题;②命题“p 且q ”是假命题;③命题“p 或q ”是真命题;④命题“p 或q ”是假命题. 其中正确的结论是( ) A .①③ B .②④ C .②③ D .①④解析:【知识点:逻辑联结词,命题真假的判断】 答案:A“非p 或非q ”是假命题⇒“非p ”与“非q ”均为假命题⇒p 与q 均为真命题. 7.分别指出下列各组命题构成的“p ∧q ”、“p ∨q ”形式的命题的真假. (1)p :6<6,q :6=6;(2)p :梯形的对角线相等,q :梯形的对角线互相平分;(3)p :函数y =x 2+x +2的图象与x 轴没有公共点,q :不等式x 2+x +2<0无解; (4)p :函数y =cos x 是周期函数,q :函数y =cos x 是奇函数. 答案:见解析解析:【知识点:逻辑联结词,命题真假的判断】(1)∵p 为假命题,q 为真命题,∴p ∧q 为假命题,p ∨q 为真命题. (2)∵p 为假命题,q 为假命题,∴p ∧q 为假命题,p ∨q 为假命题. (3)∵p 为真命题,q 为真命题,∴p ∧q 为真命题,p ∨q 为真命题. (4)∵p 为真命题,q 为假命题,∴p ∧q 为假命题,p ∨q 为真命题. 8.写出下列命题的否定: (1)若a >b >0,则1a <1b ;(2)a 、b ∈N ,若ab 可被5整除,则a 、b 中至少有一个能被5整除;(3)若x2-x-2=0,则x≠-1且x≠2.答案:见解析解析:【知识点:命题的否定】(1)若a>b>0,若1a≥1b.(2)正方形的四条边不全相等.(2)a、b∈N,若ab可以被5整除,则a、b都不能被5整除;(3)若x2-x-2=0,则x=-1或x=2.★★能力型师生共研9.已知命题p:偶函数的图象关于y轴对称,命题q:正数的对数都是正数,则下列命题中为真命题的是()A.p∧qB.(¬p)∧(¬q)C.(¬p)∧qD.p∧(¬q)答案:D解析:【知识点:逻辑联结词,命题真假的判断】∵p为真命题,q为假命题,∴p∧(¬q)为真命题,故选D.10.已知命题p:x2-4x+3<0与q:x2-6x+8<0;若“p且q”是不等式2x2-9x +a<0成立的充分条件,则实数a的取值范围是()A.(9,+∞)B.{0}C.(-∞,9]D.(0,9]解析:【知识点:逻辑联结词,充分必要条件】答案:C11.设命题p:函数y=sin 2x的最小正周期为π2;命题q:函数y=cos x的图象关于直线x=π2对称.则下列判断正确的是()A.p为真B.q为真C .p ∧q 为假D .p ∨q 为真 答案:C解析:【知识点:逻辑联结词,命题真假的判断】 命题p ,q 均为假命题,故p ∧q 为假命题.12.已知命题p :所有有理数都是实数,命题q :正数的对数都是负数,则下列命题中为真命题的是( ) A .(⌝p )∨q B .p ∧q C .(⌝p )∧(⌝q ) D .(⌝p )∨(⌝q ) 答案:D解析:【知识点:逻辑联结词,命题真假的判断】命题p 为真命题,命题q 为假命题,所以¬p 为假命题,¬q 为真命题,所以(¬p )∨(¬q )为真命题.13.命题p :若a ·b >0,则a 与b 的夹角为锐角;命题q :若函数f (x )在(-∞,0]及(0,+∞)上都是减函数,则f (x )在(-∞,+∞)上是减函数.下列说法中正确的是( )A .“p 或q ”是真命题B .“p 或q ”是假命题C .⌝p 为假命题D .⌝q 为假命题 答案:B解析:【知识点:逻辑联结词,命题真假的判断】∵当a ·b >0时,a 与b 的夹角为锐角或零度角,∴命题p 是假命题;命题q 是假命题,例如f (x )=⎩⎨⎧-x +1,x ≤0,-x +2,x >0,综上可知,“p 或q ”是假命题.14.已知命题p :函数f (x )=|lg x |为偶函数,q :函数g (x )=lg|x |为奇函数,由它们构成的“p ∨q ”“p ∧q ”和“¬p ”形式的新命题中,真命题是________________. 解析:【知识点:逻辑联结词,命题的否定,命题真假的判断】答案:¬p函数f (x )=|lg x |为非奇非偶函数,g (x )=lg|x |为偶函数,故命题p 和q 均为假命题,从而只有“¬p ”为真命题.15.设命题p :实数x 满足x 2-4ax +3a 2<0,其中a >0,命题q :实数x 满足⎩⎨⎧x 2-x -6≤0,x 2+2x -8>0. (1)若a =1,且p ∧q 为真,求实数x 的取值范围;(2) ⌝p 是⌝q 的充分不必要条件,求实数a 的取值范围.答案:见解析解析:【知识点:逻辑联结词,命题真假的判断】(1)由x 2-4ax +3a 2<0,得(x -3a )(x -a )<0.又a >0,所以a <x <3a ,当a =1时,1<x <3,即p 为真命题时,1<x <3.由⎩⎨⎧ x 2-x -6≤0,x 2+2x -8>0,解得⎩⎨⎧-2≤x ≤3,x <-4或x >2,即2<x ≤3. 所以q 为真时,2<x ≤3. 若p ∧q 为真,则⎩⎨⎧1<x <3,2<x ≤3⇔2<x <3, 所以实数x 的取值范围是(2,3).(2)设A ={x |x ≤a ,或x ≥3a },B ={x |x ≤2,或x >3},因为¬p 是¬q 的充分不必要条件,所以A ⊆B .所以0<a ≤2且3a >3,即1<a ≤2.所以实数a 的取值范围是(1,2].16.已知命题p :方程2x 2+ax -a 2=0在[-1,1]上有解;命题q :只有一个实数x 0满足不等式x 20+2ax 0+2a ≤0,若命题“p ∨q ”是假命题,求a 的取值范围. 答案:见解析解析:【知识点:逻辑联结词,命题真假的判断,一元二次方程解的讨论】 由2x 2+ax -a 2=0,得(2x -a )(x +a )=0,∴x =a 2或x =-a ,∴当命题p 为真命题时, ⎪⎪⎪⎪⎪⎪a 2≤1或|-a |≤1, ∴|a |≤2.又“只有一个实数x 0满足不等式x 20+2ax 0+2a ≤0”,即抛物线y =x 2+2ax +2a 与x 轴只有一个交点,∴Δ=4a 2-8a =0,∴a =0或a =2.∴当命题q 为真命题时,a =0或a =2.∴命题“p∨q”为真命题时,|a|≤2.∵命题“p∨q”为假命题,a>2,或a<-2.∴a>2或a<-2.即a的取值范围为{a|}★★★探究型多维突破17.设a、b、c是非零向量,已知命题p:若a·b=0,b·c=0,则a·c=0;命题q:若a∥b,b∥c,则a∥c,则下列命题中真命题是()A.p∨qB.p∧qC.(¬p)∧(¬q)D.p∨(¬q)解析:【知识点:逻辑联结词,命题真假的判断】答案:A取a=c=(1,0),b=(0,1)知,a·b=0,b·c=0,但a·c≠0,∴命题p为假命题;∵a∥b,b∥c,∴存在λ,μ∈R,使a=λb,b=μc,∴a=λμc,∴a∥c,∴命题q是真命题.∴p∨q为真命题.18.在一次篮球投篮比赛中,甲、乙两球员各投篮一次.设命题p:“甲球员投篮命中”;q:“乙球员投篮命中”,则命题“至少有一名球员投中”可表示为()A.p∨qB.p∧(¬q)C.(¬p)∧(¬q)D.(¬p)∨(¬q)解析:【知识点:逻辑联结词,命题的否定】答案:A至少有一名球员投中为p∨q.19.已知a>0,设命题p:函数y=a x在R上单调递增;命题q:不等式x2-ax +1>0对x∈R恒成立.若p∨q为真命题,p∧q为假命题,求实数a的取值范围.答案:见解析解析:【知识点:逻辑联结词,命题真假的判断】∵函数y=a x在R上单调递增,∴a>1,∴p :a >1.∵不等式x 2-ax +1>0时x ∈R 恒成立,∴Δ=a 2-4<0,∴-2<a <2. ∴q :0<a <2.又∵p ∨q 为真,p ∧q 为假,∴p 、q 一真一假.当p 真q 假时,⎩⎪⎨⎪⎧ a >1a ≥2,∴a ≥2.当p 假q 真时,⎩⎪⎨⎪⎧ 0<a ≤10<a <2,∴0<a ≤1,综上可知,实数a 的取值范围是(0,1]∪[2,+∞)20.已知p :方程x 2+mx +1=0有两个不等的负根;q :方程4x 2+4(m -2)x +1=0无实根.若p 或q 为真,p 且q 为假,求m 的取值范围.答案:见解析解析:【知识点:逻辑联结词,命题真假的判断】若方程x 2+mx +1=0有两个不等的负根x 1,x 2,则⎩⎨⎧ Δ>0,x 1+x 2<0,x 1x 2>0,即⎩⎨⎧Δ=m 2-4>0,m >0. 解得m >2,即p :m >2.若方程4x 2+4(m -2)x +1=0无实根,则Δ=16(m -2)2-16=16(m 2-4m +3)<0.解得1<m <3,即q :1<m <3. ∵p 或q 为真,p 且q 为假,∴p 、q 两命题应一真一假,即p 为真、q 为假或p 为假、q 为真.∴⎩⎨⎧ m >2,m ≤1或m ≥3或⎩⎨⎧m ≤2,1<m <3.解得m ≥3或1<m ≤2. ∴m 的取值范围是(1,2]∪[3,+∞).(四)自助餐1.已知命题p :1∈{x |(x +2)(x -3)<0},命题q :∅={0},则下列判断正确的是( )A .p 假q 假B .“p 或q ”为真C .“p 且q ”为真D .p 假q 真答案:B解析:【知识点:逻辑联结词,命题真假的判断】∵{x|(x+2)(x-3)<0}={x|-2<x<3},∴1∈{x|(x+2)(x-3)<0},∴p真.∵∅≠{0},∴q假.故“p或q”为真,“p且q”为假,故选B.2.若命题p:0是偶数,命题q:2是3的约数,则下列结论中正确的是()A.“p∨q”为假B.“p∨q”为真C.“p∧q”为真D.以上都不对.答案:B解析:【知识点:逻辑联结词,命题真假的判断】命题p为真命题,命题q为假命题,故“p∨q”为真命题.3.已知命题p、q,则命题“p∨q为真”是命题“p∧q为真”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:B解析:【知识点:逻辑联结词,命题真假的判断,充分必要条件】p∧q为真⇒p真且q真⇒p∨q为真;p∨q为真⇒p真或q真⇒/p∧q为真.4.命题p:“方程x2+2x+a=0有实数根”;命题q:“函数f(x)=(a2-a)x是增函数”,若“p∧q”为假命题,且“p∨q”为真命题,则实数a的取值范围是()A.a>0B.a≥0C.a>1D.a≥1解析:【知识点:逻辑联结词,命题真假的判断】答案:B当p真时,Δ=4-4a≥0,解得a≤1.当q真时a2-a>0,解得a<0或a>1.∵p ∧q 为假命题,p ∨q 为真命题,∴p,q 中一真一假.(1)当p 真q 假时,得0≤a ≤1.(2)当p 假q 真时得a>1,由(1)(2)得所求a 的取值范围是a ≥0.故选B .5.命题p :函数y =log a (ax +2a )(a >0且a ≠1)的图象必过定点(-1,1);命题q :如果函数y =f (x )的图象关于(3,0)对称,那么函数y =f (x -3)的图象关于原点对称,则有( )A .“p 且q ”为真B .“p 或q ”为假C .p 真q 假D .p 假q 真答案:C【知识点:逻辑联结词,命题真假判断】y =log a (ax +2a )=log a a (x +2)=1+log a (x +2),当x =-1时,log a (x +2)=0, ∴函数y =log a (ax +2a )(a >0且a ≠1)的图象过定点(-1,1),故p 真;如果函数y =f (x )的图象关于点(3,0)对称,则函数y =f (x -3)的图象关于点(6,0)对称,故q 假,∴选C .6.p :函数f (x )=lg x +1有零点;q :存在α、β,使sin(α-β)=sin α-sin β,在p ∨q ,p ∧q ,¬p ,¬q 中真命题有( )A .1个B .2个C .3个D .4个答案:B解析:【知识点:逻辑联结词,命题真假的判断】∵f ⎝ ⎛⎭⎪⎫110=0,∴p 真;∵α=β时,sin(α-β)=0=sin α-sin β,∴q 真,故p ∨q 为真,p ∧q 为真,¬p 为假,¬q 为假.7.分别用“p ∧q ”、“p ∨q ”填空.(1)命题“0是自然数且是偶数”是__________________形式;(2)命题“5小于或等于7”是__________________形式;(3)命题“正数或0的平方根是实数”是__________________形式.答案: p ∧q ;p ∨q ;p ∨q解析:【知识点:逻辑联结词】8.设命题p :a 2<a ,命题q :对任何x ∈R ,都有x 2+4ax +1>0,命题p ∧q 为假,p ∨q 为真,则实数a 的取值范围是__________________.答案:-12<a ≤0或12≤a <1解析:【知识点:逻辑联结词】由a 2<a 得0<a <1,∴p :0<a <1;由x 2+4ax +1>0恒成立知Δ=16a 2-4<0,∴-12<a <12,∴q :-12<a <12,∵p ∧q 为假,p ∨q 为真,∴p 与q 一真一假,p 假q 真时,-12<a ≤0,p 真q 假时,12≤a <1,∴实数a 的取值范围是-12<a ≤0或12≤a <1.9.已知命题p :不等式x 2+x +1≤0的解集为R ,命题q :不等式x -2x -1≤0的解集为{x |1<x ≤2},则命题“p ∨q ”“p ∧q ”“¬p ”“¬q ”中为真命题是__________________. 解析:【知识点:逻辑联结词,命题真假的判断】答案:p ∨q ,¬p∴∀x ∈R ,x 2+x +1>0,∴命题p 为假,¬p 为真;∵x -2x -1≤0⇔⎩⎨⎧(x -2)(x -1)≤0x -1≠0⇔1<x ≤2.∴命题q 为真,p ∨q 为真,p ∧q 为假,¬q 为假.10.已知命题p :1x -1<1,命题q :x 2+(a -1)x -a >0,若¬p 是¬q 的充分不必要条件,则实数a 的取值范围是__________________.答案:(-∞,-2)解析:【知识点:逻辑联结词,充分必要条件】命题p :1x -1<1,∴x >2或x <1. 命题q :x 2+(a -1)x -a >0,∴(x +a )(x -1)>0.∵¬p 是¬q 的充分不必要条件,∴q 是p 的充分不必要条件.∴-a >2,∴a <-2.11.已知命题p :关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立;命题q :函数f (x )=-(5-2a )x 是减函数,若p ∨q 为真命题,p ∧q 为假命题,求实数a 的取值范围.答案:见解析解析:【知识点:逻辑联结词,命题真假的判断】设g (x )=x 2+2ax +4,由于关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立,所以函数g (x )的图象开口向上且与x 轴没有交点,故Δ=4a 2-16<0. 所以-2<a <2,所以命题p :-2<a <2;又f (x )=-(5-2a )x 是减函数,则有5-2a >1,即a <2.所以命题q :a <2. ∵p ∨q 为真命题,p ∧q 为假命题,∴p 和q 一真一假.(1)若p 为真命题,q 为假命题,则⎩⎨⎧ -2<a <2a ≥2,此不等式组无解. (2)若p 为假命题,q 为真命题,则⎩⎨⎧a ≤-2或a ≥2a <2,解得a ≤-2. 综上,实数a 的取值范围是(-∞,-2].12.已知p :|3x -4|>2;q :1x 2-x -2>0;r :(x -a )(x -a -1)<0. (1)¬p 是¬q 的什么条件;(2)若¬r 是¬p 的必要不充分条件,求实数a 的取值范围.答案:见解析解析:【知识点:逻辑联结词,充分必要条件】(1)p :|3x -4|>2⇒x >2或x <23,q :1x 2-x -2>0⇒x >2或x <-1, ¬p :23≤x ≤2,¬q :-1≤x ≤2,∴¬p ⇒¬q ,¬q ⇒/ ¬p ,∴¬p 是¬q 的充分不必要条件.(2)r :a <x <a +1,¬r :x ≥a +1或x ≤a .∵¬r 是¬p 的必要不充分条件,∴a ≥2或a +1≤23,即a ≥2或a ≤-13.数学视野建立逻辑的语言,使逻辑学象数学那样也有一套完美的、通用的符号,其思想也可以追溯到莱布尼茨.他认为,我们可以建立一种普遍的、没有歧义的语言,通过这种语言,就可以把推理转变为演算.一旦发生争论,我们只要坐下来,拿出纸和笔算一算就行了.这里,他实际上提出了数理逻辑的两个基本思想:构造形式语言和建立演算.但是,对于他所设想的语言,他要求:“它能这样地形成和排列符号,使得它能表达一些思想,或者说使得它们之间具有和这些思想之间的关系相同的关系.一个表达式是一些符号的组合,这些符号能表象被表示的事物,表达式的规律如下:如果被表示的那个事物的观念是由一些事物的一些观念组成的,那么那个事物的表达式也是由这些事物的符号组成的.”(张家龙,第46-47 页)莱布尼茨的这些论述,实际上就是要将逻辑形式化.不过莱布尼茨没有实现他的两个设想.1879年,逻辑学家弗雷格发表了名著的《概念文字——一种模仿算术语言构造的纯思维的形式语言》.在这本书中,弗雷格借鉴了两种语言,一种是传统逻辑使用的语言,另一种是算术的语言.从而成功地构造了一种逻辑的形式语言,即:一种表意的符号语言,并且用这种语言建立了一个一阶谓词演算系统,实现了莱布尼茨提出建立一种普遍语言的思想.其实,在莱布尼茨之前,从亚里士多德开始,对逻辑学的研究所使用的语言就是一种半形式化的语言.这种半形式化的语言就是用字母表达一般概念.。
高中数学《简单的逻辑联结词》导学案 北师大版选修1-1

第5课时简单的逻辑联结词1.理解逻辑联结词“且”“或”“非”的含义.2.会判断含“且”“或”“非”的命题的真假及相关应用.歌德是18世纪德国的一位著名文艺大师,一天,他与一位文艺批评家“狭路相逢”.这位批评家生性古怪,遇到歌德走来,不仅没有相让,反而卖弄聪明,一边高傲地往前走,一边大声说道:“我从来不给傻子让路!”面对如此尴尬局面,只见歌德笑容可掬,谦恭地闪在一旁,一边有礼貌地回答道:“呵呵,我可恰恰相反.”问题1: 歌德表达的意思是,对一个命题p的结论的否定 ,就得到一个新命题,记作,读作“非p”,即是“p的否定”.问题2: 常见的逻辑联结词有“或”“且”“非”.不含逻辑联结词的命题叫,含有逻辑联结词的命题叫.(1)用联结词“或”把命题p和命题q联结起来,就得到一个新命题“p或q”.(2)用联结词“且”把命题p和命题q联结起来,就得到一个新命题“p且q”.问题3: 命题的否定与否命题的区别(1)命题的否定是否定命题的,而命题的否命题是对原命题的和同时进行否定.(2)命题的否定的真假与原命题的真假总是的,即一真一假;而否命题的真假与原命题的真假无必然的联系.问题4: (1)复合命题是由简单命题与逻辑联结词构成的,简单命题的真假决定了复合命题的真假,(2)常见关键词及其否定形式附表如下:1.命题:“方程x2-1=0的解是x=±1”,其使用逻辑联结词的情况是().A.使用了逻辑联结词“且”B.使用了逻辑联结词“或”C.使用了逻辑联结词“非”D.没有使用逻辑联结词2.有下列命题:①2是偶数,又是素数;②10的倍数一定是5的倍数;③梯形不是矩形;④明天早餐吃面包或鸡蛋.其中可使用逻辑联结词的命题有( ).A.1个B.2个C.3个D.4个3.命题p:方向相同的两个向量共线,q:方向相反的两个向量共线,则命题“p或q”为.4.分别写出由下列各组命题构成的“p且q”“p或q”“p”形式的命题:(1)p:π是无理数,q:e是有理数;(2)p:三角形的外角等于与它不相邻的两个内角的和,q:三角形的外角大于与它不相邻的任一个内角.含有逻辑联结词命题的构成指出下列命题的形式及构成它的简单命题.(1)48是16与12的倍数.(2)方程x2+x+3=0没有实数根.(3)属于集合Q或属于集合R.判断含逻辑联结词命题的真假分别指出由下列各组命题构成的“p或q”“p且q”“p”形式的命题的真假.(1)p:3>3,q:3=3;(2)p:⌀⫋{0},q:0∈⌀;(3)p:A⊆A,q:A∩A=A;(4)p:函数x2+3x+4=0的图像与x轴有公共点,q:方程x2+3x-4=0没有实根.命题的否定写出下列命题的否定:(1)正方形的四条边都相等;(2)已知a,b∈N,若ab能被5整除,则a,b中至少有一个不能被5整除;(3)若x2-x-2≠0,则x=-1且x=2.指出下列命题的形式及构成它的简单命题.(1)方程x2+x+1=0没有实数根;(2)他是运动员,又是教练;(3)这些文学作品不仅艺术上有缺点,而且政治上有错误.已知命题p、q,试写出p或q、p且q、p形式的命题并判断真假.(1)p:平行四边形的一组对边平行,q:平行四边形的一组对边相等;(2)p:2∈{1,3,5,7},q:2∈{2,4,6,8};(3)p:1∈{1,2}, q:{1}⫋{1,2}.写出下列命题的否定和否命题,并判定其真假.(1)p:若x2+y2=0,则x,y全为零;(2)p:若x=3且y=5,则x+y=8.1.已知命题p:2+2=5,命题q:3>2,则下列判断正确的是( ).A.“p或q”为假,“q”为假B.“p或q”为真,“q”为假C.“p且q”为假,“p”为假D.“p且q”为真,“p或q”为假2.已知p:⌀⊆{0},q:{1}∈{1,2}.由它们构成的新命题“p且q”“p或q”“p”中,真命题有().A.1个B.2个C.3个D.0个3.命题“若a<b,则2a<2b”的否命题为,命题的否定为.4.分别指出由下列各组命题构成的“p或q”“p且q”形式的复合命题的真假.(1)p:在集合{x|0<x<2}中,q:在集合{x|x>1.5}中.(2)p:方程x2-3x-1=0有两正根,q:方程x2-3=0有两实数根.(3)p:集合{x|1<x<2}是集合{x|x>0}的子集,q:集合{x|1≤x<2}是集合{x|1<x<4}的子集.(2013年·湖北卷)在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为().A.(p)或(q)B.p或(q)C.(p)且(q)D.p或q考题变式(我来改编):第5课时简单的逻辑联结词知识体系梳理问题1:我会给傻子让路p问题2:简单命题复合命题问题3:(1)结论条件结论(2)相对立问题4:(1)真真假假假假基础学习交流1.B“x=±1”可以写成“x=1或x=-1”,故选B.2.C①中可用“且”,②中没,③中可用“ ,④中可用“或”,故选C.3.方向相同或相反的两个向量共线方向相同的两个向量共线或方向相反的两个向量共线,即“方向相同或相反的两个向量共线”.4.解:(1)“p且q”:π是无理数且e是有理数.“p或q”:π是无理数或e是有理数.“p”:π不是无理数.(2)“p且q”:三角形的外角等于与它不相邻的两个内角的和且大于与它不相邻的任一个内角.“p或q”:三角形的外角等于与它不相邻的两个内角的和或大于与它不相邻的任一个内角.“p”:三角形的外角不等于与它不相邻的两个内角的和.重点难点探究探究一:【解析】(1)这个命题是“p且q”的形式,其中p:48是16的倍数;q:48是12的倍数.(2)这个命题是“p”的形式,其中p:方程x2+x+3=0有实数根.(3)这个命题是“p或q”的形式,其中p: ∈Q,q:∈R.【小结】①在“p或q”“p且q”“p”中,p,q都是命题,但在“若p,则q”中,p,q 可以是命题,也可以是含有变量的陈述句.②正确理解逻辑联结词“或”“且”“非”是解题的关键,有些命题并不一定包含“或”“且”“非”这些逻辑联结词,要结合命题的具体含义进行命题构成的判定.探究二:【解析】(1)∵p假q真,∴“p或q”为真,“p且q”为假,“p”为真.(2)∵p真q假,∴“p或q”为真,“p且q”为假,“p”为假.(3)∵p真q真,∴“p或q”为真,“p且q”为真,“p”为假.(4)∵p假q假,∴“p或q”为假,“p且q”为假,“p”为真.【小结】为了正确判断复合命题的真假,首先要确定复合命题的构成形式,然后指出其中简单命题的真假,再根据有关结论判断这个复合命题的真假.探究三:【解析】(1)正方形的四条边都不相等.(2)已知a,b∈N,若ab不能被5整除,则a,b中至少有一个不能被5整除.(3)若x2-x-2≠0,则x≠-1且x≠2.[问题]上述解法中逻辑词的否定词用得正确吗?[结论]不正确.上面错解的主要原因是不能正确理解“p”的含义,错用逻辑词的否定词.一般地,写出否定,往往需要对正面叙述的词语进行否定.一个命题的否定不仅要否定结论,还要否定逻辑联结词.于是,正确解答如下:(1)正方形的四条边不都相等;(2)已知a,b∈N,若ab能被5整除,则a,b都能被5整除;(3)若x2-x-2≠0,则x≠-1或x≠2.【小结】p不是命题p的否命题,而是命题p的否定形式.对命题“若p则q”来说,命题的否定是“若p则非q”;命题的否命题是“若非p则非q”.思维拓展应用应用一:(1)这个命题是“p”的形式,其中p: 方程x2+x+1=0有实数根.(2)这个命题是“p且q”的形式,其中p:他是运动员;q:他是教练.(3)这个命题是“p且q”的形式,其中p:这些文学作品艺术上有缺点,q:这些文学作品政治上有错误.应用二:(1)p或q:平行四边形的一组对边平行或相等(真命题).p且q:平行四边形的一组对边平行且相等(真命题).p:平行四边形的一组对边不平行(假命题).(2)p或q:2∈{1,3,5,7}或2∈{2,4,6,8},即2∈{1,2,3,4,5,6,7,8}(真命题).p且q:2∈{1,3,5,7}且2∈{2,4,6,8}(假命题).p:2∉{1,3,5,7}(真命题).(3)p或q:1∈{1,2}或{1}⫋{1,2}(真命题).p且q:1∈{1,2}且{1}⫋{1,2}(真命题).p:1∉{1,2}(假命题).应用三:(1)p的否定:若x2+y2=0,则x,y不全为零(假命题);p的否命题:若x2+y2≠0,则x,y不全为零(真命题).(2)p的否定:若x=3且y=5,则x+y≠8(假命题);p的否命题:若x≠3或y≠5,则x+y≠8(假命题).基础智能检测1.B显然p假q真,故“p或q”为真,“p且q”为假,“p”为真,“q”为假,故选B.2.A容易判断命题p:⌀⊆{0}是真命题,命题q:{1}∈{1,2}是假命题,所以p且q是假命题,p或q是真命题,p是假命题,故选A.3.若a≥b,则2a≥2b若a<b,则2a≥2b命题“若a<b,则2a<2b”的否命题为“若a≥b,则2a≥2b”,命题的否定为“若a<b,则2a≥2b”.4.解:(1)因为p为真,而<1.5,q为假,所以p或q为真,p且q为假.(2)因为方程x2-3x-1=0中两根之积为负,所以p为假.又q为真,所以p或q为真,p且q为假.(3)因为p为真,而1∉{x|1<x<4},所以{x|1≤x<2}⊈{x|1<x<4},即q为假,所以p或q为真,p 且q为假.全新视角拓展A“至少有一位学员没有降落在指定范围”表示甲没有降落在指定范围或者乙没有降落在指定范围或者甲乙都没有降落在指定范围.又命题p是“甲降落在指定范围”,可知命题p是“甲没有降落在指定范围”;同理,命题q是“乙没有降落在指定范围”,所以“至少有一位学员没有降落在指定范围”可表示为(p)或(q).故选A.。
高中数学第一章常用逻辑用语1.2基本逻辑联结词1.2.2“非”(否定)教案新人教B版选修1_1

1.2.2“非”(否定)预习导航1.命题p的否定⌝p(1)“非”命题的表示及读法:对命题p加以否定,就得到一个新的命题,记作“⌝p”,读作“非p”或“p的否定”.(2)含有“非”的命题的真假判定:思考1对一个命题p提示:对一个命题p进行否定,否定的是此命题的结论.2.存在性命题的否定提示:存在性命题的否定是全称命题,其真假性与存在性命题相反,只需判断出原存在性命题的真假即可作出判断.3.全称命题的否定思考提示:不唯一,如“所有的菱形都是平行四边形”,它的否定是“并不是所有的菱形都是平行四边形”,也可以是“有些菱形不是平行四边形”.思考4省略全称量词的全称命题如何进行否定?提示:有的全称命题省略了全称量词,否定时要特别注意.例如,q:实数的绝对值是正数.将⌝q写成:“实数的绝对值不是正数”就错了.原因是q是假命题,⌝q也是假命题,这与q,⌝q一个为真一个为假相矛盾.正确的否定应为:“存在一个实数的绝对值不是正数.”为了避免出错,可用真值表加以验证.精美句子1、善思则能“从无字句处读书”。
读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。
读大海,读出了它气势磅礴的豪情。
读石灰,读出了它粉身碎骨不变色的清白。
2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。
幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。
幸福是“零落成泥碾作尘,只有香如故”的圣洁。
幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。
幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。
幸福是“人生自古谁无死,留取丹心照汗青”的气节。
3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。
高中数学选修1-1优质学案:§1.3 简单的逻辑联结词

[学习目标] 1.了解联结词“且”“或”“非”的含义.2.会用联结词“且”“或”“非”联结或改写某些数学命题,并判断新命题的真假.3.通过学习,明白对条件的判定应该归结为判断命题的真假.知识点一且“p且q”就是用联结词“且”把命题p和命题q联结起来,得到的新命题,记作p∧q.知识点二或“p或q”就是用联结词“或”把命题p和命题q联结起来,得到的新命题,记作p∨q.知识点三非一般地,对一个命题p全盘否定,就得到一个新命题,记作綈p,读作“非p”或“p的否定”.知识点四含有逻辑联结词的命题的真假判断p q p∨q p∧q 綈p真真真真假真假真假假假真真假真假假假假真思考(1)逻辑联结词“或”与生活用语中的“或”的含义是否相同?(2)命题的否定与否命题有什么区别?[答案](1)生活用语中的“或”表示不兼有,而在数学中所研究的“或”则表示可兼有但不一定必须兼有.(2)命题的否定只否定命题的结论,而否命题既否定命题的条件,又否定命题的结论.题型一p∧q命题及p∨q命题例1分别写出下列命题构成的“p∧q”“p∨q”的形式,并判断它们的真假.(1)p:函数y=3x2是偶函数,q:函数y=3x2是增函数;(2)p:三角形的外角等于与它不相邻的两个内角的和,q:三角形的外角大于与它不相邻的任何一个内角;(3)p:3是无理数,q:3是实数;(4)p:方程x2+2x+1=0有两个相等的实数根,q:方程x2+2x+1=0两根的绝对值相等. 解(1)p∧q:函数y=3x2是偶函数且是增函数;∵p真,q假,∴p∧q为假.p∨q:函数y=3x2是偶函数或是增函数;∵p真,q假,∴p∨q为真.(2)p∧q:三角形的外角等于与它不相邻的两个内角的和且大于与它不相邻的任何一个内角;∵p真,q真,∴p∧q为真.p∨q:三角形的外角等于与它不相邻的两个内角的和或大于与它不相邻的任何一个内角;∵p真,q真,∴p∨q为真.(3)p∧q:3是无理数且是实数;∵p真,q真,∴p∧q为真.p∨q:3是无理数或是实数;∵p真,q真,∴p∨q为真.(4)p∧q:方程x2+2x+1=0有两个相等的实数根且两根的绝对值相等;∵p真,q真,∴p∧q为真.p∨q:方程x2+2x+1=0有两个相等的实数根或两根的绝对值相等;∵p真,q真,∴p∨q为真.反思与感悟(1)判断p∧q形式的命题的真假,首先判断命题p与命题q的真假,然后根据真值表“一假则假,全真则真”进行判断.(2)判断p∨q形式的命题的真假,首先判断命题p与命题q的真假,只要有一个为真,即可判定p∨q形式命题为真,而p与q均为假命题时,命题p∨q为假命题,可简记为:有真则真,全假为假.跟踪训练1指出下列命题的构成形式及构成它们的简单命题:(1)李明是男生且是高一学生.(2)方程2x2+1=0没有实数根.(3)12能被3或4整除.解(1)是“p且q”形式.其中p:李明是男生;q:李明是高一学生.(2)是“非p”形式.其中p:方程2x2+1=0有实根.(3)是“p或q”形式.其中p:12能被3整除;q:12能被4整除.题型二綈p命题例2写出下列命题的否定形式.(1)面积相等的三角形都是全等三角形;(2)若m2+n2=0,则实数m、n全为零;(3)若xy=0,则x=0或y=0.解(1)面积相等的三角形不都是全等三角形.(2)若m2+n2=0,则实数m、n不全为零.(3)若xy=0,则x≠0且y≠0.反思与感悟綈p是对命题p的全盘否定,对一些词语的正确否定是写綈p的关键,如“都”的否定是“不都”,“至多两个”的反面是“至少三个”、“p∧q”的否定是“(綈p)∨(綈q)”等.跟踪训练2写出下列命题的否定,并判断其真假.(1)p:y=sin x是周期函数;(2)p:3<2;(3)p:空集是集合A的子集;(4)p:5不是75的约数.解 (1) 綈p :y =sin x 不是周期函数.命题p 是真命题,綈p 是假命题; (2) 綈p :3≥2.命题p 是假命题,綈p 是真命题;(3) 綈p :空集不是集合A 的子集.命题p 是真命题,綈p 是假命题; (4) 綈p :5是75的约数.命题p 是假命题,綈p 是真命题.题型三 p ∨q 、p ∧q 、綈p 命题的综合应用例3 已知命题p :方程x 2+2ax +1=0有两个大于-1的实数根,命题q :关于x 的不等式ax 2-ax +1>0的解集为R ,若“p ∨q ”与“綈q ”同时为真命题,求实数a 的取值范围. 解 命题p :方程x 2+2ax +1=0有两个大于-1的实数根,等价于 ⎩⎪⎨⎪⎧Δ=4a 2-4≥0,x 1+x 2>-2,(x 1+1)(x 2+1)>0,⇔⎩⎪⎨⎪⎧a 2-1≥0,-2a >-22-2a >0,,解得a ≤-1.命题q :关于x 的不等式ax 2-ax +1>0的解集为R ,等价于a =0或⎩⎨⎧a >0,Δ<0.由于⎩⎨⎧a >0Δ<0⇔⎩⎪⎨⎪⎧a >0,a 2-4a <0,解得0<a <4,所以0≤a <4.因为“p ∨q ”与“綈q ”同时为真命题,即p 真且q 假,所以⎩⎪⎨⎪⎧a ≤-1,a <0或a ≥4,解得a ≤-1.故实数a 的取值范围是(-∞,-1].反思与感悟 由真值表可判断p ∨q 、p ∧q 、綈p 命题的真假,反之,由p ∨q ,p ∧q ,綈p 命题的真假也可判断p 、q 的真假情况.一般求满足p 假成立的参数范围,应先求p 真成立的参数的范围,再求其补集.跟踪训练3 已知命题p :方程x 2+ax +1=0有两个不等的实根;命题q :方程4x 2+2(a -4)x+1=0无实根,若“p 或q ”为真,“p 且q ”为假,求实数a 的取值范围. 解 ∵“p 或q ”为真,“p 且q ”为假,∴p 与q 一真一假, 由a 2-4>0得a >2或a <-2. 由4(a -4)2-4×4<0得2<a <6.①若p 真q 假,则有⎩⎪⎨⎪⎧a >2或a <-2,a ≤2或a ≥6,∴a <-2或a ≥6;②若p 假q 真,则有⎩⎪⎨⎪⎧-2≤a ≤2,2<a <6,通过分析可知不存在这样的a .综上,a <-2或a ≥6.分类讨论思想的应用例4 已知命题p :关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立,命题q :函数f (x )=(3-2a )x 是增函数.若p ∨q 为真,p ∧q 为假,求实数a 的取值范围.分析 首先求出p ,q 为真时a 的取值范围,然后利用命题的实际真假列不等式组求解. 解 设g (x )=x 2+2ax +4.因为关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立,所以函数g (x )的图象开口向上,且与x 轴没有交点,故Δ=4a 2-16<0,所以-2<a <2. 又因为函数f (x )=(3-2a )x 是增函数,所以3-2a >1,即a <1. 又因为p ∨q 为真,p ∧q 为假,所以p 和q 一真一假.若p 真q 假,则⎩⎪⎨⎪⎧-2<a <2,a ≥1,所以1≤a <2;若p 假q 真,则⎩⎪⎨⎪⎧a ≤-2或a ≥2,a <1,所以a ≤-2.综上所述,实数a 的取值范围是1≤a <2或a ≤-2.解后反思由p,q的真假,可以判断“p∨q”“p∧q”的真假;反之,由“p∨q”“p∧q”的真假,也能推断p,q的真假,如“p∧q”为假,则包括“p真q假”“p假q真”“p假q 假”三种情况.1.命题p:“x>0”是“x2>0”的必要不充分条件,命题q:△ABC中,“A>B”是“sin A>sin B”的充要条件,则()A.p真q假B.p∧q为真C.p∨q为假D.p假q真[答案] D[解析]命题p假,命题q真.2.给出下列命题:①2>1或1>3;②方程x2-2x-4=0的判别式大于或等于0;③25是6或5的倍数;④集合A∩B是A的子集,且是A∪B的子集.其中真命题的个数为()A.1B.2C.3D.4[答案] D[解析]①由于2>1是真命题,所以“2>1或1>3”是真命题;②由于方程x2-2x-4=0的Δ=4+16>0,所以“方程x2-2x-4=0的判别式大于或等于0”是真命题;③由于25是5的倍数,所以命题“25是6或5的倍数”是真命题;④由于A∩B⊆A,A∩B⊆A∪B,所以命题“集合A∩B是A的子集,且是A∪B的子集”是真命题.3.已知命题p1:函数y=2x-2-x在R上为增函数,p2:函数y=2x+2-x在R上为减函数.则在命题q1:p1∨p2,q2:p1∧p2,q3:(綈p1)∨p2和q4:p1∧(綈p2)中,为真命题的是() A.q1,q3 B.q2,q3C.q1,q4D.q2,q4[答案] C[解析]p1是真命题,则綈p1为假命题;p2是假命题,则綈p2为真命题;∴q1:p1∨p2是真命题,q2:p1∧p2是假命题,∴q3:(綈p1)∨p2为假命题,q4:p1∧(綈p2)为真命题.∴为真命题的是q1,q4.4.已知命题p:1∈{x|(x+2)(x-3)<0},命题q:∅={0},则下列判断正确的是()A.p假q真B.“p∨q”为真C.“p∧q”为真D.“綈p”为真[答案] B[解析]由(x+2)(x-3)<0得-2<x<3,∵1∈(-2,3),∴p真.∵∅≠{0},∴q假,∴“p∨q”为真.5.若p是真命题,q是假命题,则()A.p∧q是真命题B.p∨q是假命题C.綈p是真命题D.綈q是真命题[答案] D[解析]根据“且”“或”“非”命题的真假判定法则知D正确.1.正确理解逻辑联结词是解题的关键,日常用语中的“或”是两个中任选一个,不能都选,而逻辑联结词中的“或”是两个中至少选一个.2.判断含逻辑联结词的命题的真假的步骤:(1)逐一判断命题p,q的真假.(2)根据“且”“或”的含义判断“p∧q”,“p∨q”的真假.p∧q为真⇔p和q同时为真,p∨q为真⇔p和q中至少一个为真.3.若命题p为真,则“綈p”为假;若p为假,则“綈p”为真,类比集合知识,“綈p”就相当于集合p在全集U中的补集∁U p.因此(綈p)∧p为假,(綈p)∨p为真.4.注意区别命题的否定与否命题,命题的否定只否定结论,否命题既否定结论又否定条件.。
2019—2020年北师大版高中数学选修1-1《逻辑联结词“或”》同步练习及答案.docx

(新课标)2017-2018学年北师大版高中数学选修1-1逻辑联结词“或”同步练习一、选择题1.下列语句不是命题的有()①x2-3=0 ②与一条直线相交的两直线平行吗?③3+1=5 ④5x-3>6.A.①③④B.①②③C.①②④D.②③④2.下列命题为简单命题的是()A.5和10是20的约数B.正方形的对角线垂直平分C.6是无理数D.方程x2+x+2=0没有实数根3.已知下列三个命题:①方程x2-x+2=0的判别式小于或等于零;②矩形的对角线互相垂直且平分;③2是质数,其中真命题是()A.①和②B。
①和③C。
②和③D。
只有①4.如果命题“p或q”和命题“p且q”都为真,那么则有()A.p真q假B。
p假q真C.p真q真D。
p假q假5.一个整数的末位数字是2,是这个数能被2整除的()A .充分不必要条件 B.必要不充分条件C .充要条件 D.既不充分也不必要条件6.语句3≤x 或5>x 的否定是 ( )A .53<≥x x 或 B.53≤>x x 或 C .53<≥x x 且 D.53≤>x x 且7.设集合M ={x|x >2},P ={x|x <}3,那么“x ∈M 或x ∈P ”是“x ∈M ∩P ”的 ( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件8.已知全集U=R ,A ⊆U ,B ⊆U ,如果命题P :B A ⋃∈2,则命题非P 是 ( )A .A ∉2 B.)(2A C U ∈ C .)()(2BC A C U U ⋂∈ D.)()(2B C A C U U ⋃∈9.设∆ABC 的三边分别为a,b,c ,在命题“若a 2+b 22c ≠,则∆ABC 不是直角三角形”及其逆命题中有 ( )A .原命题真 B.逆命题真 C.两命题都真 D.两命题都假10.若命题p :{2}∈{2,3},q :{2}⊆{2,3}.则对复合命题的下述判断:①p 或q为真;②p 且q 为假;③非p 为真;④非q 为真;正确的是( )A .①② B.①②④ C.②③④ D.①②③11.对命题p :A ∩∅=∅,命题q :A ∪∅=A ,下列说法正确的是 ( )A .p 且q 为假B .p 或q 为假C .非p 为真D .非p 为假 12.下面命题中是真命题的为 ( )(1)“x+y=5”是“x 2-y 2-3x+7y=10”的充分条件;(2)“a-b<0”是“a 2-b 2<0”的充分条件;(3)“a-b<0”是“a 2-b 2<0”的必要条件;(4)“两个三角形全等”是“两边和夹角对应相等”的充要条件A .①② B.①③ C.②③ D.①④二、填空题1.命题“不等式x 2+x-6>0的解x<-3或x>2”的逆否命题是2.命题“a,b 都是奇数,则a+b 是偶数”的逆否命题是。
【优教通,同步备课】高中数学(北师大版)选修1-1教案:第1章 拓展资料:用联系的思想学习逻辑联结词

用联系的思想学习逻辑联结词逻辑联结词“或、且、非”与集合的关系有着密切的关系,联系集合中的“并、交、补”集的概念对学习逻辑联结词很有帮助。
一、“或”与“并集”集合}A∈B∈=或中的“或”,它是指“AA|x{Bxxx∈”其中至少x∈”、“B一个是成立的:即Ax∈,且x∈,且Bx∈;也可以Ax∉,且Bx∉;也可以Ax∈.逻辑联结词中的“或”的含义与“并集”中的“或”的含义是一致的,它们都不B同于生活用语中的“或”的含义,生活用语中的“或”表示“不兼有”,而我们在数学中所研究的“或”则表示“可兼有但不必须兼有”.由“或”联结两个命题p和q构成的复合命题“p或q”,在“p真q假”、“p假q真”、“p真q真”时,都真.例1 判断下列例题的真假(1)04≥4≥(2)5解:(1)命题“04≥”是由命题0=qp用“或”联结后构成的新命题,4:>,04:即qp∨是真命题;p∨。
因为命题q是真命题,所以q(2)命题“44≥”是由命题5p用“或”联结后构成的新命题,即4:>=q4:,5p∨是假命题;qp∨。
因为命题p是假命题,命题q也是假命题,所以q二、“且”与“交集”集合}A∈∈B中的“且”,它是指“A=且{B|xxAxx∈”都要满足的x∈”、“B意思:即x既属于集合A,同时又属于集合B.用“且”联结两个命题p与q构成的复合命题“p且q”,当且仅当“p真q真”时,“p且q”真.例2写出由下列各组命题构成的“p且q”形式的复合命题,并判断其真假:(1)p:3是9的约数,q:3是18的约数;(2)p:矩形的对角线相等,q:矩形的对角线互相垂直.解(1)3是9的约数且是18的约数.此为真命题;(2)矩形的对角线相等且互相垂直.此为假命题;点评判断“p且q”的真值时,可简称为“有假则假”.三、“非”与“补集”“非”有否定的意思,一个命题p 经过使用逻辑联结词“非”而构成一个复合命题“非p ”,当p 真时,则“非p ”假,当p 假时,则“非p 真.若将命题p 对应集合p ,则命题非p 就对应着集合p 在全集U 中的补集U P .例3 写出下列各命题的否定,并判断其真假.(1)x y p sin :=是奇函数;(2)3)3(:2=-q解:(1)x y p sin : =⌝不是奇函数,假命题.(2)3)3(: 2=/-⌝q ,即3)3(: 2>-⌝q 或3)3(2<-,假命题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5课时简单的逻辑联结词1.理解逻辑联结词“且”“或”“非”的含义.2.会判断含“且”“或”“非”的命题的真假及相关应用.歌德是18世纪德国的一位著名文艺大师,一天,他与一位文艺批评家“狭路相逢”.这位批评家生性古怪,遇到歌德走来,不仅没有相让,反而卖弄聪明,一边高傲地往前走,一边大声说道:“我从来不给傻子让路!”面对如此尴尬局面,只见歌德笑容可掬,谦恭地闪在一旁,一边有礼貌地回答道:“呵呵,我可恰恰相反.”问题1: 歌德表达的意思是,对一个命题p的结论的否定 ,就得到一个新命题,记作,读作“非p”,即是“p的否定”.问题2: 常见的逻辑联结词有“或”“且”“非”.不含逻辑联结词的命题叫,含有逻辑联结词的命题叫.(1)用联结词“或”把命题p和命题q联结起来,就得到一个新命题“p或q”.(2)用联结词“且”把命题p和命题q联结起来,就得到一个新命题“p且q”.问题3: 命题的否定与否命题的区别(1)命题的否定是否定命题的,而命题的否命题是对原命题的和同时进行否定.(2)命题的否定的真假与原命题的真假总是的,即一真一假;而否命题的真假与原命题的真假无必然的联系.问题4: (1)复合命题是由简单命题与逻辑联结词构成的,简单命题的真假决定了复合命题的真假,(2)关键词否定词等于(=) 不等于(≠)大于(>) 不大于(≤)小于(<) 不小于(≥)是不是能不能都是不都是没有至少有一个至多有一个至少有两个至少有一个一个都没有至少有n个至多有n-1个至多有n个至少有n+1个P且Q P或QP或Q P且Q1.命题:“方程x2-1=0的解是x=±1”,其使用逻辑联结词的情况是().A.使用了逻辑联结词“且”B.使用了逻辑联结词“或”C.使用了逻辑联结词“非”D.没有使用逻辑联结词2.有下列命题:①2是偶数,又是素数;②10的倍数一定是5的倍数;③梯形不是矩形;④明天早餐吃面包或鸡蛋.其中可使用逻辑联结词的命题有( ).A.1个B.2个C.3个D.4个3.命题p:方向相同的两个向量共线,q:方向相反的两个向量共线,则命题“p或q”为.4.分别写出由下列各组命题构成的“p且q”“p或q”“p”形式的命题:(1)p:π是无理数,q:e是有理数;(2)p:三角形的外角等于与它不相邻的两个内角的和,q:三角形的外角大于与它不相邻的任一个内角.含有逻辑联结词命题的构成指出下列命题的形式及构成它的简单命题.(1)48是16与12的倍数.(2)方程x2+x+3=0没有实数根.(3)属于集合Q或属于集合R.判断含逻辑联结词命题的真假分别指出由下列各组命题构成的“p或q”“p且q”“p”形式的命题的真假.(1)p:3>3,q:3=3;(2)p:⌀⫋{0},q:0∈⌀;(3)p:A⊆A,q:A∩A=A;(4)p:函数x2+3x+4=0的图像与x轴有公共点,q:方程x2+3x-4=0没有实根.命题的否定写出下列命题的否定:(1)正方形的四条边都相等;(2)已知a,b∈N,若ab能被5整除,则a,b中至少有一个不能被5整除;(3)若x2-x-2≠0,则x=-1且x=2.指出下列命题的形式及构成它的简单命题.(1)方程x2+x+1=0没有实数根;(2)他是运动员,又是教练;(3)这些文学作品不仅艺术上有缺点,而且政治上有错误.已知命题p、q,试写出p或q、p且q、p形式的命题并判断真假.(1)p:平行四边形的一组对边平行,q:平行四边形的一组对边相等;(2)p:2∈{1,3,5,7},q:2∈{2,4,6,8};(3)p:1∈{1,2}, q:{1}⫋{1,2}.写出下列命题的否定和否命题,并判定其真假.(1)p:若x2+y2=0,则x,y全为零;(2)p:若x=3且y=5,则x+y=8.1.已知命题p:2+2=5,命题q:3>2,则下列判断正确的是( ).A.“p或q”为假,“q”为假B.“p或q”为真,“q”为假C.“p且q”为假,“p”为假D.“p且q”为真,“p或q”为假2.已知p:⌀⊆{0},q:{1}∈{1,2}.由它们构成的新命题“p且q”“p或q”“p”中,真命题有().A.1个B.2个C.3个D.0个3.命题“若a<b,则2a<2b”的否命题为,命题的否定为.4.分别指出由下列各组命题构成的“p或q”“p且q”形式的复合命题的真假.(1)p:在集合{x|0<x<2}中,q:在集合{x|x>1.5}中.(2)p:方程x2-3x-1=0有两正根,q:方程x2-3=0有两实数根.(3)p:集合{x|1<x<2}是集合{x|x>0}的子集,q:集合{x|1≤x<2}是集合{x|1<x<4}的子集.(2013年·湖北卷)在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为().A.(p)或(q)B.p或(q)C.(p)且(q)D.p或q考题变式(我来改编):第5课时简单的逻辑联结词知识体系梳理问题1:我会给傻子让路p问题2:简单命题复合命题问题3:(1)结论条件结论(2)相对立问题4:(1)真真假假假假基础学习交流1.B“x=±1”可以写成“x=1或x=-1”,故选B.2.C①中可用“且”,②中没,③中可用“ ,④中可用“或”,故选C.3.方向相同或相反的两个向量共线方向相同的两个向量共线或方向相反的两个向量共线,即“方向相同或相反的两个向量共线”.4.解:(1)“p且q”:π是无理数且e是有理数.“p或q”:π是无理数或e是有理数.“p”:π不是无理数.(2)“p且q”:三角形的外角等于与它不相邻的两个内角的和且大于与它不相邻的任一个内角.“p或q”:三角形的外角等于与它不相邻的两个内角的和或大于与它不相邻的任一个内角.“p”:三角形的外角不等于与它不相邻的两个内角的和.重点难点探究探究一:【解析】(1)这个命题是“p且q”的形式,其中p:48是16的倍数;q:48是12的倍数.(2)这个命题是“p”的形式,其中p:方程x2+x+3=0有实数根.(3)这个命题是“p或q”的形式,其中p: ∈Q,q:∈R.【小结】①在“p或q”“p且q”“p”中,p,q都是命题,但在“若p,则q”中,p,q可以是命题,也可以是含有变量的陈述句.②正确理解逻辑联结词“或”“且”“非”是解题的关键,有些命题并不一定包含“或”“且”“非”这些逻辑联结词,要结合命题的具体含义进行命题构成的判定.探究二:【解析】(1)∵p假q真,∴“p或q”为真,“p且q”为假,“p”为真.(2)∵p真q假,∴“p或q”为真,“p且q”为假,“p”为假.(3)∵p真q真,∴“p或q”为真,“p且q”为真,“p”为假.(4)∵p假q假,∴“p或q”为假,“p且q”为假,“p”为真.【小结】为了正确判断复合命题的真假,首先要确定复合命题的构成形式,然后指出其中简单命题的真假,再根据有关结论判断这个复合命题的真假.探究三:【解析】(1)正方形的四条边都不相等.(2)已知a,b∈N,若ab不能被5整除,则a,b中至少有一个不能被5整除.(3)若x2-x-2≠0,则x≠-1且x≠2.[问题]上述解法中逻辑词的否定词用得正确吗?[结论]不正确.上面错解的主要原因是不能正确理解“p”的含义,错用逻辑词的否定词.一般地,写出否定,往往需要对正面叙述的词语进行否定.一个命题的否定不仅要否定结论,还要否定逻辑联结词.于是,正确解答如下:(1)正方形的四条边不都相等;(2)已知a,b∈N,若ab能被5整除,则a,b都能被5整除;(3)若x2-x-2≠0,则x≠-1或x≠2.【小结】p不是命题p的否命题,而是命题p的否定形式.对命题“若p则q”来说,命题的否定是“若p则非q”;命题的否命题是“若非p则非q”.思维拓展应用应用一:(1)这个命题是“p”的形式,其中p: 方程x2+x+1=0有实数根.(2)这个命题是“p且q”的形式,其中p:他是运动员;q:他是教练.(3)这个命题是“p且q”的形式,其中p:这些文学作品艺术上有缺点,q:这些文学作品政治上有错误.应用二:(1)p或q:平行四边形的一组对边平行或相等(真命题).p且q:平行四边形的一组对边平行且相等(真命题).p:平行四边形的一组对边不平行(假命题).(2)p或q:2∈{1,3,5,7}或2∈{2,4,6,8},即2∈{1,2,3,4,5,6,7,8}(真命题).p且q:2∈{1,3,5,7}且2∈{2,4,6,8}(假命题).p:2∉{1,3,5,7}(真命题).(3)p或q:1∈{1,2}或{1}⫋{1,2}(真命题).p且q:1∈{1,2}且{1}⫋{1,2}(真命题).p:1∉{1,2}(假命题).应用三:(1)p的否定:若x2+y2=0,则x,y不全为零(假命题);p的否命题:若x2+y2≠0,则x,y不全为零(真命题).(2)p的否定:若x=3且y=5,则x+y≠8(假命题);p的否命题:若x≠3或y≠5,则x+y≠8(假命题).基础智能检测1.B显然p假q真,故“p或q”为真,“p且q”为假,“p”为真,“q”为假,故选B.2.A容易判断命题p:⌀⊆{0}是真命题,命题q:{1}∈{1,2}是假命题,所以p且q是假命题,p或q 是真命题,p是假命题,故选A.3.若a≥b,则2a≥2b若a<b,则2a≥2b命题“若a<b,则2a<2b”的否命题为“若a≥b,则2a≥2b”,命题的否定为“若a<b,则2a≥2b”.4.解:(1)因为p为真,而<1.5,q为假,所以p或q为真,p且q为假.(2)因为方程x2-3x-1=0中两根之积为负,所以p为假.又q为真,所以p或q为真,p且q为假.(3)因为p为真,而1∉{x|1<x<4},所以{x|1≤x<2}⊈{x|1<x<4},即q为假,所以p或q为真,p且q 为假.全新视角拓展A“至少有一位学员没有降落在指定范围”表示甲没有降落在指定范围或者乙没有降落在指定范围或者甲乙都没有降落在指定范围.又命题p是“甲降落在指定范围”,可知命题p是“甲没有降落在指定范围”;同理,命题q是“乙没有降落在指定范围”,所以“至少有一位学员没有降落在指定范围”可表示为(p)或(q).故选A.。