初中数学圆形专题训练50题含参考答案
浙教版初中数学七年级下册专题50题含参考答案

浙教版初中数学七年级下册专题50题含答案一、单选题1.12-的值是( ) A .2-B .2C .12-D .122.计算4322⨯的结果是( ) A .72B .82C .122D .1323.如图,不一定能推出a∥b 的条件是( )A .∥1=∥3B .∥2=∥4C .∥1=∥4D .∥2+∥3=180º4.下列运算正确的是( ) A .2333a a a += B .()3252?2a a a -=C .623422a a a ÷=D .()22238a a a --=5.如图:有a 、b 、c 三户家用电路接入电表,相邻电路的接点距离相等,相邻电表的距离相等,且相邻电路的接点距离等于相邻电表接入点的距离,电线对应平行排列,则三户所用电线( )A .a 户最长B .b 户最长C .c 户最长D .三户一样长6.一个圆柱形容器的容积为V 3m ,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水,向容器中注满水的全过程共用时间t 分钟.设小水管的注水速度为x 立方米/分钟,则下列方程正确的是( )A .2V V t x x+= B .4V V t x x += C .11224V Vt x x⋅+⋅= D .24V V t x x+= 7.已知35a b =,则a b a b -+的值是( )A .﹣23B .﹣25C .﹣14D .298.下列运算正确的是( ) A .2532a a a -= B .2324236ab a b a b ⋅= C .()3339327ab a b -=-D .222(2)42a b a ab b -=-+9.2022年我市有5800名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是( ) A .5800名考生是总体 B .1000名考生是总体的一个样本 C .1000名考生是样本容量D .每位考生的数学成绩是个体10.下列各式能用平方差公式计算的是( ) A .(﹣12a +1)(﹣12a ﹣1) B .(2x +y )(2y ﹣x ) C .(a +b )(a ﹣2b )D .(2x ﹣1)(﹣2x +1)11.下列调查适合抽样调查的是( ) A .对某班全体学生出生日期的调查 B .上飞机前对乘客进行的安检C .审核将发表的一篇文稿中的错别字D .对全市中小学生的睡眠情况进行调查12.下列各组值中,哪组是二元一次方程2x ﹣y=5的解( ) A .26x y =-⎧⎨=⎩B .43x y =⎧⎨=⎩C .34x y =⎧⎨=⎩D .62x y =⎧⎨=⎩13.若多项式2(5)2x a x ++-中不含x 的一次项,则a 的值为( ) A .0B .5C .5-D .5或5-14.对于两个非零实数a 、b ,规定11a b b a⊕=-,若()2211x ⊕+=,则x 的值为( ) A .56B .54C .32D .16-15.观察图形,用两种不同的方法计算大长方形面积,我们可以验证等式( )A .(a +b )(a +2b )=a2+3ab +2b2B .(a +b )(2a +b )=2a2+3ab +b2C .(a +b )(a +2b )=2a2+3ab +b2D .(a +b (2a +b )=a2+3ab +2b216.如图,由图形的面积关系能够直观说明的代数恒等式是( )A .22()()a b a b a b -=-+B .222()2a b a ab b -=-+C .224()()ab a b a b =+--D .222()2a b a ab b +=++17.下列计算正确的是( ) A .235a a a += B .844a a a ÷= C .222(2)4ab a b -=-D .222()a b a b +=+18.如图是某班全体学生外出时选择乘车、步行、骑车人数的条形统计图和扇形统计图(两图都不完整),则下列结论中正确的是( )A .步行人数为30人B .骑车人数占总人数的10%C .该班总人数为50人D .乘车人数是骑车人数的40%19.已知m ﹣1m 1m+m 的值为( )A.B C . D .1120.某瓶中装有1分,2分,5分三种硬币,15枚硬币共3角5分,则有多少种装法( ) A .1.B .2.C .3.D .4.二、填空题 21.若14-x 在实数范围内有意义,则x 的取值范围是________. 22.分解因式:my 2﹣9m =_____.23.某校共有3000名学生,为了了解学生的视力情况,抽取了100名学生进行视力检查,在这个问题中,样本容量是_____. 24.比较大小:4442____333325.关于x 、y 的方程组354522x y ax by -=⎧⎨+=-⎩与2348x y ax by +=-⎧⎨-=⎩有相同的解,则()ba -=____26.分解因式:224x y xy +=______.27.一个不透明的盒子中有若干个白球和5个黑球,从中摸出一球记下颜色后放回,重复摸球100次,其中摸到黑球的次数为25次,盒中有白球约______个. 28.分解因式:32a b b -=_______________. 29.若244(2)()x x x x n ++=++,则n =__________ 30.分解因式:2x x -=_________.31.如图,AB //CD ,∥2=135°,则∥1的度数是 ___.32.如图, 已知12180∠+∠=︒,375∠=︒,则4∠=__________.33.因式分解:2412x x +-=______.34.小玲想借助学过的几何图形设计图案,首先她将如图1的小长方形和如图2的小正方形组合成如图3的大正方形图案,已知小长方形的长为()cm a ,宽为()cm b ,则图2的小正方形的边长可用关于a 和b 的代数式表示为______;小玲随后用3个如图3的完全相同的图案和8个如图1的小长方形,组合成如图4的大长方形图案,则图4中阴影部分面积与整个图形的面积之比为______.35.分式方程1233x x x-=---解得______. 36.因式分解:516a a -= ____37.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB ,CD .若CD ∥BE ,∥1=28°,则∥2的度数是______.38.某个数的平方根是2a b +和44a --__________. 39.如图,O 是正六边形ABCDEF 的中心,下列图形:∥OCD ,∥ODE ,∥OEF ,∥OAF ,∥OAB ,其中可由∥OBC 平移得到的有_________个.三、解答题40.因式分解:2(2)(2)m a a -+-41.阅读下列推理过程,在括号中填写理由.已知:如图,点D 、E 分别是线段AB 、BC 上的点,AE 平分BAC ∠,BED C ∠=∠,//DF AE ,交BC 于点F .求证:DF 平分BDE ∠. 证明:AE 平分BAC ∠(已知)12∴∠=∠( )BED C ∠=∠(已知) //AC DE ∴( )13∠∠∴=( ) 23∴∠=∠(等量代换) //DF AE ( )25∴∠=∠( )3=4∠∠( )45∴∠=∠( ) DF ∴平分BDE ∠( )42.解方程组(1)2123211x y x y +=⎧⎨-=⎩①②(2)24230x y x y -=⎧⎨+-=⎩①②43.某校随机抽取部分学生,就“学习习惯”进行调查,将“对自己做错的题目进行整理、分析、改正”(选项为:很少、有时、常常、总是)的调查数据进行了整理,绘制成部分统计图如下:请根据图中信息,解答下列问题:()1该调查的样本容量为______,a =______%,b =______%.“很少”对应扇形的圆心角为______;()2请补全条形统计图;()3若该校共有3500名学生,请你估计其中“总是”对错题进行整理、分析、改正的学生有多少名?44.先化简,再求值:()2332111x x x x ⎡⎤--÷⎢⎥---⎢⎥⎣⎦,其中x =-1. 45.先化简,再求值2211xy x y x y x y ⎛⎫+÷ ⎪-+-⎝⎭,其中2x =,=2y -. 46.为提高居民的节水意识,向阳小区开展了“建设节水型社区,保障用水安全”为主题的节水宣传活动.小莹同学积极参与小区的宣传活动,并对小区300户家庭用水情况进行了抽样调查.她在300户家庭中随机调查了50户家庭5月份的用水量,结果如图所示.把图中每组用水量的值用该组的中间值(如06~的中间值为3)来代替,估计该小区5月份的用水量.47.仔细阅读下面例题,并解答问题:例题:已知二次三项式24x x m -+有一个因式为3x +,求另一个因式以及m 的值. 解:设另一个因式为x n +, 由题意得24(3)()x x m x x n -+=++,即224(3)3x x m x n x n -+=+++,则有343n n m +=-⎧⎨=⎩,解得217m n =-⎧⎨=-⎩,所以另一个因式为7x -,m 的值是21-. 问题:请仿照上述方法解答下面问题,(1)若2(1)(3)x bx c x x ++=-+,则b =__________,c =__________;(2)已知二次三项式225x x k ++有一个因式为23x -,求另一个因式以及k 的值.48.计算:(1)212sin 302-; (2)(x ―2)2―(x +3)(x ―1).49.已知多项式x 2-mx -n 与x -2的乘积中不含x 2项和x 项,求m ,n 的值.参考答案:1.D【分析】根据负整数指数幂的法则计算即可.【详解】解:1,2-=12故选D.【点睛】本题考查了负整数指数幂,掌握运算法则才能正确计算.2.A【分析】根据同底数幂的乘法运算进行计算即可.【详解】解:344732==⨯2+22故选A【点睛】本题考查了同底数幂的乘法,掌握同底数幂的乘法是解题的关键.3.C【详解】解:A、∥∥1和∥3为同位角,∥1=∥3,∥a∥b;B、∥∥2和∥4为内错角,∥2=∥4,∥a∥b;C、∥∥1=∥4,∥3+∥4=180°,∥∥3+∥1=180°,不符合同位角相等,两直线平行的条件;D、∥∥2和∥3为同位角,∥2+∥3=180°,∥a∥b.故选C.4.D【详解】解:A、不是同类项,无法进行加法计算,计算错误;B、原式=5-,计算错误;2aC、462a a a÷=,计算错误;422D、原式=222-=,计算正确.98a a a故选D.5.D【分析】可理解为将最左边一组电线向右、向上平移所得,由平移的性质即可得出结论.【详解】解:∥a、b、c三户家用电路接入电表,相邻电路的电线等距排列,∥将a向右、向上平移即可得到b、c,∥图形的平移是全等的,即不改变图形大小和形状,∥三户一样长.故选:D.【点睛】本题考查的是生活中的平移现象,熟知图形平移的性质是解答此题的关键. 6.C【分析】根据题意先求出注入前一半容积水量所需的时间为12Vx ⋅,再求出后一半容积注水的时间为124Vx⋅,故可列出方程.【详解】根据题意得出前一半容积水量所需的时间为12Vx ⋅,后一半容积注水的时间为124V x⋅, 即可列出方程为11224V Vt x x⋅+⋅= , 故选C.【点睛】此题主要考查分式方程的应用,解题的关键是找到等量关系进行列方程. 7.C 【分析】由35a b =,得35a b =,代入a b a b -+,即可得到答案.【详解】解:∥35a b =, ∥35a b =,∥315345b ba b a b b b --==-++, 故选择:C.【点睛】本题考查了分式化简求值,解题的关键是掌握化简的方法,正确的进行化简. 8.C【分析】分别根据合并同类项的法则、单项式乘以单项式的法则、积的乘方运算法则、完全平方公式计算各项,进而可得答案.【详解】解:A 、25a 与3a -不是同类项,不能合并,所以本选项运算错误,不符合题意; B 、2342432366ab a b a b a b ≠⋅=,所以本选项运算错误,不符合题意; C 、()3339327ab a b -=-,所以本选项运算正确,符合题意;D 、22222(2)4442a b a ab b a ab b -=-+≠-+,所以本选项运算错误,不符合题意. 故选:C .【点睛】本题考查了合并同类项的法则、单项式乘以单项式的法则、积的乘方运算法则和完全平方公式等知识,属于基础题型,熟练掌握基本知识是解题关键.9.D【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:A .5800名考生的数学成绩是总体,故此选项不合题意;B .1000名考生的数学成绩是总体的一个样本,故此选项不合题意;C .1000是样本容量,故此选项不合题意;D .每位考生的数学成绩是个体,说法正确,故此选项符合题意;故选:D .【点睛】本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.10.A【分析】运用平方差公式()()22a b a b a b +-=-时,关键要找两数的和与两数的差,字母可以代表数或代数式.【详解】解:A. (﹣12a +1)(﹣12a ﹣1)符合平方差公式,故本选项符合题意;B. (2x +y )(2y ﹣x )不符合平方差公式,故本选项不符合题意;C. (a +b )(a ﹣2b )不符合平方差公式,故本选项不符合题意;D. ()()()()()22121212121x x x x x --+=---=--中符合完全平方公式,不能用平方差公式计算,故本选项不符合题意;故选A【点睛】考查了平方差公式,运用平方差公式计算时,关键要找两数的和与两数的差,字母可以代表数或代数式.11.D【分析】普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:A.对某班全体学生出生日期的调查,应用全面调查方式,故此选项不合题意;B.上飞机前对乘客进行的安检,应用全面调查方式,故此选项不合题意;C.审核将发表的一篇文稿中的错别字,应用全面调查方式,故此选项不合题意;D.对全市中小学生的睡眠情况进行调查,适合选择抽样调查,故此选项符合题意.故选:D.【点睛】本题考查了抽样调查和全面调查,解题的关键是掌握由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.12.B【分析】把各项中x与y的值代入方程检验即可.【详解】A、把26xy=-⎧⎨=⎩代入方程得:左边4610=--=-,右边=5.∥左边≠右边,∥不是方程的解;B、把43xy=⎧⎨=⎩代入方程得:左边835=-=,右边=5.∥左边=右边,∥是方程的解;C、把34xy=⎧⎨=⎩代入方程得:左边642=-=,右边=5.∥左边≠右边,∥不是方程的解;D、把62xy=⎧⎨=⎩代入方程得:左边12210=-=,右边=5.∥左边≠右边,∥不是方程的解.故选:B.【点睛】此题考查了解二元一次方程的解,熟练掌握运算法则及理解方程的解即为能使方程左右两边相等的未知数的值是解本题的关键.13.C【分析】根据不含项的系数为0解答.【详解】解:∥多项式2(5)2x a x ++-中不含x 的一次项,∥5+a =0,解得a =-5,故选:C .【点睛】此题考查多项式不含项的问题,多项式中所不含的项应是合并同类项后该项的系数为零,掌握法则是解题的关键.14.D【分析】根据题中的新定义化简已知方程,求出解即可. 【详解】解:根据题中的新定义化简得:111212x +-=, 去分母得:2-2x -1=4x +2,解得:x =16-, 经检验x =16-是分式方程的解, 则x 的值为16-, 故选:D .【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.解题的关键是根据新定义的运算法则列出方程.15.A【分析】根据图形,大长方形面积等于三个小正方形面积加上三个小长方形的面积和,列出等式即可.【详解】解:∥长方形的面积=(a +b )(a +2b )长方形的面积=a 2+ab +ab +ab +b 2+b 2= a2+3ab +2b2,∥(a +b )(a +2b )= a 2+3ab +2b 2故选:A .【点睛】本题考查多项式乘以多项式的几何意义,通过几何图形之间的数量关系对多项式乘以多项式做出几何解释.16.B【分析】利用面积公式及割补法分别求出图中正方形∥的面积,即可获得答案.【详解】解:如下图,图中正方形∥,其边长为()a b -,故其面积可表示为:21()S a b =-,利用割补法,正方形∥的面积也可计算如下:1234S S S S S =---正方形长方形长方形大正方形2222()()a ab b ab b b =-----222a ab b =-+,即有222()2a b a ab b -=-+.故选:B .【点睛】本题主要考查了完全平方公式与几何图形,理解并掌握完全平方公式是解题关键.17.B【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、积的乘方运算法则分别化简得出答案.【详解】解:A 、23a a +,无法计算,故此选项错误;B 、844a a a ÷=,故此选项正确;C 、22224ab a b (﹣)=,故此选项错误;D 、2222a b a ab b +++()=,故此选项错误;故选B .【点睛】考查了合并同类项以及同底数幂的乘除运算、积的乘方运算,正确掌握相关运算法则是解题关键.18.C 【分析】根据乘车的人数和所占的百分比求出总人数,用总人数乘以步行所占的百分比求出步行的人数,用骑车的人数除以总人数求出骑车人数占总人数的百分比,用乘车的人数除以骑车人数,求出乘车人数是骑车人数的倍数.【详解】A 、步行的人数有:2550%×30%=15人,故本选项错误; B 、骑车人数占总人数10÷2550%=20%,故本选项错误; C 、该班总人数为2550%=50人,故本选项正确; D 、乘车人数是骑车人数的2510=2.5倍,故本选项错误; 故选C .【点睛】本题考查了频数(率)分布直方图和扇形统计图,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.19.A【分析】根据完全平方公式即可得到结果.【详解】1m-=m 21m-=7m ⎛⎫∴ ⎪⎝⎭, 221m -2+=7m ∴, 221m +=9m ∴, 22211m+=m +2+=11m m ⎛⎫∴ ⎪⎝⎭, 1m+m∴= 故选A.【点睛】本题主要考查完全平方公式,熟悉掌握公式是关键.20.C【详解】解:设1分的硬币有x 枚,2分的硬币有y 枚,则5分的硬币有(15-x-y)枚, 可得方程x+2y+5(15-x-y)=35,整理得4x+3y=40,即x=10-34y , 因为x ,y 都是正整数,所以y=4或8或12,所以有3种装法,故选C.21.x≠4【分析】分式有意义的条件是分母不等于零,据此可得x 的取值范围.【详解】当分母40x -≠,即4x ≠时,分式14x -在实数范围内有意义, 故答案为:4x ≠.【点睛】考查了分式有意义的条件,注意:分式有意义⇔分母不为零.22.(3)(3)m y y +-【分析】首先提取公因式m ,进而利用平方差公式进行分解即可.【详解】my 2﹣9m =m (y 2﹣9)=m (y +3)(y ﹣3).故答案为:m (y +3)(y ﹣3)【点睛】此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.23.100【分析】利用样本容量定义可得答案.【详解】解:某校共有3000名学生,为了了解学生的视力情况,抽取了100名学生进行视力检查,在这个问题中,样本容量是100,故答案为:100.【点睛】此题主要考查了样本容量,关键是掌握样本容量只是个数字,没有单位. 24.<【分析】把它们化为指数相同的幂,再比较大小即可.【详解】解:∥2444=(24)111=16111,3333=(33)111=27111,而16111<27111,∥2444<3333,故答案为:<.【点睛】本题主要考查了幂的乘方以及有理数大小比较,熟记幂的运算法则是解答本题的关键.25.-8【分析】先联立仅含有字母,x y 的方程,求出方程组的解,将方程组的解代入含有字母,a b的方程组中求解即可.【详解】解:由题意联立方程组得:35,234x y x y -=⎧⎨+=-⎩①② ∥3⨯+∥得:1111x =,即1x =,把1x =代入∥得:=2y -,将x ,y 值代入45228ax by ax by +=-⎧⎨-=⎩解得:23a b =⎧⎨=⎩, 则3()(2)8b a -=-=-故答案为8-.【点睛】本题考查了解二元一次方程组,乘方运算,正确的解方程组是解题的关键. 26.()22xy x +【分析】用提公因式法分解因式即可.【详解】解:()22422x y xy xy x +=+.故答案为:()22xy x +.【点睛】本题主要考查了因式分解,解题的关键是找出公因式2xy .27.15【分析】可根据“黑球数量=黑球所占比例⨯黑白球总数”来列等量关系式,其中“黑白球总数=黑球个数+白球个数”,“黑球所占比例⨯总共摸球的次数=随机摸到的黑球次数”.【详解】解:设盒中原有白球有x 个,根据题意得:()2555100x ⨯+=⨯, 解得:x =15,答:盒中原有白球约有15个.故答案为:15.【点睛】本题主要考查用样本估计总体,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.28.b (a+b )(a -b )【详解】试题分析:首先进行提取公因式,然后利用平方差公式进行因式分解.原式=b (22a b -)=b (a+b )(a -b ).考点:因式分解.29.2【分析】等号的左边符合完全平方公式的形式,所以可以利用完全平方公式解题.【详解】2244(2)(2)(2)x x x x x ++=+=++所以2n =【点睛】本题主要考查完全平方公式222()2a b a ab b ±=±+ ,熟练掌握完全平方公式并灵活应用是解题的关键.30.()1x x -【分析】根据提取公因式的方法进行因式分解即可.【详解】()21x x x x -=-故答案为:()1x x -.【点睛】本题考查了因式分解的问题,掌握因式分解的方法是解题的关键.31.45°【分析】根据根据对顶角相等得到∥3=135°,再根据平行线的性质,同旁内角互补即可求解.【详解】解:如图,∥3=∥2=135°∥AB //CD ,∥3=135°,∥∥1+∥3=180°;又∥∥1=180°−∥3=180°−135°=45°.故答案为:45°【点睛】能够明确各个角之间的位置关系.熟练运用平行线的性质以及对顶角相等的性质.32.105°【分析】根据平行线的判定得出a∥b ,根据平行线的性质得出∥5=∥3=75°,再求出∥4即可.【详解】解:∥∥1+∥2=180°,∥a∥b ,∥∥3=∥5,∥∥3=75°,∥∥5=75°,∥∥4=180°−∥5=105°,故答案为:105°.【点睛】本题考查了平行线的性质和判定,能灵活运用平行线的判定和性质定理进行推理是解此题的关键.33.()()26x x -+【分析】直接用()()()2x a b x ab x a x b +++=++分解即可.【详解】22412(26)(2)6(2)(6)x x x x x x +-=+-++-⨯=-+【点睛】本题考查了因式分解-十字相乘法,关键是确定两个合适的数:把常数项分解成两个数的积,其和恰好等于一次项系数.34. a −b 16【分析】根据图形所表示的长度,列代数式即可;根据图形列出阴影部分与整个矩形的面积,然后求比值即可.【详解】解:根据题意小正方形的边长为:a −b ;∥图3中阴影部分的面积为:()2a b -,小长方形的长为a ,宽为b ,∥图4中阴影部分的面积为:()23a b -,整个图形的面积为:4a (a +3b ),∥图4中阴影部分面积与整个图形的面积之比为:()()2343a b a a b -+, 又由图4得:3a +3b =4a ,∥a =3b ,∥()()()()2222333121434333726a b b b b a a b b b b b --===+⨯+, 故答案为:a −b ;16. 【点睛】本题考查了列代数式,整式的混合运算,分式的化简,关键是用代数式正确表示阴影部分的面积、大矩形的面积.35.5x =【分析】根据分式方程的求解步骤进行求解即可;【详解】解:方程两边同时乘以()3x -,得:()123x x =--,去括号、移项得:5x -=-,系数化为1得:5x =,经检验,当5x =时,30x -≠,故5x =是原方程的根,故答案为:5x =.【点睛】本题主要考查分式方程的解法,熟练掌握分式方程的解法是解题的关键. 36.a(2a +4)(a+2)(a -2)【详解】试题分析:本题首先提取公因式a ,然后连续利用两次平方差公式进行因式分解. 考点:因式分解.37.56°【分析】由折叠的性质可得∥3=∥1=28°,从而求得∥4=56°,再根据平行线的性质定理求出∥EBD =180°﹣∥4=124°,最后再根据平行线性质定理求出∥2=56°.【详解】解:如图,由折叠的性质,可得∥3=∥1=28°,∥纸带对边互相平行∥∥4=∥1+∥3=56°,∥CD∥BE,AC∥BD,∥∥EBD=180°﹣∥4=124°,又∥CD∥BE,∥∥2=180°﹣∥CBD=180°﹣124°=56°.故答案为:56°.【点睛】本题考查了平行线的性质,解题的关键是根据平行线的性质找出图中角度之间的关系.38.36【分析】根据一个数的两个平方根互为相反数以及平方的非负数的性质,求得a、b的值,然后再求这个数即可.【详解】解:∥一个数的平方根是a2+b与4-4a∥a2+b+4-4a,即(a2-4a+4)+(b,则(a-2)21)2=0,∥a-2=01=0,解得a=2,b=2,∥a2+b=6,这个数是62=36.故答案为:36.【点睛】本题主要考查了平方根的性质,非负数的性质,完全平方公式的应用,利用平方根的性质得到(a-2)21)2=0是解题的关键.39.2【分析】根据平移的性质,结合图形,对题中给出的三角形进行分析,排除错误答案,求得正确选项.【详解】解∥∥OCD 方向发生了变化,不是平移得到;∥ODE 符合平移的性质,是平移得到;∥OEF 方向发生了变化,不是平移得到;∥OAF 符合平移的性质,是平移得到;∥OAB 方向发生了变化,不是平移得到.故答案为∥2.【点睛】此题考查平移的性质,准确把握平移的性质,平移变换不改变图形的形状、大小和方向是解题的关键.40.(2)(1)(1)a m m -+-【分析】根据代数式的特点先变形,再提取公因式法,最后用平方差公式进行因式分解.【详解】2(2)(2)m a a -+-=2(2)(2)m a a ---=2(2)(1)a m --=(2)(1)(1)a m m -+-【点睛】此题主要考查因式分解,解题的关键是根据代数式的特点进行变形再因式分解. 41.见解析【分析】根据平行线的性质,角平分线的定义填写理由即可.【详解】证明:AE 平分BAC ∠(已知)12∴∠=∠(角平分线的定义)BED C ∠=∠(已知)//AC DE ∴(同位角相等,两直线平行)13∠∠∴=(两直线平行,内错角相等)23∴∠=∠(等量代换)//DF AE (已知)25∴∠=∠(两直线平行,同位角相等)3=4∠∠(两直线平行,内错角相等)45∴∠=∠(等量代换)DF ∴平分BDE ∠(角平分线的定义)【点睛】本题考查了角平分线的定义,平行线的性质与判定,掌握平行线的性质与判定是解题的关键.42.(1)1214x y ⎧=⎪⎪⎨⎪=⎪⎩(2)21x y =⎧⎨=-⎩【分析】(1)利用加法消元法即可解方程组;(2)由第一个方程得到24x y =+,然后利用代入消元法即可解方程组.【详解】(1)解:2123211x y x y +=⎧⎨-=⎩①②, 由∥+∥得:2412x =,解得:12x =, 把12x =代入∥得:14y =, 即方程组的解为:1214x y ⎧=⎪⎪⎨⎪=⎪⎩; (2)解:24230x y x y -=⎧⎨+-=⎩①②, 由∥得:24x y =+∥,将∥代入∥得:()22430y y ++-=,解得:1y =-,把1y =-代入∥得:()2142x =⨯-+=,即方程组的解为:21x y =⎧⎨=-⎩. 【点睛】本题考查解二元一次方程组,熟练掌握加减消元法和代入消元法求解二元一次方程组是解题关键.43.(1)200、12、36、43.2;(2)见解析(3)“总是”对错题进行整理、分析、改正的学生有1260名【详解】分析:(1)根据扇形统计图和条形统计图中的信息进行计算解答即可;(2)根据(1)中所得样本容量结合扇形统计图中的信息计算出“常常”这一组的人数,由此即可补充完整条形统计图;(3)先由(1)中所得样本容量计算出样本中“总是”这一组占总数的百分比,然后乘以3500即可求得所求结果了.详解:(1)由所给两幅统计图中的信息可知:属于“有时”这一组的有44人,占总数的22%, ∥样本容量为:44÷22%=200 ,∥ 24÷200×100%=12%,72÷200×100%=36%,∥ a=12% ,b=36%,∥很少部分对应的圆心角的度数为:360°×12%=43.2°.(2)∥样本容量为200,“常常”这一组的人数占总数的30%,∥被抽查的同学中,属于“常常”这一组的人数为:200×30%=60人,∥将条形统计图补充完整如下图所示:(3)由题意可得:3500×(72÷200×100%)=1260(人),答:估计其中“总是”对错题进行整理、分析、改正的学生有1260多少名点睛:这样一道通过从扇形统计图和条形统计图中获取信息来解题的统计类的题目,解题的关键是:熟悉相关“基本概念”、清楚条形统计图和扇形统计图中的相关统计数据间的关系.44.33,12x -- 【分析】先计算括号内的代数式,然后化除法为乘法进行化简,然后代入求值. 【详解】解:()2332111x x x x ⎡⎤--÷⎢⎥---⎢⎥⎣⎦=223(1)3[](1)(1)x x x ----·12x x -- =236(1)x x --·12x x -- =23(2)(1)x x --·12x x -- =31x -. 当x =-1时,原式=311--=-32. 【点睛】本题考查了分式的化简求值.这道求代数式值的题目,不应考虑把x 的值直接代入,通常做法是先把代数式化简,然后再代入求值.45.2y,-1 【详解】解析:先根据分式混合运算的法则把原式进行化简,再把x 、y 的值代入计算即可.解:原式=()()()()x y x y x y x y x y x y xy ++-+-=⋅+-2()()2()()x x y x y x y x y xy y +-=⋅=+-,当=2y -时,原式212==--. 易错:解:原式()()()()x y x y x y x y x y x y xy ++-+-=⋅+-2()()2()()x x y x y x y x y xy y +-=⋅=+-,当=2y -时,原式212==. 错因:代入数值时丢了负号.满分备考:本例题是分式除法与加减混合运算题,运算顺序是先做括号内的加法,此时要先确定最简公分母进行通分;做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意分子、分母能因式分解的先因式分解,然后约分.46.估计该小区5月份的用水量是3960吨【分析】用该组的中间值乘以户数,求出总的用水量,再除以抽查的户数求出每户的平均用水量,最后乘以该小区总的户数即可得出答案.【详解】解:根据题意得:()300369201512217275503960⨯⨯+⨯+⨯+⨯+⨯÷=吨, ∥估计该小区5月份的用水量是3960吨,答:估计该小区5月份的用水量是3960吨.【点睛】本题主要考查了平均数的实际应用,正确理解题意求出样本中每户居民的平均用水量是解题的关键.47.(1)2,3-;(2)另一个因式为4x +,k 的值是12-【分析】(1)由题意利用多项式乘多项式进行运算分析即可求出答案;(2)根据题意设另一个因式为x p +,利用整式的运算以及待定系数法求出另一个因式以及k 的值.【详解】解:(1)∥223(1)(32)x bx c x x x x ++=+-+-=,∥2b =,3c =-,故答案为:2b =,3c =-.(2)设另一个因式为x p +,由题意得:225()(23)x x k x p x ++=+-,即22252(23)3x x k x p p ++=+--,则有2353p p k -=⎧⎨-=⎩,解得124k p =-⎧⎨=⎩ 所以另一个因式为4x +,k 的值是12-.【点睛】本题考查因式分解的实际运用,正确读懂例题,理解如何利用待定系数法求解是解答本题的关键.48.(1)(2)-6x +7【详解】分析:(1)先进行负整数指数幂、二次根式的化简、特殊角的三角函数值的计算,然后合并.(2)先去括号,再合并同类项即可得出答案.详解:(1)解:原式=14+14=(2)解:原式= x 2―4x +4 -( x 2+2x -3)=-6x +7点睛: 本题考查了实数的运算和整式的化简求值,涉及了二次根式的化简、特殊角的三角函数值,完全平方公式,去括号,合并同类项等知识,属于基础题.49.m =-2,n =-4【详解】试题分析:根据多项式与多项式的乘法法则展开,再利用不含的项系数等于0列。
中考数学七年级下册知识专题训练50题含答案

中考数学七年级下册知识专题训练50题含答案一、单选题1.下列计算正确的是() A .030=B .236-=-C .2139-=-D .2139-=2.若()155mx x =则m 的值是( ) A .1B .3C .5D .73.下列运算正确的是( ) A .22423x x x +=B .347()x x =C .22(2)(2)2x y x y x y +-=-D .32x x x -÷=4.下列算式中,正确的是( ) A .4442a a a ⋅= B .632a a a ⋅= C .()222a b a b -=-D .()224239a b a b -=5.如图,正方形中阴影部分的面积为( )A .a 2﹣b 2B .a 2+b 2C .abD .2ab6.如图,在ABC 中,已知D ,E 分别是边BC ,AB 的中点,若ADE 的面积是2,则ABC 的面积为 ( )A .1B .2C .4D .87.已知△ABC 中,D 是BC 边上的一点,点E 在AD 上,下列结论中不一定成立的是( )A .如果AD 是△ABC 的中线,那么ED 是△EBC 的中线B .如果AD 是△ABC 的高,那么ED 是△EBC 的高C .如果AD 是△ABC 的角平分线,那么ED 是△EBC 的角平分线 D .如果AD 是△ABC 的高,那么BD 是△ABE 的高 8.如图,AC △BE ,△ABE =70°,则△A 的度数为( )A .70B .65C .50D .1409.一个长方形的面积为(2mn +3n )平方米,长为n 米,则它的宽为( ) A .(2mn +2n )米 B .(2mn 2+3n 2)米 C .(2m +3)米D .(2mn +4n )米10.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为( ) A .11B .16C .17D .16或1711.已知:如图,在△ABC 中,△B =△DAC ,则△BAC 和△ADC 的关系是( )A .△BAC <△ADCB .△BAC =△ADC C .△BAC >△ADCD .不能确定12.下列各题的计算,正确的是( ) A .()3515=a aB .5210a a a ⋅=C .32242a a a -=-D .()3236ab a b -=13.若AD 是ABC ∆ 的角平分线,则AD 是( ) A .直线B .射线C .线段D .以上都不对14.下列计算中正确的是( ) A .235()x x =B .329(3)9x x -=C .623x x x ÷=D .23x x x -⋅=-15.已知()219x m x +-+是一个完全平方式,则m 的值为( )A .4B .7或-5C .±4D .-216.已知△A 与△B 互余,△B 与△C 互补,若△A =50°,则△C 的度数是( ) A .40°B .50°C .60°D .140°17.已知1,2x y =⎧⎨=⎩是二元一次方程24x ay +=的一组解,则a 的值为( )A .2B .2-C .1D .1-18.如3a b +=-,1ab =,则22a b +=( ) A .-11 B .11 C .-7D .719.下列计算正确的是( ) A .224a a a +=B .3a-2a=1C .()333ab a b = D .()437a a =20.下表中的每一对x ,y 的值都是方程3y x的一个解:△y 的值随着x 的增大越来越大; △当0x >时,y 的值大于3; △当3x <-时,y 的值小于0.上述结论中,所有正确结论的个数是( )A .0个 B .1个 C .2个D .3个二、填空题21.计算642x x ÷的结果是______.22.若2x =41,y +2713y x -=,x y -的值为_______. 23.写出下面多边形的名称:(1)______ (2)_____ (3)_____ 24.()22--=a b _______; 25.计算: (1)201920180.1258_____. (2)426x x x______26.已知 x +y -3=0,2212x y -=-,则33x y ⋅=______,x -y 的值为______.27.如图,AC △BC ,CD △AB ,点B 到CD 边的距离是线段____________的长.28.若23x y =-⎧⎨=⎩是方程组23x y m x ny -=⎧⎨+=-⎩的解,则m =___________;n =___________.29.计算:0.252019×(﹣4)2020=_____. 30.计算:402×398=___.31.若点M (a +5,a -3)在y 轴上,则点M 的坐标为____________.32.小明的爸爸骑着摩托车带着小明在公路上匀速行驶,小明每隔一段时间看到的里程碑上的数如下:12:00时是一个两位数,数字之和为7;13:00时十位与个位数字与12:00是所看到的正好互换了;14:00时比12:00时看到的两位数中间多出一个0.如果设小明在12:00看到的数的十位数字是x ,个位数字是y ,根据题意可列方程组为________.33.观察下列各式:2(1)(1)1x x x -+=-;23(1)(1)1x x x x -++=-;324(1)(1)1x x x x x -+++=-;432(1)(1)x x x x x -++++51x =-……;则20082007200622+2+2++2+2+1=_____.34.若0(21)x -无意义,则代数式22008(41)x -的值为___________. 35.若3,5ab a b =+=,则33a b ab +=_____. 36.若226x x n ++是一个完全平方式,则n=______ 37.计算:(π﹣3)0+(12)-1=_____.38.若(x 2+y 2+1)(x 2+y 2﹣1)=48,则x 2+y 2=___39.某商场新进一批空调,按进价提高30 %后标价.五一期间,商场为了促销,又按标价打九折销售,每台空调仍可获利680元,该批空调每台的进货价格为________元.40.已知方程组5354x y ax y +=⎧⎨+=⎩与2551x y x by -=⎧⎨+=⎩有相同的解,则222a ab b -+=___________.三、解答题41.ABC 在平面直角坐标系中的位置如图所示.(1)直接写出点A ,点B ,点C 的坐标; (2)求出ABC 的面积.42.“冰墩墩”和“雪容融”分别是北京2022年冬奥会和冬残奥会的吉祥物.2021年十一月初,奥林匹克官方旗舰店上架了“冰墩墩”和“雪容融”这两款毛绒玩具,当月售出了“冰墩墩”200个和“雪容融”100个,销售总额为33000元.十二月售出了“冰墩墩”300个和“雪容融”400个,销售总额为72000元.(1)求“冰墩墩”和“雪容融”的销售单价;(2)已知“冰墩墩”和“雪容融”的成本分别为90元/个和60元/个.为回馈新老客户,旗舰店决定对“冰墩墩”降价10%后再销售,若一月份销售出这两款毛绒玩具的数量与十二月一样,求该旗舰店一月份销售的利润.43.(1)先化简,再求值:()22()()()3x y x y x y x xy +-+---,其中12,2x y ==; (2)已知:2215,3a b a b -=+=.求2(2)(2)4a b a b a ab ++--的值.44.如图,在方格纸内将△ABC 经过一次平移后得到△A ′B ′C ′,图中标出了点B 的对应点B ′.根据下列条件,利用网格点和三角尺画图: (1)补全△A ′B ′C ′(2)画出AC 边上的中线BD ; (3)画出AC 边上的高线BE ; (4)求△ABD 的面积 .45.解方程:(1)43=112+=13x y x y -⎧⎨⎩; (2)3+4=556=17x y x y --⎧⎨⎩.46.已知:如图,△1+△2=180°,△3=△4. 求证:EF△GH .47.解方程(1)42(3)0x x --= (2)2112236x x+-=- 48.在实数范围内因式分解(1)44a (2)4269a a -+ 49.计算:()()()223x y x y x y +--- 50.计算:(1)0211()()(3)233--÷----;(2)化简求值:22(2)()(3)52x y x y x y y x ⎡⎤+-+--÷⎣⎦,其中x =-1,y =12.(3)已知x 16=,y 18=,求代数式22(23)(23)x y x y +--的值.参考答案:1.D【分析】根据零指数幂、负指数幂的运算逐项判断即可. 【详解】零指数幂的性质:任何非零数的零指数幂都等于1 则031=,A 选项错误由负指数幂的性质得:2211339-==,则B 、C 选项错误,D 选项正确 故选:D .【点睛】本题考查了零指数幂、负指数幂的运算,熟记运算法则是解题关键. 2.B【分析】根据幂的乘方法则,计算即可. 【详解】因为()1555m mx x x ==,所以5m =15, 解得m =3, 故选B .【点睛】本题考查了幂的乘方,熟练掌握公式是解题的关键. 3.D【分析】根据合并同类项,幂的乘方,平方差公式,同底数幂的除法运算法则逐项计算即可.【详解】解:A 、22223x x x +=原计算错误,该选项不符合题意; B 、3412()x x =原计算错误,该选项不符合题意;C 、22(2)(2)4x y x y x y +-=-原计算错误,该选项不符合题意;D 、32x x x -÷=正确,该选项符合题意; 故选:D .【点睛】本题考查了整式的运算,解题关键是熟练运用整式运算法则进行准确计算. 4.D【分析】根据整式的乘法运算法则、完全平方公式以及积的乘方运算即可求出答案. 【详解】解:A 、原式8a =,故A 不符合题意. B 、原式9a =,故B 不符合题意.C 、原式222a ab b =-+,故C 不符合题意.D 、原式429a b =,故D 符合题意. 故选:D .【点睛】本题考查整式的乘法运算法则、完全平方公式以及积的乘方运算,掌握法则与公式是解题的关键. 5.D【分析】根据图形中各个部分面积之间的关系进行计算即可. 【详解】解:阴影部分的面积为:()2221122222a b a b ab +-⨯-⨯=, 故选:D .【点睛】本题考查完全平方公式的几何背景,掌握完全平方公式的结构特征以及图形中各个部分面积之间的关系是正确解答的关键. 6.D【分析】根据D ,E 分别是边BC ,AB 的中点,可得到2ABDADES S=,2ABCABDSS=,从而有4ABCADESS=.【详解】解:△E 是AB 的中点, △AB=2AE △2ABDADESS=,又△D 是BC 的中点, △BC=2BD, △2ABCABDS S =△4248ABC ADESS==⨯=故答案为:D.【点睛】本题考查的知识点是三角形的中线,通过各边的中点,找出已知三角形面积与所求三角形面积的比例关系是解题的关键. 7.C【分析】根据三角形的高线,中线,角平分线的定义逐项分析判断即可求解.【详解】解:如图,1AD 是BC 边上的中线,2AD 是BAC ∠的角平分线,3AD 是BC 边上的高A.如果AD是△ABC的中线,那么ED是△EBC的中线,故正确,不符合题意;B.如果AD是△ABC的高,那么ED是△EBC的高,故正确,不符合题意;C.如果AD是△ABC的角平分线,那么ED不一定是△EBC的角平分线,故错误,符合题意;D.如果AD是△ABC的高,那么BD是△ABE的高,故正确,不符合题意.故选:C.【点睛】本题考查了三角形的高线,中线,角平分线的定义,掌握以上知识是解题的关键.8.A【分析】根据平行线的性质进行判断即可,两直线平行,内错角相等.【详解】解:△AC△BE,△△A=△ABE=70°,故选A.【点睛】本题主要考查了平行的性质,解题时注意:两条平行线被第三条直线所截,内错角相等.9.C【分析】根据长方形的面积=长×宽,计算即可得到结果.【详解】解:△一个长方形的面积为(2mn+3n)平方米,长为n米,△它的宽为:(2mn+3n)÷n=(2m+3)米.故选:C.【点睛】本题考查了整式的除法,熟练掌握运算法则是解本题的关键.10.D【详解】试题分析:由等腰三角形的两边长分别是5和6,可以分情况讨论其边长为5,5,6或者5,6,6,均满足三角形两边之和大于第三边,两边之差小于第三边的条件,所以此等腰三角形的周长为5+5+6=16或5+6+6=17.故选项D 正确.考点:三角形三边关系;分情况讨论的数学思想11.B【详解】根据三角形的外角性质可得△ADC=△B+△BAD ,再由△BAC=△BAD+△DAC ,△B=△DAC ,即可得△BAC=△ADC .故选B .12.A【分析】根据 “幂的乘方,底数不变,指数相乘”进行解答即可判断选项A ;根据 “同底数幂相乘,底数不变,指数相加”进行解答即可判断选项B ;根据同类项的含义进行解答即可判定选项C ;根据积的乘方运算解答即可判断选项D .【详解】解:A 、()3515=a a ,符合题意; B 、52527+==a a a a ,原运算错误,不符合题意;C 、32a ,24a -不是同类项,不能合并,原运算错误,不符合题意;D 、()3236ab a b -=-,原运算错误,不符合题意; 故选A .【点睛】本题考查了整式的乘法和整式的加减,解题的关键是掌握幂的乘方的定义,同底数幂的乘法的定义,积的乘方的定义和整式加减的运算法则.13.C【分析】根据三角形角平分线的定义解答.【详解】解:三角形的角平分线是一条线段.故选C .【点睛】本题考查了三角形的角平分线、中线、高,熟记角平分线的定义是解题的关键. 14.D【分析】利用同底数幂的除法的法则,同底数幂的乘法的法则,幂的乘方与积的乘方的法则对各项进行运算即可.【详解】解:A 、236x x =(),故A 不符合题意;B 、32639x x -=(),故B 不符合题意;C 、624x x x ÷=,故C 不符合题意;D 、23x x x -⋅=-,故D 符合题意故选:D .【点睛】本题主要考查幂的乘方与积的乘方,同底数幂的乘法,同底数幂的除法,解答的关键是对相应的运算法则的掌握.15.B【分析】完全平方公式:a 2±2ab +b 2的特点是首平方,尾平方,首尾底数积的两倍在中央,这里首末两项是x 和3的平方,那么中间项为加上或减去x 和3的乘积的2倍.【详解】△()219x m x +-+=()21x m x +-+32,△()123m x x -=±⨯,△m-1=±6,△m=7或-5.故选B.【点睛】本题考查了完全平方公式,熟练掌握完全平方公式(a ±b )2=a 2±2ab +b 2是解答本题的关键.16.D【分析】先根据互补角的定义可得50B ∠=︒,再根据互余角的定义即可得.【详解】A ∠与B ∠互余,且50A ∠=︒,9040B A ∴∠=︒-∠=︒,又B ∠与C ∠互补,180140C B ∴∠=︒-∠=︒,故选:D .【点睛】本题考查了互补角、互余角,熟练掌握互补角与互余角的定义是解题关键. 17.C【分析】把x 与y 的值代入方程计算即可求出a 的值.【详解】把1,2x y =⎧⎨=⎩代入方程24x ay +=,得224a +=, 解得1a =.故选C.【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.18.D【分析】根据222()2a b a b ab +=+-直接代入求值即可.【详解】解:当3a b +=-,1ab =,时,222()2a b a b ab +=+-=9-2=7.故选:D .【点睛】本题考查对完全平方公式的变形应用能力,熟记有关完全平方公式的几个变形公式是解题的关键19.C【分析】根据合并同类项、积的乘方及幂的乘方法则计算即可得答案.【详解】A.a 2+a 2=2a 2,故该选项计算错误,B.3a-2a=a ,故该选项计算错误,C.(ab)3=a 3b 3,故该选项计算正确,符合题意,D.(a 3)4=a 12,故该选项计算错误,故选C.【点睛】本题考查合并同类项、积的乘方及幂的乘方,熟练掌握运算法则是解题关键. 20.D【分析】△根据表格中x 与y 的值变化情况即可得;△结合△的结论和0x =时3y =即可得;△结合△的结论和3x =-时0y =即可得.【详解】观察表格可知,y 的值随着x 的增大越来越大,则结论△正确0x =时,3y =∴由结论△可知,当0x >时,3y >,则结论△正确3x =-时,0y =∴由结论△可知,当3x <-时,0y <,则结论△正确综上,所有正确结论的个数是3个故选:D .【点睛】本题考查了二元一次方程的解,读懂表格,正确得出y 与x 的变化关系是解题关键.21.22x【分析】根据同底数幂除法的法则求解.【详解】解:64642222x x x x -÷==.故答案为:22x .【点睛】本题主要考查了同底数幂除法的运算法则,理解同底数幂相除,底数不变,指数相减是解答关键.22.3【分析】首先根据等式的性质,将指数的底数化相等,再根据指数相等联立方程组求解参数即可.【详解】解:将2x =41y +可化为:2(1)22x y +=将2713y x -=可化为:3133y x -=所以可得:2(1)31x y y x =+⎧⎨=-⎩解得:41x y =⎧⎨=⎩所以可得:413x y -=-=故答案为3【点睛】本题主要考查同底数幂的指数相等,关键在于将底数化相等.23. (1)五边形; (2)三角形; (3)四边形.【详解】分析:根据所给图形和多边形的定义进行分析解答即可.详解:题中所给3个多边形分别是:(1)五边形;(2)三角形;(3)四边形.故答案为:(1)五边形;(2)三角形;(3)四边形.点睛:知道“在多边形中,边数是n (n 为不小于3的正整数)的多边形被称为n 边形”是解答本题的关键.24.2244a ab b ++【分析】通过完全平方公式计算即可‘’【详解】()222244a b a ab b --=++; 故答案是2244a ab b ++.【点睛】本题主要考查了完全平方公式的计算,准确计算是解题的关键.25. -8 4x -【分析】(1)根据积的乘方的逆运算,即可求解;(2)先计算乘法,再计算除法,即可求解.【详解】解:(1)201920180.1258 20180.12588 ()()201818=-⨯-=-8故答案为:-8;(2)()()426x x x -⋅÷- 84x x =-÷4x =-故答案为:4x - .【点睛】本题主要考查了积的乘方的逆运算,幂的混合运算,熟练掌握相关运算法则是解题的关键.26. 27 -4【分析】根据x +y -3=0可得x +y 的值,代入3x •3y =3x +y 即可得到答案,对x 2-y 2=-12左边利用平方差公式分解因式后即可得到答案.【详解】解:△x +y -3=0,△x +y =3,△3x •3y =3x +y =33=27,△x 2-y 2=(x +y )(x -y )=-12,△3(x -y )=-12,△x -y =-4,故答案为:27,-4.【点睛】此题考查的是同底数幂的乘法及平方差公式,掌握同底数幂的运算法则是解决此题关键.27.BD【分析】本题利用点到直线的距离的定义即可得出结论.【详解】解:因为CD △AB ,所以点B 到CD 边的距离是线段BD 的长.故答案为BD.28. 7- 13- 【分析】根据二元一次方程组的解满足方程组,把二元一次方程组的解代入,可得答案.【详解】解:把23x y =-⎧⎨=⎩代入方程组23x y m x ny -=⎧⎨+=-⎩, 43233m n --=⎧⎨-+=-⎩. 解得:713m n =-⎧⎪⎨=-⎪⎩, 故答案为:7-,13-. 【点睛】本题考查了二元一次方程组的解,解题的关键是熟练掌握方程组的解的定义:使方程组的两个方程均成立的一对未知数的值就叫做方程组的解.29.4【分析】把0.252019×(﹣4)2020变形为0.252019×42019×4,逆用积的乘方法则计算即可.【详解】0.252019×(﹣4)2020=0.252019×42019×4=(0.25×4)2019×4=4,故答案为4.【点睛】本题考查了积的乘方法则逆用,熟练掌握积的乘方法则是解答本题的关键.积的乘方等于各因数乘方的积,即()mm m ab a b =(m 为正整数). 特别注意运算过程中指数的变化规律,灵活运用法则的逆运算进行计算,培养学生的逆向思维意识.30.159996【分析】利用平方差公式求解,将两个数分别表示成两个数和与差的形式,即可求解.【详解】解:()()224023984002400240021600004159996⨯=+⨯-=-=-= 故答案为159996【点睛】此题考查了平方差公式的应用,解题的关键是熟练掌握平方差公式.31.(0,-8)【分析】根据y 轴上的点横坐标为0列式解答即可.【详解】解:△点M (a +5,a -3)在y 轴上,△a +5=0,△a =-5,△a -3=-5-3=-8△M (0,-8)故答案为(0,-8).【点睛】本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x 轴上的点纵坐标为0,y 轴上的点横坐标为0.32.710(10)100(10)x y y x x y x y y x +=⎧⎨+-+=+-+⎩【分析】根据题意“12:00时是一个两位数,数字之和为7”,可列出7x y +=;根据“13:00时十位与个位数字与12:00是所看到的正好互换了”可知13时的数字为10y x +;根据“14:00时比12:00时看到的两位数中间多出一个0”可知14时的数字为100x y +,最后根据小明匀速行驶,每个小时内行驶的路程相等列出方程组即可.【详解】根据题意可知:7x y +=13时的数字为10y x +14时的数字为100x y +又△小明匀速行驶△每个小时内行驶的路程相等,即:10(10)100(10)y x x y x y y x +-+=+-+故可列的方程组为:710(10)100(10)x y y x x y x y y x +=⎧⎨+-+=+-+⎩ 【点睛】本题主要考查二元一次方程组在实际中的应用,学会利用条件列出等式是解决本题的关键.33.200921-【分析】观察其右边的结果:第一个是x 2−1;第二个是x 3−1;…依此类推,得出第n 个的结果,从而得出要求的式子的值.【详解】根据给出的式子的规律可得:(x−1)(x n +x n −1+…x +1)=x n +1−1,则22008+22007+22006+……+22+2+1=(2-1)×(22008+22007+22006+……+22+2+1)=22009−1;故答案为:22009−1.【点睛】本题考查了平方差公式,发现规律:右边x 的指数正好比前边x 的最高指数大1是解题的关键.34.0【分析】根据负整数指数幂(2x−1)0无意义,可得2x-1=0,从而求得x 的值;将x 的值代入代数式(4x 2−1)2008即可求值.【详解】因为(2x−1)0无意义,所以2x-1=0,即x=12将x=12代入(4x 2−1)2008,得,(4⨯(12)2−1)2008,求值,得0.【点睛】本题考查的知识点是代数式求值,解题的关键是熟练的掌握代数式求值. 35.57【分析】根据完全平方公式的变形,先求出22a +b 的值,再利用提公因式法,将33a b+ab 化为()22ab a b + ,进而代入求值即可; 【详解】△ ab=3,a+b=5△()2222a+b 25a b ab =++= ,即22225a b ab ++=,△2ab=6,△22252ab=256=19a b +=--,△ 33a b+ab =()22ab a b +=3×19=57, 故答案为:57.【点睛】本题考查了求代数式的值、完全平方公式,主要考查整体思想,要认真掌握,并确保得分.36.3±【分析】利用完全平方公式的结构特征判断即可n的值即可.【详解】△22++是一个完全平方式,6x x n△2n=9,解得:n=±3,则n的值是±3,故答案为±3【点睛】此题考查完全平方式,解题关键在于利用完全平方公式进行解答.37.3.【分析】根据零指数幂和负整数指数幂计算即可得答案.)-1【详解】(π﹣3)0+(12=1+2=3,故答案为:3.【点睛】本题考查零指数幂的性质以及负整数指数幂的性质,任何不等于0的数的0次幂都等于1;任何不等于零的数的-p(p是正整数)次幂,等于这个数的p次幂的倒数.38.7【分析】首先利用平方差公式将已知化简,进而得出x2+y2的值.【详解】解:因为(x2+y2+1)(x2+y2﹣1)=48,所以(x2+y2)2﹣12=48,所以(x2+y2)2=49,x2+y2=±7(负值舍去).故答案为:7.【点睛】本题考查了平方差公式,熟记公式是解题的关键.39.4000【分析】设该型号电脑每台进价为x元,则按进价提高30%的标价是x+30%x,那么打9折销售的价格-进价=盈利,根据这个等量关系列方程,求得解.【详解】设该型号电脑每台进价为x元,根据题意列方程得:(x+30%x)×0.9-x=680,解得:x =4000△该型号电脑每台进价为4000元.【点睛】本题考查的知识点是一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.40.144【分析】根据题意,两个方程组有相同的解集得到方程组5325x y x y +=⎧⎨-=⎩,解方程组得12x y =⎧⎨=-⎩,将12x y =⎧⎨=-⎩代入方程组5451ax y x by +=⎧⎨+=⎩中,解出即可. 【详解】解:△方程组5354x y ax y +=⎧⎨+=⎩与2551x y x by -=⎧⎨+=⎩有相同的解, △5325x y x y +=⎧⎨-=⎩, 解得:12x y =⎧⎨=-⎩, 将12x y =⎧⎨=-⎩代入方程组5451ax y x by +=⎧⎨+=⎩中,得到:104521a b -=⎧⎨-=⎩ ,解得:142a b =⎧⎨=⎩△22222()(142)144a ab b a b -+=-=-=,故答案为:144.【点睛】本题考查了解二元一次方程组,求代数式的值,关键在于读懂题意联立出可以求解的二元一次方程组.41.(1)()()()2,5,5,2,3,3A B C --- (2)1202【分析】(1)依据图形中三角形顶点的位置,即可得到点,,A B C 的坐标;(2)利用割补法进行计算,即可得出ABC 的面积.【详解】(1)解:如图所示:()()()2,5,5,2,3,3A B C ---;(2)解:如图所示:11178372558222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯△ 21104056222⎛⎫=-++ ⎪⎝⎭ 1202=. 【点睛】本题考查网格中求三角形的面积,坐标与图形,关键是用数形结合的思想解题. 42.(1)“冰墩墩”的销售单价为120元,“雪容融”的销售单价90元;(2)17400元.【分析】(1)设“冰墩敏”的销售单价为x 元,“雪容融”的销售单价y 元,然后根据售出了“冰墩墩”200个和“雪容融”100个,销售总额为33000元;售出了“冰墩墩”300个和“雪容融”400个,销售总额为72000元,列出方程即可得到答案.(2)根据“利润=(售价-成本)⨯销售数量”,即可得到答案.(1)解:(1)设“冰墩敏”的销售单价为x 元,“雪容融”的销售单价y 元,根据题意得:2001003300030040072000x y x y +=⎧⎨+=⎩.解方程组得12090x y =⎧⎨=⎩.答:“冰墩墩”的销售单价为120元,“雪容融”的销售单价90元;(2)(120﹣120×10%﹣90)×300+(90﹣60)×400=17400(元).答:该旗舰店一月份销售的利润为17400元.【点睛】此题主要考查了二元一次方程组的应用,利润的概念,解题关键是依据题意找到合适的等量关系.43.(1)2,5x xy +;(2)-4【分析】(1)原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值; (2)将2215a b -=左边进行因式分解,再将3a b +=代入求得a -b 的值,从而求得a ,b 的值,最后将2(2)(2)4a b a b a ab ++--化简后将a ,b 的值代入求值即可.【详解】解:(1) 原式 =2222223x y x xy y x xy -+-+-+2x xy =+. 将12,2x y ==代入得:原式=212252+⨯=.(2) △()()2215a b a b a b -=+-=,又3a b +=,△5a b -=,△a 35b a b +=⎧⎨-=⎩,解得:41a b =⎧⎨=-⎩, 则41a b ==-,,△原式=2224424a ab b ab a ab +++--=224ab b +,=()()224141⨯⨯-+⨯-4=-. 【点睛】此题考查了整式的加减-化简求值、因式分解的应用及整式的混合运算,熟练掌握因式分解是解本题的关键.44.(1)画图见解析;(2)画图见解析;(3)画图见解析;(4)4【分析】(1)由点B 的对应点B ′知,三角形需向左平移5个单位、向下平移2个单位,据此可得;(2)连接AC 的中点D 与点B 即可得;(3)过点B 作AC 延长线的垂线段即可得;(4)割补法求解可得.【详解】解:(1)如图所示,△A ′B ′C ′即为所求作三角形.(2)如图所示,BD 为AC 边上的中线;(3)如图所示,BE 为AC 边上的高线;(4)S △ABD =4×6﹣12×1×2﹣12×4×6﹣12×(1+6)×2=24﹣1﹣12﹣7=4.故答案为4.【点睛】本题主要考查作图﹣平移变换,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.45.(1)=5=3x y ⎧⎨⎩ (2)=1=2x y -⎧⎨⎩【分析】(1)利用加减消元法,把△+△3⨯消去y ,得到1050x =,解得=5x ,把=5x 代入△,得到2513y ⨯+=,解得=3y ,即得;(2)利用加减消元法,把△3⨯+△2⨯消去y ,得到1919x =,解得=1x ,并代入△,得到3+4=5y -,解得=2y -,即得.【详解】(1)解:43=112+=13x y x y -⎧⎨⎩①②, △+△3⨯得1050x =,解得=5x .把=5x 代入△,得2513y ⨯+=,解得=3y .∴原方程组的解为=5=3x y ⎧⎨⎩. (2)3+4=556=17x y x y -⎧⎨-⎩①②, △3⨯+△2⨯,得1919x =,解得=1x ,并代入△,得3+4=5y -,解得=2y -.∴原方程组的解为=1=2x y ⎧⎨-⎩. 【点睛】本题考查了解二元一次方程组,解决问题的关键是熟练掌握加减消元法解二元一次方程组.46.见解析;【分析】由△1+△2=180°结合△AEG=△1可推导得出AB△CD ,可得△AEG=△EGD ,继而可求得△FEG=△EGH ,从而可得EF△GH.【详解】△△1+△2=180°,△AEG=△1,△ △AEG +△2=180°,△AB△CD ,△△AEG=△EGD ,△△3=△4,△△3+△AEG=△4+△EGD ,△△FEG=△EGH ,△EF△GH.【点睛】本题考查了平行线的判定与性质,正确识图,熟练掌握平行线的判定定理与性质定理是解题的关键.47.(1)3x =-;(2)92x =. 【详解】试题分析:(1)方程去括号,移项合并,把x 系数化为1,即可求出解; (2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.试题解析:解:(1)去括号得:4x ﹣2x +6=0,移项合并得:2x =﹣6,解得:x =﹣3; (2)去分母得:4x +2=12﹣1+2x ,移项合并得:2x =9,解得:x =4.5.48.(1)()(22a a a +(2) ((22a a 【详解】(1)原式=22(2)(2)a a +-,=2(2)(2)(2)a aa . (2)原式=22(3)a -,=22((a a .考点:用公式法分解因式.49.27xy y -【分析】原式利用多项式乘以多项式法则,以及完全平方公式化简,去括号合并即可得到结果.【详解】()()()223x y x y x y +---,=22223262x xy xy y x xy y -+--+-=27xy y -.【点睛】此题主要考查了多项式乘以多项式,完全平方公式,熟练掌握运算法则是解本题的关键.50.(1)109;(2)-+x y ,32(3)12.【分析】(1)先算负整数指数幂,零指数幂,再合并即可;(2)先算括号内的,再算除法,最后将字母的值代入即可求解;(3)先利用平方差公式化简代数式,最后将字母的值代入即可求解.(1) 解:0211()()(3)233--÷---- 1932=÷+- =109; (2)解:22(2)()(3)52x y x y x y y x ⎡⎤+-+--÷⎣⎦2222244(33)52x xy y x xy xy y y x ⎡⎤=++--+--÷⎣⎦22222(44335)2=++-+-+-÷x xy y x xy xy y y x222)2(x xy x =-+÷x y =-+当x =-1,y =12时, 原式13(1)22=--+=; (3) 解:22(23)(23)x y x y +--(2323)(2323)x y x y x y x y =++-+-+46x y =⋅=24xy ,△x 16=,y 18=, △原式=112468⨯⨯=12.【点睛】本题考查实数运算及整式化简求值,解题的关键是掌握实数运算的相关法则及完全平方公式、平方差公式等整式运算的法则.。
中考数学图形与几何专题知识易错题50题含答案

中考数学图形与几何专题知识易错题50题含答案一、单选题1.检查一条直线和一个非水平面是否垂直,正确的方法是用()A.长方形纸片B.梯形纸片C.铅垂线D.合页型折纸2.一个圆锥形的零件,底面积为19cm2,高是12cm,这个零件的体积是()A.76cm3B.114cm3C.228cm3D.684cm33.两个圆的半径相差1cm,则周长相差().A.1cm B.2cm C.3.14cm D.6.28cm4.如图,反比例函数的一个分支与O有两个交点,且平分这个圆,以下说法正确的是()A.劣弧AB等于120︒B.反比例函数的这个分支平分圆的周长C.反比例函数的这个分支平分圆的面积D.反比例函数图象必过圆心O5.一个圆的半径为2cm,则它的面积是()(π取3.14).A.6.28cm B.12.56cm C.26.28cm12.56cm D.2 6.一个扇形,如果半径缩小2倍,圆心角扩大2倍,那么扇形的面积()A.扩大2倍B.缩小2倍C.缩小4倍D.不变7.草坪上有一个洒水龙头,它最远洒水至30米处,可以作150°的旋转,那么可以被这个龙头洒到水的草坪的面积是()A.375π平方米B.380π平方米C.385π平方米D.390π平方米8.下列说法正确的是()A.圆柱和圆锥都只有一条高B.圆的半径扩大到原来的2倍,直径就扩大到原来的4倍C.圆柱体体积是圆锥表面积的三倍D.正数和负数可以表示两种相反意义的量9.用两个半径为1cm的圆和长与宽分别为6.28cm和3.14cm的长方形组成一个圆柱,该圆柱的高是( )A .6.28cmB .3.14cmC .1cmD .6.28cm 或3.14cm10.以下表述中不正确的是( )A .长方体中任何一条棱都与两个面平行B .长方体中相对的两个面的面积相等C .长方体中任何一个面都与四个面垂直D .长方体中棱与棱不是相交就是异面11.如图是某几何体从不同方向看所得到的的图形,根据图中数据,求得该几何体的侧面积为( )A .πB .2πC .32πD .812.下列立体图形中,从上面和正面看到的形状图不同的是( )A .B .C .D . 13.一个圆至少对折( )次,就可以找到圆心.A .1B .2C .3D .414.一个圆形井盖的半径为30厘米,它能盖住的井口面积可能是( )A .2800平方厘米B .2830平方厘米C .2850平方厘米D .2880平方厘米 15.如图,沿半圆形草坪外铺一条1米宽的小路,小路的面积是多少?列式正确的是( )A .23.1412⨯÷B .23.14122⨯÷C .()223.1413122⨯-÷D .23.14132⨯÷16.下列说法正确的有( )个①如果:4:3a b =,那么a 与b 的和一定是7;①一种商品先提价15,在降价15,则现价和原价一样; ①两圆周长相等,则这两个圆面积也相等;①女生人数是男生人数的35,则男生人数比女生人数多14. A .1 B .2 C .3 D .417.一个雷达圆形屏幕的直径是20厘米,则它的面积是( )平方米.A .100πB .0.1πC .0.01π18.某足够大的草地正中拴着一只羊,绳长10米,这只羊最多可以吃到草地上多少平方米的草?正确的算式是( )A .3.14102⨯⨯B .3.141010⨯⨯C .3.1410⨯ D .3.1410102⨯⨯÷ 19.以圆O 的半径OA 为边长画正方形OABD .若正方形OABD 的面积为3平方厘米,则圆O 的面积是( )A .3.14平方厘米B .6.28平方厘米C .9.42平方厘米D .11平方厘米 20.想要求圆的周长,就必须知道( )A .圆心B .圆周率C .直径和半径D .直径或半径二、填空题21.用圆规画一个周长是12.56厘米的圆,圆规两脚间的距离是______厘米.(π取3.14)22.一个扇形的半径是5厘米,圆心角是60°,则此扇形的面积是______平方厘米,周长是______厘米.(π取3.14)23.在长方体ABCD EFGH -中,与棱EF 和棱EH 都异面的棱是______.24.一张光盘的刻录面为环形内圆的直径是4厘米,外圆直径是12厘米,这张光盘刻录面的面积是___平方厘米.25.如图,把一个半径为r厘米的圆分成若干等份,然后把它剪开,照如图的样子拼起来,拼成新的图形的周长比原来圆的周长多10厘米,则该圆的半径为___厘米.26.如图所示,它是一个正方体六个面的展开图,那么原正方体中与平面B互相平行的平面是_______.(用图中字母表示)27.等底等高的圆柱和圆锥的体积相差183dm.dm,则圆锥的体积是_____3∠的度数为______.28.如图所示,扇形OAB的面积是圆的六分之一,则图中AOB29.把一个圆剪成两个扇形,如果其中较小扇形的圆心角为135度,那么较小扇形的弧长是较大扇形的弧长的__________(填几分之几).-中,与平面BCGF垂直的棱有_____条______(填数30.在长方体ABCD EFCH字).31.已知扇形面积是212cm,半径为8cm,则扇形周长为_______.32.圆柱的侧面展开图是一个长6cm ,宽4cm 长方形,则这个圆柱的底面半径是____cm .(结果保留π)33.将6个棱长为1厘米的正方体拼成一个长方体,则表面积减少了_______平方厘米.34.长方体1111ABCD A B C D -中,与平面11AA D D 平行的棱共有________条.35.一个圆形花坛的直径是40米,那么它的半径是_________米.36.一个圆柱和一个圆锥等底等高,它们的体积之和是48立方分米,那么圆锥的体积是________立方分米,圆柱的体积比圆锥大________立方分米.37.半圆形的周长等于它所在圆的周长的一半,______(判断对错)38.在长方体中,任意一条棱与它既不平行也不相交的棱有________条.39.如果一个扇形的圆心角扩大为原来的2倍,半径长缩小为原来的一半,那么变化后所得扇形面积与原来的扇形面积的比值为______.40.如图所示,直径为单位1的圆从表示1-的点沿着数轴无滑动的向右滚动一周到达A 点,则A 点表示的数是______.三、解答题41.将一边长为6cm 正方形绕其一边所在直线旋转一周得到一个立体图形.(1)得到的立体图形名称为 .(2)求此立体图形的表面积.(结果保留π)42.如图,AB =a ,P 是线段AB 上一点,分别以AP ,BP 为直径作圆.(1)设AP =x ,求两个圆的面积之和S ;(2)当AP 分别为13a 和12a 时,比较S 的大小. 43.看图列式计算(1)列式计算__________(2)求阴影部分面积(单位:分米,结果保留 );列式计算__________44.如图,长方体ABCD-EFGH,根据图形回答下列问题.(1)与棱CB相等的棱有哪几条?(2)与面ADHE相对的面有哪几个?(3)经过点A的面有哪几个?(4)从点D出发的棱有哪几条?45.如图所示的圆柱底面直径为4cm,高为5cm,请计算它的侧面积和体积.(结果保留π)46.如图所示是某森林公园二期改造工程的部分规划图.以“爱在方圆”为主题的设计中,正方形不与圆重叠的部分建造林地,圆不与正方形重叠的部分建造草地,重叠部分修建池塘.(1)若正方形ABCD面积的45是林地,圆C面积的34是草地,池塘的面积是125平方米,则林地和草地的面积分别是多少平方米?池塘面积占规划区域总面积的几分之几?(2)若正方形边长AB与圆半径CE的比为2:1,且池塘周长为71.4米.则林地的周长是多少米?47.已知,如图,正方形ABCD的边长为4厘米,点P从点A出发,经A→B→C沿正方形的边以2厘米/秒的速度运动;点Q在CD上,CQ=1.设运动时间为t秒,△APQ 的面积为S平方厘米.(1)当t=2时,△APQ的面积为平方厘米;(2)求BP的长(用含t的代数式表示);(3)当点P在线段BC上运动,且△APQ为等腰三角形时,求此时t的值;(4)求S与t的函数关系式.48.如图①是一个组合几何体,右边是它的两种从不同方向看的图形,根据两种图形中尺寸,计算这个组合几何体表面积和体积.(结果保留 )49.求出如图图形的体积.50.某家具厂的设计师根据1:10的比例尺,并按斜二侧画法在图纸上设计了一套柜子,柜子由一个框架、三个抽屉、两扇门组成.一个工人每天可以制作2个框架、或者制作3个抽屉、或者制作5扇门.(1)由刻度尺在图纸上测量可得,4cm AB =、 1.5cm BC =、6cm BD =,所以这个柜子的表面积是______2dm ,体积是______3dm .(2)工人有38名工人,如何分配工人的工作才能使每天恰好配套完成一定数量的柜子,并写出每天完成的柜子数量是多少只?参考答案:1.D【分析】根据长方体的概念直接排除选项即可.【详解】因为检查一条直线和一个非水平面是否垂直是用合页型折纸这个方法; 故选D .【点睛】本题主要考查长方体的棱与面的位置关系,熟记概念是解题的关键. 2.A【分析】根据圆锥体积计算公式即可得答案.【详解】311912763S cm =⨯⨯=锥 故选A【点睛】本题考查圆锥的体积计算,掌握公式是关键.3.D【分析】大圆半径为R ,小圆半径为r ,根据题意得到1R r -=,再表示出周长差,从而得到结果.【详解】解:设大圆半径为R ,小圆半径为r ,则1R r -=,①()2222 6.28R r R r ππππ-=-==,即周长相差6.28cm ,故选D .【点睛】本题考查了圆的周长,解题的关键是熟练掌握圆的周长公式.4.B【分析】由题意可知A ,B 两点连线为圆的直径,弧AB 为半圆,所对圆心角为180︒,由此可对各项进行判断.【详解】A .A ,B 两点连线为圆的直径,弧AB 为半圆,所对圆心角为180︒,不是120︒,故这个选项错误;B .反比例函数的这个分支平分O ,即反比例函数的这个分支把O 的周长平分,故这个选项正确;C .反比例函数的这个分支能平分周长,所以A ,B 两点连线为圆的直径,这个分支就不能把O的面积平分,故这个选项错误;D.反比例函数的这个分支不可能过圆心O,否则无法平分圆,故这个选项错误.故选B.【点睛】本题考查的是反比例函数的性质的运用,分别讨论可判断正误.5.C【分析】根据圆的面积公式求解即可.【详解】解:这个圆的面积=23.1422=12.56cm⨯⨯,故选:C.【点睛】本题主要考查了圆的面积,解题的关键是熟知圆面积公式.6.B【分析】根据题意可以分别表示出原来和后来扇形的面积,从而可以计算出这个扇形的面积扩大的倍数.【详解】解:设原来扇形的圆心角为α,半径为r,则原来扇形的面积为:2 360rαπ⋅,后来扇形的圆心角为2α,半径为12r,则后来扇形的面积为:2212()123602360r rαπαπ⋅⋅⋅=⨯,①扇形的面积缩小2倍.故选B.【点睛】本题考查了扇形的面积计算,熟记扇形的面积公式是解答本题的关键.7.A【分析】直接根据扇形面积:2S360n rπ=即可求解.【详解】解:215030S375360ππ==平方米.故选:A.【点睛】此题主要考查扇形的面积,正确理解扇形面积与所在圆的面积关系是解题关键.8.D【分析】根据圆柱和圆锥的意义、圆的半径与直径、正负数的意义逐一判断即可.【详解】解:A、圆柱有无数条高,圆锥只有一条高,原说法错误,该选项不符合题意;B、圆的半径扩大到原来的2倍,直径也扩大到原来的2倍,原说法错误,该选项不符合题意;C、圆柱体体积是圆锥表面积没有直接的关系,原说法错误,该选项不符合题意;D、正数和负数可以表示两种相反意义的量,原说法正确,该选项符合题意;故选:D.【点睛】本题考查了正数和负数,圆柱和圆锥的意义,注意基础知识的积累是解题的关键.9.B【分析】根据圆柱侧面展开图的特征,圆柱的侧面沿高展开是一个长方形,这个长方形的长等于圆柱的底面周长,宽等于圆柱的高.首先根据圆的周长公式:C=2πr,求出半径为1cm的圆的周长,然后与长方形的长、宽进行比较,如果圆的周长等于长方形的长,那么长方形的宽就是圆柱的高,如果圆的周长等于长方形的宽,那么长方形的乘等于圆柱的高,据此解答.【详解】解:3.14×1×2=6.28(cm),圆的周长是6.28cm,6.28cm=6.28cm,所以该圆柱的高是3.14cm.故选:B.【点睛】此题考查的目的是理解掌握圆柱侧面展开图的特征及应用.10.D【分析】根据长方体中棱与面的关系判断即可;【详解】长方体中任何一条棱都与两个面平行,正确;长方体中相对的两个面的面积相等,正确;长方体中任何一个面都与四个面垂直,正确;长方体中棱与棱不是相交就是异面,不正确;故答案选D.【点睛】本题主要考查了长方体的棱与面的关系,准确分析是解题的关键.11.B【分析】根据题意,得出该几何体为圆柱,再根据图中的数据,得出圆柱的高和底面半径,再根据圆柱的侧面积的计算公式,计算即可.【详解】解:根据图形,可得:该几何体为圆柱,从正面看高为2,从上面看圆的直径为1,①圆柱的高为2,即2h =,底面直径为1,即1d =,①该几何体的侧面积为:122dh πππ=⨯⨯=.故选:B【点睛】本题考查了几何体的识别、圆柱的侧面积,解本题的关键在熟练掌握圆柱的侧面积计算方法.12.C【分析】根据三视图的定义,逐一判断选项,即可.【详解】A 、正方体从上面和正面看到的形状是正方形,不符合题意B 、圆柱体从上面和正面看到的形状是长方形,不符合题意C 、圆锥从上面的是中间有一个点的圆,正面看到的形状是三角形,符合题意,D 、球体从上面和正面看到的形状均为圆,不符合题意,故选:C .【点睛】本题主要考查几何体的三视图的定义,掌握三视图中的定义是解题的关键. 13.B【分析】一个圆对折实际上我们是沿直径对折的,对折后两条直径会出现一个交叉点,这个点就是圆心.【详解】解:如图所示:两条折痕交叉与O 点,这个点就是圆的圆心.故选:B .【点睛】本题考查了圆的对称性,掌握圆的基本概念是解题的关键.14.A【分析】根据圆的面积公式S =πr 2,代入数据,求出圆形井盖的面积即可得出结论.【详解】解:3.14×302=3.14×0.25=2826(平方米).选项A 中2800<2826.故它能盖住,而选项BCD 的面积均大于圆形井盖的面积,故不能盖住.故选:A【点睛】此题主要考查了圆的面积计算,代入数据即可解答.15.C【分析】根据圆环的面积公式22()R r π-求出圆环面积,再除以2即可求出小路面积.【详解】解:根据题意,沿半圆形草坪外铺一条1米宽的小路,则小路的面积为22223.14[(121)12]2 3.14(1312)2⨯+-÷=⨯-÷.故选:C .【点睛】本题主要考查了有关圆的应用题,解题关键是灵活运用圆的面积公式解决问题. 16.A【分析】根据比的定义可对①进行判断;根据分数的定义可对①①进行判断;根据圆的周长与面积公式可对①进行判断;综上即可得答案.【详解】①8:6=4:3,8+6=14,①如果:4:3a b =,那么a 与b 的和不一定是7,故①错误,设商品的原价为x ,①先提价15,在降价15后的价格为(1+15)(1-15)x =2425x ≠x ,故①错误, ①半径=周长÷π÷2,①两圆周长相等,半径也相等,①圆的面积=半径×半径×π,①两圆周长相等,则这两个圆面积也相等;故①正确,把男生人数看作单位“1”,①女生人数是男生人数的35, ①女生人数为35, ①男生人数比女生人数多(1-35)÷35=23,故①错误, 综上所述:正确的说法有①,共1个,故选:A .【点睛】本题考查比的定义、分数的定义及圆的周长与面积,熟练掌握定义及公式是解题关键.17.C【分析】利用圆的面积公式计算即可.【详解】解:一个雷达圆形屏幕的直径是20厘米,则它的面积是:220()1002ππ=(平方厘米),100π平方厘米=0.01π平方米;故选:C .【点睛】本题考查了圆的面积的计算和单位转换,解题关键是熟记圆面积公式. 18.B【分析】这只羊最多可以吃到草地上的面积是:以10米为半径的圆的面积.【详解】这只羊最多可以吃到草地上的面积是: 223.1410r π=⨯故选:B【点睛】考核知识点:圆的面积.把问题转化为求圆的面积是关键.19.C【分析】圆的面积S=2r π,即要求2r ,已知以圆O 的半径OA 为边长所画正方形面积为3,即2r =3,代入面积公式求解即可.【详解】S=2r π=3.14×3=9.42(平方厘米).故选:C .【点睛】本题主要考查圆的面积公式,熟记圆的面积公式是解题关键.20.D【分析】根据周长公式求解即可.【详解】C πd 或2C r π=.故选:D .【点睛】此题考查了周长公式,解题的关键是熟记圆的周长公式.21.2【分析】先求解圆的半径,从而可得答案.【详解】解:一个周长是12.56厘米的圆的半径为:12.562 3.14=12.56 6.28=2,所以用圆规画一个周长是12.56厘米的圆,圆规两脚间的距离是2厘米.【点睛】本题考查的是利用圆的周长求解圆的半径,理解圆的周长公式是解本题的关键. 22. 13.08 15.23【分析】根据扇形的面积以及周长公式即可求解.【详解】解:扇形的面积为:60 3.145536013.08⨯⨯⨯÷=平方厘米 ;此扇形的周长为:60 3.1451805215.23⨯⨯÷+⨯=厘米.故答案为:13.08;15.23.【点睛】本题考查扇形面积及周长的计算,注意扇形的周长还包含了两条半径的长. 23.CG ##GC【分析】直接根据异面直线的概念即可求解.【详解】解:从长方体中,可以得到与棱EF 和棱EH 都异面的棱是CG ,故答案为:CG【点睛】本题考查了异面直线的概念,理解掌握不在同一平面内的直线是异面直线,或者说既不平行,也不相交的直线.24.32π【分析】圆环的面积()22R r π=-,由此代入数据即可作答. 【详解】解:22124()()22ππ⨯-⨯364ππ=-232()cm π=, 故答案为:32π.【点睛】此题考查了圆环的面积公式的计算应用.25.5【分析】由圆的面积推导过程可知:将圆拼成近似的长方形后,长方形的长就等于圆的周长的一半,宽就等于圆的半径,从而可知,这个长方形的周长比原来圆的周长多出了两个半径的长度,据此即可求解.【详解】解:因为将圆拼成近似的长方形后,长方形的长就等于圆的周长的一半,宽就等于圆的半径,所以这个长方形的周长比原来圆的周长多出了两个半径的长度,即多出了一个直径的长度,也就是10厘米,所以圆的半径为5厘米【点睛】本题考查认识平面图形,理解图形周长的意义和拼图前后之间的关系是解决问题的关键.26.平面D【分析】只需要找出平面B 的对面即可;【详解】根据题意可知:平面B 的相对面是平面D ,所以平面D 与平面B 平行; 故答案是平面D .【点睛】本题主要考查了正方体的展开图,准确分析是解题的关键.27.9【分析】因为等底等高的圆柱的体积是圆锥体积的3倍,所以等底等高的圆柱与圆锥的体积差相当于圆锥体积的(3−1)倍,根据已知一个数的几倍是多少,求这个数,用除法解答.【详解】解:18÷(3−1)=18÷2=93dm ()答:圆锥的体积是93dm .故答案为:9.【点睛】此题考查的目的是理解掌握等底等高的圆柱与圆锥体积之间的关系及应用. 28.60︒【分析】根据扇形和圆形的面积公式,结合题意即可求出AOB ∠的大小.【详解】设圆的半径为R ,圆心角AOB α∠=, ①2=360R S απ⨯⨯︒扇形, 根据题意可知1=6S S 扇形圆形,即: 221360=6R R αππ⨯⨯︒⨯. ①=60α︒,即60AOB ∠=︒.故答案为60︒.【点睛】本题考查扇形和圆形的面积公式.掌握已知圆心角的扇形的面积公式是解答本题的关键.29.3 5【分析】先求出较小扇形的弧长为328rπ⨯,较大扇形的弧长为528rπ⨯,根据分数的除法32 8rπ⨯÷528rπ⨯=383855⨯=即可.【详解】解:①1353= 3608,①较小扇形的弧长为328rπ⨯,①较大扇形的弧长为528rπ⨯,①328rπ⨯÷528rπ⨯()=383855⨯=①较小扇形的弧长是较大扇形的弧长35.故答案为:35.【点睛】本题考查圆的周长,圆心角、扇形弧长与圆的周长的关系,分数的除法,掌握圆的周长,圆心角、扇形弧长与圆的周长的关系,分数的除法是解题关键.30.4【分析】在长方体中,棱与面之间的关系有平行和垂直两种.【详解】与平面BCGF垂直的棱有AB、DC、EF、HG.共四条.故答案为4.【点睛】本题考查的知识点为:与一个平面内的任一条直线垂直的直线就与这个平面垂直.31.19cm【分析】根据扇形的面积公式求出弧长,然后根据周长的定义即可求出结论.【详解】解:12×2÷8=3cm扇形的周长=3+8×2=19cm故答案为:19cm.【点睛】此题考查的是求扇形的周长,掌握扇形的面积公式和周长的定义是解决此题的关键.32.32ππ或【分析】分两种情况进行讨论:当以长6cm 为底面圆的周长时;当以长4cm 为底面圆的周长时;根据圆的周长公式求解即可.【详解】解:当以长6cm 为底面圆的周长时,底面圆的半径为:6÷2÷π=3πcm ; 当以长4cm 为底面圆的周长时,底面圆的半径为:4÷2÷π=2πcm ; 故答案为:3π或2π. 【点睛】题目主要考查圆的周长公式及圆柱的展开图,理解题意,列出式子是解题关键. 33.10或14【分析】根据题意可得拼接方法有两种:一种是23⨯,一种是16⨯,然后进行分类求解即可.【详解】解:①如果是23⨯的拼法,拼法之前是6636⨯=(平方厘米),拼之后是()121323222⨯+⨯+⨯⨯=(平方厘米),减少了14平方厘米,①如果是16⨯的拼法,拼之前是36平方厘米,拼之后是()11616226+⨯+⨯⨯=(平方厘米),减少了10平方厘米.故答案为10或14.【点睛】本题主要考查长方体的表面积,关键是根据题意得到拼接方式,然后进行求解即可.34.4【分析】根据题意,画出图形,即可得出结论.【详解】解:如图所示,与平面11AA D D 平行的棱有BC 、1111BB CC B C 、、,共有4条 故答案为:4.【点睛】此题考查的是长方体中棱和平面位置关系的判断,掌握长方体的特征是解决此题的关键.35.20【分析】根据圆的半径等于直径的一半即可求解.【详解】解:一个圆形花坛的直径是40米,那么它的半径是20米,故答案为:20.【点睛】本题考查了求圆的半径,掌握圆的半径等于直径的一半是解题的关键.36.1224【分析】等底等高的圆柱的体积是圆锥体积的3倍,它们体积的和是圆锥体积的3+1=4倍,已知它们的之和是48立方分米,据此可求出圆锥的体积,进而可求了圆柱的体积,用圆柱的体积再减圆锥的体积即可.【详解】解:圆锥的体积是48÷(3+1)=48÷4=12(立方分米)48-12=36(立方分米)36-12=24(立方分米)答:圆锥的体积比圆柱少24立方分米.故答案为:12,24.【点睛】此题主要考查圆锥和圆柱的体积计算,根据等底等高的圆锥的体积是圆柱体积的1是解题的关键.337.错##【分析】根据半圆周长的意义,半圆的周长等于该圆周长的一半加上直径,据此作出判断即可.【详解】解:因为半圆的周长等于该圆周长的一半加上直径,所以半圆形的周长不等于它所在圆的周长的一半,因此,题干中的说法是错误的.故答案为:错.【点睛】本题主要考查的是理解掌握半圆周长的意义及应用.38.4【分析】直接根据长方体棱与棱的位置关系直接求解即可.【详解】如图所示:假设不与棱AB既不平行也不相交的棱有:EH、FG、HD、GC;共4条;故答案为4.【点睛】本题主要考查长方体中棱与棱的位置关系,正确理解概念是解题的关键.39.12【分析】πR2是圆的面积公式,圆可以当作非常特别的扇形(360°),扇形的面积公式根据圆的面积公式来算的,圆心角扩大到原来的2倍,面积扩大到原来的2倍,(圆心角扩大的基础上)半径缩小为原来的一半,面积缩小为14,总的算起来面积缩小为到原来12.【详解】原扇形面积=圆心角÷360°×π×R2,新扇形面积=(圆心角×2)÷360°×π×(12R)2=圆心角÷360×2×π×14R2=圆心角÷360°×π×R2×12,所以新扇形面积:原扇形面积=12:1=12.故答案为:12【点睛】考核知识点:扇形面积.理解扇形面积计算方法是关键.40.1π-【分析】根据直径为单位1的圆从数轴上表示1的点沿着数轴无滑动地逆时针滚动一周到达A点,可得圆的周长,根据两点间的距离是大数减小数,可得答案.【详解】解:由直径为单位1的圆从数轴上表示−1的点沿着数轴无滑动的向右滚动一周到达A点,得:A点与−1之间的距离是π.由两点间的距离是大数减小数,得:A点表示的数是1π-,故答案为:1π-.【点睛】本题考查了数轴和圆的周长,掌握数轴上两点间的距离是大数减小数是解题关键.41.(1)圆柱;(2)144π平方厘米.【分析】(1)根据面动成体可知将正方形围绕它的一条边为轴旋转一周,得到的是圆柱; (2)根据圆柱的高和圆柱的底面半径都是正方形的边长,由此数据利用圆柱的表面积=上下底面面积+侧面积解答即可.【详解】解:(1)将正方形围绕它的一条边为轴旋转一周,得到的是圆柱,故答案为:圆柱(2)立体图形的表面积=266+266=144πππ⨯⨯⨯⨯(平方厘米);答:这个图形的表面积是144π平方厘米.【点睛】解答此题的关键是找出旋转所得到的图形与原图形之间的数据关系,然后根据圆柱的表面积公式进行解答.42.(1)22111422a ax x πππ-+ (2)AP=13a 时的面积大于AP =12a 时的面积【分析】(1)用圆形的面积公式求解;(2)根据AP 的长度,分别计算两个圆形的面积之和,比较即可.(1)解:①AP =x ,①S =221()()22a x x ππ-+ 22111422a ax x πππ=-+. (2)当AP =13a 时,BP =23a , 22111()()63S a a ππ=+ 2536a π=, 当AP =12a 时,BP =12a ,2221144S a a ππ=+()()218a π=, ①2536a π218a π> ①AP=13a 时的面积大于AP =12a 时的面积. 【点睛】本题考查了动点问题的解决方法圆形的面积公式,完全平方公式,正确进行计算是解决本题的关键.43.(1)180204⨯=(棵) (2)()22π32π316π+-⨯=(平方分米)【分析】(1)把苹果树的数量看作单位“1”,梨树的数量比苹果树少14,根据一个数乘分数的意义,用乘法解答;(2)大圆面积减小圆面积即为所求圆环面积.(1) 解:180204⨯=(棵), 故答案为:180204⨯=(棵) (2)解:()22π32π316π+-⨯=(平方分米)故答案为:()22π32π316π+-⨯=(平方分米)【点睛】此题考查分数乘法应用题和求圆环的面积.解答图文应用题的关键是根据图、文所提供的信息,弄清条件和问题,然后再选择合适的方法列式、解答.44.(1)棱AD 、棱EH 、棱FG(2)面BCGF(3)面ABCD 、面ADHE 、面ABFE(4)棱DA 、棱DC 、棱DH .【分析】(1)找与棱CB 相等的棱,可找到与棱CB 平行的棱即是所求.(2)与面ADHE 相对的面是BCGF(3)找经过点A 的面,可找出所以经过A 点的棱组成的面即是所求.。
初中数学中心对称图形专题训练50题(含答案)

初中数学中心对称图形专题训练50题含参考答案一、单选题1.在平面直角坐标系中,点(2-,6)关于原点对称的点坐标是()A.(6-,2)B.(2,6-)C.(2,6)D.(2-,6-)2.下列图标中,既是中心对称又是轴对称的图标是()A.B.C.D.3.在平面直角坐标系中,若点P(m,m﹣n)与点Q(﹣2,3)关于原点对称,则点M(m,n)在()A.(2,5)B.(-3,2)C.(3,-2)D.(3,2)4.我国已经进入5G时代,自动驾驶技术和远程外科手术技术得以进一步发展.下列通信公司标志中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.5.下列所给图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.6.下列图形中,属于中心对称图形的是()A.B.C.D.7.下列图形中,既是轴对称图形,又是中心对称图形的是()A.正三角形B.正五边形C.正六边形D.正七边形8.下列图案中,既是轴对称图形,又是中心对称图形的是()A.等边三角形B.平行四边形C.矩形D.直角三角形9.下列图案,既是轴对称图形又是中心对称图形的个数是().A.1B.2C.3D.410.剪纸文化是中国最古老的民间艺术之一,下列剪纸图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.11.在平行四边形,矩形,圆,正方形,等边三角形中,既是轴对称图形,又是中心对称图形的图形有()A.3个B.4个C.5个D.6个12.在下列四个图形中,是中心对称图形的是()A.B.C.D.13.这四个汽车标志图中,既是中心对称图形又是轴对称图形的是()A.B.C.D.14.下列①平行四边形,①矩形,①菱形,①正方形四个图形中,是中心对称图形,但不是轴对称图形是()A.①B.①C.①D.①15.下列图形中,可以看作是中心对称图形的有()A.0个B.1个C.2个D.3个16.下列图案中不是中心对称图形的是()A.B.C.D.17.下列图形中,是中心对称图形,但不是轴对称图形的是()A.(A)B.(B)C.(C)D.(D)18.下列图案中既是轴对称又是中心对称图形的是()A.B.C.D.19.将如图的七巧板的其中几块,拼成一个多边形,为中心对称图形的是()A .B .C .D .二、填空题20.平面直角坐标系内一点(5,3)P -,关于原点对称的点的坐标为____________. 21.在平面直角坐标系中点M (2,﹣4)关于原点对称的点的坐标为 _____. 22.在平面直角坐标系中,点()2,3A 关于x 轴的对称点是_____;关于y 轴的对称点是_____;关于原点的对称点是_____.23.点(2,1)P -与点Q 关于原点对称,则点Q 的坐标为__________.24.点A (a ,3)与点B (﹣4,b )关于原点对称,则a+b =_____.25.将点()2,3P 绕原点O 旋转180°后P 点的对应点坐标为______.26.已知点(,1)A a 与点(3,1)B --关于原点对称,则=a __ .27.点A (-1,2)关于原点中心对称点的坐标是___________28.在平面直角坐标系中,已知点(),2A a -和点()3,B b 关于原点对称,则a b +=________.29.在平面直角坐标系中,若点(),3A a 与点()4,B b 关于原点O 对称,则ab =__________.30.在四张完全相同的卡片上,分别画有:线段、正三角形、矩形、圆,如果从中随机抽取一张,那么卡片上所画的图形恰好既是中心对称图形,又是轴对称图形的概率是____.31.点A(-3,4)关于x 轴对称的点的坐标为__,关于y 轴对称的点的坐标为__,关于原点对称的坐标为__.32.已知点(2,)A m -与点(,3)B n 关于原点对称,则n m 的值为____________________. 33.已知实数a 、b 是方程22530x x --=的两根,a b <,则点(),P a b 关于原点的对称点Q 的坐标是___________.34.下列图形中,其中是中心对称图形有_____个.①圆;①平行四边形;①长方形;①等腰三角形.35.在直角坐标系中,点(﹣1,2)关于原点对称的点的坐标是___.36.点2(1)A -,关于x 轴对称的点的坐标是_____;点A 关于原点对称的点的坐标是_____.37.平面直角坐标系中,点(31)P a -,与点(23)Q b ,+关于原点对称,则a b +=_____. 38.如图,在平面直角坐标系中,11OA B 是边长为1的等边三角形,作122B A B 与11B AO 关于点1B 成中心对称,再作233B A B 与221B A B 关于点2B 成中心对称,继续作344B A B 与332B A B 关于点3B 成中心对称,….按此规律作下去,则202120222022B A B 的顶点2022A 的坐标是__________.39.如图,C 是线段AB 的中点,B 是线段CD 的中点,线段AB 的对称中心是点__,点C 关于点B 成中心对称的点是点__.三、解答题40.如图,已知①ABC 的三个顶点的坐标分别为A (﹣2,3)、B (﹣6,0)、C (﹣1,0).(1)画出①ABC 关于原点成中心对称的三角形①A′B′C′;(2)将①ABC 绕坐标原点O 逆时针旋转90°,画出图形,直接写出点B 的对应点B″的坐标;(3)请直接写出:以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标.41.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC 的顶点均在格点上,点C 的坐标为()41-,.(1)把ABC 向上平移5个单位后得到对应的111A B C △,画出111A B C △;(2)以原点O 为对称中心,画出与111A B C △关于原点O 对称的222A B C △.42.利用图甲所示的地板砖各两块,在图乙(1)中铺成一个只是轴对称的图形;在图乙(2)铺成一个只是中心对称的图形,在图乙(3)中铺成既是轴对称图形,又是中心对称的图形.43.如图:在网格中按题目要求画图(1)把ABC 先向右平移5格,再向上平移3格得到111A B C △;(2)作ABC 关于原点对称的图形得到222A B C △.44.如图,方格纸中每个小正方形的边长都是1个单位长度,在方格纸中建立如图所示的平面直角坐标系,①ABC 的顶点都在格点上.(1)将①ABC 向右平移6个单位长度得到①A 1B 1C 1,请画出①A 1B 1C 1;(2)画出①ABC 关于点O 的中心对称图形①A 2B 2C 2;(3)若将①A 1B 1C 1绕某一点旋转可得到①A 2B 2C 2,请直接写出旋转中心的坐标:_________.45.在建立平面直角坐标系的方格纸中,每个小方格都是边长为1的小正方形,①ABC 的顶点均在格点上,点C 的坐标为(0,1),请按要求画图与作答:(1)请画出①ABC关于原点成中心对称的①A1B1C1;(2)请画出①ABC绕着点C顺时针旋转90°后的①A2B2C2;(3)求①A2B2C2的面积.46.如图,在平面直角坐标系中,已知点A(﹣2,3),B(﹣3,1),C(﹣1,2).且△A1B1C1与△ABC关于原点O成中心对称.(1)画出△A1B1C1,并写出A1的坐标;(2)P(a,b)是△ABC的边AC上一点,△ABC经平移后点P的对应点P′(a+3,b+1),请画出平移后的△A2B2C2.47.如图,已知△ABC的顶点A、B、C的坐标分别是A(﹣1,﹣1)、B(﹣4,﹣3)、C(﹣4,﹣1).(1)画出△ABC关于原点O中心对称的图形△A1B1C1;(2)将△ABC绕点A按顺时针方向旋转90°后得到△AB2C2,画出△AB2C2并求线段AB 扫过的面积.48.如图,已知△ABC的三个顶点坐标为A(-4,3)、B(-6,0)、C(-1,0).(1) 请画出△ABC关于坐标原点O的中心对称图形△A′B′C′,并写出点A的对应点A′的坐标;(2)若将点B绕坐标原点O顺时针旋转90°,请直接写出点B的对应点B″的坐标;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.49.在平面直角坐标系中,抛物线L1:y=ax2+2x+b与x轴交于两点A,B(3,0),与y轴交于点C(0,3).(1)求抛物线L1的函数解析式,并直接写出顶点D的坐标;(2)如图,连接BD,若点E在线段BD上运动(不与B,D重合),过点E作EF①x轴于点F,设EF=m,问:当m为何值时,①BFE与①DEC的面积之和最小;(3)若将抛物线L1绕点B旋转180°得抛物线L2,其中C,D两点的对称点分别记作M,N.问:在抛物线L2的对称轴上是否存在点P,使得以B,M,P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.参考答案:1.B【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】点A(-2,6)关于原点对称的点的坐标是(2,-6),故选:B.【点睛】本题考查了关于原点对称的点的坐标,利用关于原点对称的点的横坐标互为相反数,纵坐标互为相反数是解题关键.2.A【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】A.既是中心对称又是轴对称,符合题意;B.不是中心对称,是轴对称,不符合题意;C.不是中心对称,是轴对称,不符合题意;D.既不是中心对称也不是轴对称,不符合题意;故选:A.【点睛】本题考查了轴对称图形与中心对称图形的识别,牢记轴对称图形和中心对称图形的概念是解答本题的关键.3.A【详解】①P(m,m-n)与点Q(-2,3)关于原点对称,①m=2,n=5,①点P的坐标为(2,5).故选A.4.C【分析】根据中心对称图形以及轴对称图形的概念对各选项分析判断即可得解.【详解】解:A.既是轴对称图形,也是中心对称图形,故本选项不合题意;B.既不是轴对称图形,又不是中心对称图形,故本选项不合题意;C.是中心对称图形,但不是轴对称图形,故本选项符合题意;D.是轴对称图形,不是中心对称图形,故本选项不合题意.故选:C.【点睛】本题考查了中心对称图形以及轴对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后和原图形重合.5.B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;B.既是轴对称图形又是中心对称图形,故本选项符合题意;C.不是轴对称图形,也不是中心对称图形,故本选项不符合题意;D.是轴对称图形,不是中心对称图形,故本选项不符合题意;故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.D【分析】根据中心对称图形的概念进行求解即可.【详解】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确.故选:D.【点睛】本题考查了中心对称图形的概念,解题的关键是要寻找对称中心,图形旋转180°后与原图重合.7.C【分析】根据轴对称图形与中心对称图形的概念求解即可.【详解】A、此图形不是中心对称图形,是轴对称图形,故此选项错误;B、此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形既是中心对称图形,又是轴对称图形,故此选项正确;D、此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:C.【点睛】本题主要考查了轴对称图形与中心对称图形,掌握好中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.8.C【分析】根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【详解】解:A、等边三角形是轴对称图形,不是中心对称图形,不符合题意;B、平行四边形不是轴对称图形,是中心对称图形,不符合题意;C、矩形是轴对称图形,也是中心对称图形,符合题意;D、直角三角形不一定是轴对称图形,不是中心对称图形,不符合题意.故选C.【点睛】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.9.C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:第一个图形是轴对称图形,是中心对称图形;第二个图形是轴对称图形,不是中心对称图形;第三个图形是轴对称图形,是中心对称图形;第四个图形是轴对称图形,是中心对称图形.共有3个图形既是轴对称图形,也是中心对称图形,故选C.【点睛】此题主要考查了中心对称图形与轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.10.A【分析】根据中心对称图形和轴对称图形的概念,即可得出正确选项.【详解】解:A.此图既是轴对称图形又是中心对称图形,故此选项符合题意;B.此图不是中心对称图形,是轴对称图形,故此选项不合题意;C.此图是中心对称图形,不是轴对称图形,故此选项不合题意;D.此图不是中心对称图形,是轴对称图形,故此选项不合题意;故选:A.【点睛】本题考查中心对称图形和轴对称图形的概念,属于基础题,熟练掌握概念是本题的关键.11.A【详解】试题分析:根据轴对称图形与中心对称图形的概念求解.解:既是轴对称图形又是中心对称图形的图形为:矩形、圆,正方形,共3个.故选A.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.12.D【详解】A、是轴对称图形,不是中心对称图形,故本选项错误,B、是轴对称图形,不是中心对称图形,故本选项错误,C、不是中心对称图形,故本选项错误,D、是中心对称图形,故本选项正确.故选D.13.C【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、是轴对称图形,不是中心对称图形,故本选项不符合题意;C、是轴对称图形,也是中心对称图形,故本选项符合题意;D、不是轴对称图形,是中心对称图形,故本选项不符合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.14.A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、平行四边形不是轴对称图形,是中心对称图形,故此选项正确;B、矩形既是轴对称图形,又是中心对称图形,故此选项错误;C、菱形既是轴对称图形,也是中心对称图形,故此选项错误;D、正方形既是轴对称图形,也是中心对称图形,故此选项错误.故答案为:A.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.15.C【详解】根据中心对称图形的性质得出图形旋转180°,与原图形能够完全重合的图形是中心对称图形,分别判断得出即可.解:①、旋转180°,与原图形不能够重合,不是中心对称图形,故错误;①、旋转180°,能与原图形能够完全重合,是中心对称图形,故正确;①、旋转180°,能与原图形能够完全重合,不是中心对称图形,故正确;①、旋转180°,能与原图形能够完全重合,是中心对称图形,故正确;综上可得有两个正确.故选C.此题主要考查了中心对称图形的性质,根据中心对称图形的定义判断图形是解决问题的关键.16.D【分析】根据中心对称图形定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,对四个选项分别进行判断,即可得出结论.【详解】解:A、B、C三个选项的图形都是中心对称图形,D不是中心对称图形.故选:D.【点睛】本题考查了中心对称图形,掌握中心对称图形的定义并能运用定义对图形进行准确判断是解题的关键.17.B【详解】分析:根据轴对称图形与中心对称图形的概念进行判断即可.详解:A、是轴对称图形,不是中心对称图形,故选项错误;B、不是轴对称图形,是中心对称图形,故选项正确;C、是轴对称图形,也是中心对称图形,故选项错误;D、是轴对称图形,不是中心对称图形,故选项错误.故选B .点睛:本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.18.B【分析】根据轴对称图形与中心对称图形的概念判断即可.【详解】解:A.是轴对称图形,不是中心对称图形,故本选项不合题意;B.是轴对称图形,也是中心对称图形,故本选项符合题意;C.不是轴对称图形,是中心对称图形,故本选项不合题意;D.是轴对称图形,不是中心对称图形,故本选项不合题意.故选:B【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.19.D【分析】根据中心对称的定义,结合所给图形即可作出判断.【详解】A 、不是中心对称图形,故本选项不符合题意;B 、不是中心对称图形,故本选项不符合题意;C 、不是中心对称图形,故本选项不符合题意;D 、是中心对称图形,故本选项符合题意.故选:D .【点睛】此题主要考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分能够完全重合.20.(-5,3).【详解】试题分析:关于原点对称的点的坐标横、纵坐标均互为相反数,所以P (5,-3)关于原点对称点的坐标是(-5,3).故答案为(-5,3).考点:关于原点对称点的坐标.21.()2,4-【分析】根据在平面直角坐标系中,若两点关于原点对称,则这两点的横纵坐标均互为相反数,即可求解.【详解】解:点M (2,﹣4)关于原点对称的点的坐标为()2,4-故答案为:()2,4-【点睛】本题主要考查了两点关于坐标原点对称的特征,熟练掌握在平面直角坐标系中,若两点关于原点对称,则这两点的横纵坐标均互为相反数是解题的关键.22. ()2,3- ()2,3- ()2,3--【分析】根据关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变;关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反,可直接写出答案.【详解】解:在平面直角坐标系中,点()2,3A 关于x 轴的对称点是()2,3-;关于y 轴的对称点是()2,3-;关于原点的对称点是()2,3--.故答案为:()2,3-;()2,3-;()2,3--.【点睛】此题主要考查了关于x 轴、y 轴、以及关于原点对称点的性质,正确记忆横纵坐标的关系是解题关键.23.(21)-,【详解】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(−x,−y),所以点Q 的坐标为(−2,1).,故答案为()21-, 24.1【分析】根据平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数,则a=4,b=-3,从而得出a+b .【详解】根据平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数, ①a=4且b=-3,①a+b=1.故答案为125.()2,3--【分析】根据两点关于原点的对称的坐标特征:横纵坐标均互为相反数,即可求解.【详解】点()2,3P 绕原点O 旋转180°后,P 点的对应点与点P 关于原点对称,则其坐标为()2,3--.故答案为:()2,3--.【点睛】本题考查了平面直角坐标系中关于原点对称的两点的坐标特征,掌握这一特征是关键.26.3【分析】直接利用关于原点对称点的性质即可得出答案. 【详解】解:点(,1)A a 与点(3,1)B --关于原点对称,3a ∴=.故答案为:3【点睛】此题主要考查了关于原点对称点的性质,正确记忆关于原点对称点的性质是解题关键.27.1,2【详解】根据关于原点成中心对称的两个点的横、纵坐标互为相反数即可得出答案. 解:点A (-1,2)关于原点中心对称点的坐标是(1,-2).故答案为(1,-2).28.-1【分析】关于原点对称的两个点的横纵坐标都互为相反数,根据特点列式求出a 、b 即可求得答案.【详解】①点(),2A a -和点()3,B b 关于原点对称,①a=-3,b=2,①a+b=-3+2=-1,故答案为:-1.【点睛】此题考查原点对称点的性质,熟记性质并运用解题是关键.29.12【分析】直接利用关于原点对称点的性质得出a ,b 的值,进而得出答案.【详解】解:①点A 的坐标为(a ,3),点B 的坐标是(4,b ),点A 与点B 关于原点O 对称,①a=-4,b=-3,则ab=12.故答案为:12.【点睛】此题主要考查了关于原点对称点的性质,正确得出a,b的值是解题关键.30.3 4【分析】根据在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;在平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫做轴对称图形;对线段、正三角形、矩形、圆进行判断,然后求概率即可.【详解】解:由题意知,既是中心对称图形又是轴对称图形的为线段、矩形、圆,①卡片上所画的图形恰好既是中心对称图形,又是轴对称图形的概率是34,故答案为:34.【点睛】本题考查了中心对称图形,轴对称图形的定义,概率等知识.解题的关键在于熟练掌握中心对称图形,轴对称图形的定义.31.(﹣3,﹣4),(3,4),(3,﹣4)【分析】根据在平面直角坐标系中,点关于x轴对称时,横坐标不变,纵坐标为相反数,关于y轴对称时,横坐标为相反数,纵坐标不变,关于原点对称时,横纵坐标都为相反数,即可解答本题.【详解】①在平面直角坐标系中,点关于x轴对称时,横坐标不变,纵坐标为相反数,①点A关于x轴对称的点的坐标是(﹣3,﹣4),①关于y轴对称时,横坐标为相反数,纵坐标不变,①点A关于y轴对称的点的坐标是(3,4),①关于原点对称时,横纵坐标都为相反数,①点A关于原点对称的点的坐标是(3,﹣4).故答案为(﹣3,﹣4),(3,4),(3,﹣4).【点睛】本题考查了在平面直角坐标系中,点关于x轴,y轴及原点对称时横纵坐标的符号,难度适中.32.9【分析】根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数求得,m n的值,进而求得n m 的值. 【详解】解:点(2,)A m -与点(,3)B n 关于原点对称,3,2m n ∴=-=∴n m ()239=-= 故答案为:9【点睛】本题考查了关于原点对称的点的坐标特征,有理数的乘法,掌握关于原点对称的点的坐标特征是解题的关键.33.1,32⎛⎫- ⎪⎝⎭【分析】先利用因式分解法解一元二次方程求出,a b 的值,进而利用关于原点对称点的坐标性质得出即可.【详解】①实数a 、b 是方程22530x x --=的两根,a b <,()()2130x x ∴+-=,1,32a b ∴=-=, 1,32P ⎛⎫∴- ⎪⎝⎭, ①点1,32P ⎛⎫- ⎪⎝⎭关于原点的对称点Q 的坐标是1,32⎛⎫- ⎪⎝⎭, 故答案为:1,32⎛⎫- ⎪⎝⎭. 【点睛】本题考查了关于原点对称的点的坐标和解一元二次方程-因式分解法,熟练掌握知识点是解题的关键.34.3【分析】根据中心对称图形的特点进行分析即可.【详解】解:①圆;①平行四边形;①长方形是中心对称图形,共3个,①等腰三角形不是中心对称图形.故答案为:3.【点睛】本题考查中心对称图形的识别,熟练掌握中心对称图形的特点是解题关键. 35.1,2【分析】根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,据此分析即可【详解】点(﹣1,2)关于原点对称的点的坐标是1,2故答案为:1,2【点睛】本题考查了关于原点对称的点的坐标的特点,掌握平面直角坐标系中对称点的坐标特点是解题的关键.36. (1,2) (﹣1,2)【详解】解:点P (m ,n )关于x 轴对称点的坐标P′(m ,﹣n ),关于原点对称点的坐标P″(﹣m ,﹣n );所以点A (1,﹣2)关于x 轴对称的点的坐标为(1,2),关于原点对称的坐标是(﹣1,2).故答案为:(1,2);(﹣1,2)37.﹣1【分析】根据原点对称的点,横坐标和纵坐标都互为相反数,即可得到答案.【详解】解:①P 与Q 关于原点对称,故3=-(b +2),1-a =-3,解得:a =4,b =-5,①a +b =-1,故答案为-1.【点睛】本题主要考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律.38.40432⎛ ⎝⎭【分析】首先根据11OA B 是边长为1的等边三角形,可得A 1的坐标为1,2⎛ ⎝⎭,B 1的坐标为(1,0);然后根据中心对称的性质,分别求出点A 2、A 3的坐标各是多少;最后总结出An 的坐标的规律,求出A 2n +1的坐标是多少即可.【详解】解:①11OA B 是边长为1的等边三角形,①A 1的坐标为:1,2⎛ ⎝⎭,B 1的坐标为:(1,0), ①233B A B 与221B A B 关于点2B 成中心对称,①点A 2与点A 1关于点B 1成中心对称, ①132122⨯-=,①点A 2的坐标是:32⎛ ⎝⎭,①①B 2A 3B 3与△B 2A 2B 1关于点B 2成中心对称,①点A 3与点A 2关于点B 2成中心对称, ①153122⨯-=①点A 3的坐标是:5,2⎛ ⎝⎭,①An 的横坐标是:n −12,当n 为奇数时,An 的纵坐标是:,当n 为偶数时,An 的纵①2022是偶数,14043202222-=①2022A 的坐标是40432⎛ ⎝⎭,故答案为:40432⎛ ⎝⎭. 【点睛】此题主要考查了中心对称的性质、坐标与图形性质、等边三角形的性质等知识;熟练掌握等边三角形的性质和中心对称的性质,分别判断出An 的横坐标和纵坐标是解题的关键.39. C D【详解】根据中心对称图形的对称中心的定义,点C 是线段AB 的中点,点B 是线段CD 的中点,线段AB 的对称中心是点C ;点C 关于点B 成中心对称的对称点是点D. 故答案为C ;D.40.(1)图略;(2)图略,点B″的坐标为(0,﹣6);(3)点D 坐标为(﹣7,3)或(3,3)或(﹣5,﹣3).【分析】(1)根据网格结构找出点A 、B 、C 关于原点对称的点A′、B′、C′的位置,然后顺次连接即可;(2)根据网格结构找出点A 、B 、C 绕坐标原点O 逆时针旋转90°的对应点的位置,然后顺次连接即可,再根据平面直角坐标系写出点B 的对应点的坐标;(3)分AB 、BC 、AC 是平行四边形的对角线三种情况解答.。
浙教版初中数学八年级上册专题50题(含答案)

浙教版初中数学八年级上册专题50题含答案一、单选题1.下列是我省几家著名煤炭企业的徽标,其中轴对称图形是( )A .B .C .D .2.若66x y >-,则下列不等式中一定成立的是( )A .0x y +>B .0x y ->C .0x y +<D .0x y -< 3.如图,已知,AB AD =,ACB AED ∠=∠,DAB EAC ∠=∠,则下列结论错误..的是( )A .B ADE ∠=∠B .BC AE = C .ACE AEC∠=∠ D .CDE BAD ∠=∠ 4.如图所示的容器内装满水,打开排水管,容器内的水匀速流出,则容器内液面的高度h 随时间x 变化的函数图象最接近实际情况的是( )A .B .C .D .5.下列图象中,表示y 是x 的函数的是( )A .B .C .D .6.在平面直角坐标系中,将点(2,3)向上平移1个单位,再向左平移2个单位,所得到的点的坐标是( )A .(-2,3)B .(-1,2)C .(0,4)D .(4,4) 7.下列四组数,是勾股数的是( )A .1,2,3B .2,3,4C .1,3D .5,12,13 8.在ABC 中,A ∠,B ∠,C ∠的对边分别为a ,b ,c ,下列条件不能判定ABC 为直角三角形的是( )A .ABC ∠∠=∠+B .222a c b =-C .23a =,24b =,25c =D .5a =,12b =,13c =9.在平面直角坐标系中,若点()2P x -,在第二象限,则x 是( )A .正数B .负数C .正数或0D .任意数 10.如图是由圆和正方形组成的轴对称图形,对称轴的条数有 ( )A .2条B .3条C .4条D .6条 11.点A 的位置如图所示,下列说法正确的是( )A .点A 在点O 的30°方向,距点O 10.5km 处B .点A 在点O 北偏东30°方向,距点O 10.5km 处C .点O 在点A 北偏东60°方向,距点A 10.5km 处D .点A 在点O 北偏东60°方向,距点O 10.5km 处12.如图,已知A 1(1,0),A 2(1,1),A 3(-1,1),A 4(-1,-1),A 5(2,-1),…,则A 2017的坐标为( )A .(505,504)B .(505,-504)C .(-504,504)D .(-504,-504)13.已知4<m ≤5,则关于x 的不等式组0420x m x -<⎧⎨-≤⎩的整数解的个数共有( ) A .2 B .3 C .4 D .514.若x y <,则下列不等式一定成立的是( )A .22x y -<-B .22x y -<-C .nx my >D .22x y > 15.如图,OA 和BA 分别表示甲乙两名学生练习跑步的一次函数的图象,图中S 和t 分别表示路程(米)和时间(秒),根据图象判定跑210米时,快者比慢者少用( )秒.A .4秒B .3.5秒C .5秒D .3秒 16.如图,在ABC 中,AD BC ⊥于D ,且AD BC =,以AB 为底边作等腰直角三角形ABE ,连接ED 、EC ,延长CE 交AD 于点F ,下列结论:①ADE BCE △△≌;①BD DF AD +=;①CE DE ⊥;①BDE ACE S S =△△,其中正确的有( ).A .①①B .①①C .①①①D .①①①① 17.如图,在△ABC 中,①A =80°,①C =60°,则外角①ABD 的度数是( )A .100°B .120°C .140°D .160° 18.如图,一个长方体的长宽高分别是6米、3米、2米,一只蚂蚁沿长方体的表面从点A 到点C '所经过的最短路线长为( )A B C D .以上都不对 19.如图,BAC ∠的平分线与BC 的垂直平分线相交于点D ,ED AB ⊥于点E ,11AB =,5AC =,则BE 的长为( )A .3B .4C .5D .6二、填空题20.若关于x 的方程7x 62a 5x +-=的解是负数,则a 的取值范围是__________. 21.如图,在ABC 和△FED 中,BD EC =,AB FE =,当添加条件______时,就可得到ABC EDF △≌△.(只需填写一个即可)22.点P(在第________象限. 23.若一次函数26y x =-的图像过点(),a b ,则21b a -+=______.24.我国古代称直角三角形为“勾股形”,并且直角边中较短边为勾,另一直角边为股,斜边为弦如图1所示,数学家刘徽(约公元225年~公元295年)将勾股形分割成一个正方形和两对全等的直角三角形,后人借助这种分割方法所得的图形证明了勾股定理如图2所示的长方形是由两个完全相同的“勾股形”拼接而成,若4a =,6b =,则长方形的面积为______.25.将直线21y x =-向上平移4个单位长度,平移后直线的函数解析式为 _____. 26.小明某天离家,先在A 处办事后,再到B 处购物,购物后回家.下图描述了他离家的距离s (米)与离家后的时间t (分钟)之间的函数关系,请根据图象回答下列问题:(1)A 处与小明家的距离是_________米,小明在从家到A 处过程中的速度是________米/分;(2)小明在B 处购物所用的时间是_______分钟,他从B 处回家过程中的速度是________米/分;(3)如果小明家、A 处和B 处在一条直线上,那么小明从离家到回家这一过程的平均速度是_________米/分.27.关于x 的解集3x a -<<有五个整数解,则a 的取值范围为______.28.如图:已知,平行四边形ABCD 中,CE AB ⊥,E 为垂足,如果A 120︒∠=,则BCE ∠的度数是______________.29.若关于x 的方程3(4)25x a +=+的解大于关于x 的方程(41)(34)43a x a x +-=的解,则a 的取值范围为________. 30.若等腰三角形的一个内角为50,则它的底角的度数为______.31.随着各行各业有序复工复产,企业提倡员工实行“两点一线”上下班模式,减少不必要的聚集.小华爸爸早上开车以60/km h 的平均速度行驶20min 到达单位,下班按原路返回,若返回时平均速度为v ,则路上所用时间t (单位:h )与速度v (单位:/km h )之间的关系可表示为________.32.规定:经过三角形的一个顶点且将三角形的周长分成相等的两部分的直线叫做该角形的“等周线”,“等周线”被这个三角形截得的线段叫做该三角形的“等周径”.例如等腰三角形底边上的中线即为它的“等周径”Rt △ABC 中,①C =90°,AC =4,BC =3,若直线l 为△ABC 的“等周线”,则△ABC 的所有“等周径”长为________.33.如图,已知EA=CE,①B=①D=①AEC=90°,AB=3 cm,CD=2 cm,则①CDE 和①EBA 的面积之和是____.34.(1)点(2,36)P a a -+到两坐标轴的距离相等,则点P 的坐标为__________; (2)正方形的两边与x ,y 轴的负方向重合,其中正方形的一个顶点坐标为(2,23)C a a --,则点C 的坐标为_______.35.已知长方形的两邻边的差为2,对角线长为4,则长方形的面积是________. 36.如图,圆柱形容器中,高为1.2m ,底面周长为1m ,在容器内壁离容器底部0.3m 的点B 处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m 与蚊子相对的点A 处,则壁虎捕捉蚊子的最短距离为_______m (容器厚度忽略不计).37.已知关于x 的不等式组1x x m>-⎧⎨<⎩的整数解共有2个,则m 的取值范围是___________38.如图,在①ABC 中,3∠=∠ABC C ,12∠=∠,BE AE ⊥,5AB =,3BE =,则AC =_____39.在直角坐标系中,直线1y x =+与y 轴交于点1A ,按如图方式作正方形111A B C O 、2221A B C C 、3332A B C C 、…,点1A 、2A 、3A 、…在直线1y x =+上,点1C 、2C 、3C 、…,在x 轴上,图中阴影部分三角形的面积从左到右依次记为1S 、2S 、3S 、…n S ,则1S =_______,=n S ________.(用含n 的代数式表示,n 为正整数)三、解答题40.如图,①MOP =60°,OM =5,动点N 从点O 出发,以每秒1个单位长度的速度沿射线OP 运动.设点N 的运动时间为t 秒,当△MON 是锐角三角形时,求t 满足的条件.41.如图所示,AE AC =,AB AD =,EAB CAD ∠=∠.求证:B D ∠=∠.42.某商店购进甲、乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵10元,用350元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同. (1)求甲、乙两种商品每件的价格各是多少元?(2)计划购买这两种商品共50件,且投入的经费不超过3200元,那么最多购买多少件甲种商品43.给出如下规定:两个图形1G 和2G ,点P 为1G 上任一点,点Q 为2G 上任一点,如果线段PQ 的长度存在最小值,就称该最小值为两个图形1G 和2G 之间的距离.在平面直角坐标系xOy 中,O 为坐标原点.(1)点A 的坐标为()10A ,,则点()2,3B 和射线OA 之间的距离为 ,点(3,4)C -和射线OA 之间的距离为 .(2)点E 的坐标为(1,1),将射线OE 绕原点O 逆时针旋转90︒,得到射线OF ,在坐标平面内所有和射线OE OF ,之间的距离相等的点所组成的图形记为图形M .①在坐标系中画出图形M ,并描述图形M 的组成部分;(若涉及平面中某个区域时可以用阴影表示)①将抛物线22y x =﹣与图形M 的公共部分记为图形N ,射线OE ,OF 组成的图形记为图形W ,请直接写出图形W 和图形N 之间的距离.44.某城市居民用水实行阶梯收费,每户每月用水量如果未超过15吨,按每吨2元收费.如果超过15吨,未超过的部分仍按每吨2元收费,超过部分按每吨2.8元收费.设某户每月用水量为x 吨,应收水费为y 元.(1)分别写出当每月用水量未超过15吨和超过15吨时,y 与x 之间的函数表达式; (2)若该城市某用户5月份和6月份共用水50吨,且5月份的用水量不足15吨,两个月一共交水费120元,求该用户5月份和6月份分别用水多少吨?45.有一块木板(图中阴影部分),测得4AB =,3BC =,12DC =,13AD =,90ABC ∠=︒.求阴影部分面积.46.ABC 在平面直角坐标系中的位置如图所示,(1)画出ABC 关于y 轴对称的111A B C △,并写出点111,,A B C 的坐标;(2)在x 轴上取一点P ,使1PB PC +的值最小,在图上标出点P 的位置,(保留作图痕迹);(3)在y 轴上求作一点Q ,使QA QB =.(尺规作图,保留作图痕迹,不写作法)47.已知方程组31313x y m x y m +=-+⎧⎨-=+⎩的解满足x 为非正数,y 为负数. (1)求m 的取值范围;(2)化简:324m m -++.48.在①ABC 中,CD 是AB 边上的高,AC =4,BC =3,DB =1.8. (1)求CD 的长;(2)求AB 的长;(3)①ABC 是直角三角形吗?请说明理由.49.如图,ABC 中,=45ABC ∠︒,D 为BC 上一点,60ADC ∠=︒,AE BC ⊥于点E ,CF AD ⊥于点F ,AE 、CF 相交于点G ,15CAE ∠=︒(1)求ACF∠的度数;(2)求证:12DF AG=.参考答案:1.C【分析】根据轴对称图形的定义分析判断即可知道正确答案.【详解】A 、不是轴对称图形,选项不符合题意;B 、不是轴对称图形,选项不符合题意;C 、是轴对称图形,选项符合题意;D 、不是轴对称图形,选项不符合题意.故选:C【点睛】本题考查轴对称图形的识别,牢记相关定义是解题关键.2.A【分析】根据不等式的性质可判断不等式的变形是否正确.【详解】① 66x y >-,① 6+60x y >,① +0x y >.故A 正确,B ,C ,D 错误.故选:A .【点睛】本题考查了不等式的性质,熟练运用不等式的性质是解题的关键.3.B【分析】先根据三角形全等的判定定理证得ABC ADE ∆≅∆,再根据三角形全等的性质、等腰三角形的性质可判断A 、C 选项,又由等腰三角形的性质、三角形的内角和定理可判断出D 选项,从而可得出答案.【详解】DAB EAC ∠=∠DAB CAD EAC CAD ∴∠+∠=∠+∠,即BAC DAE ∠=∠在ABC ∆和ADE ∆中,BAC DAE ACB AED AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩()ABC ADE AAS ∴∆≅∆,,B ADE AC AE BC DE ∴∠=∠==,则A 选项正确ACE AEC ∴∠=∠(等边对等角),则C 选项正确AB AD =B ADB ∴∠=∠180B A B DB AD ∠+︒=∠+∠2180BA B D ∴∠=∠+︒,即1802B BAD ∠=︒∠-又180ADB A E DE CD ∠+∠+∠=︒180CDE B B ∠=∴∠+∠+︒,即1802B CDE ∠=︒∠-CDE BAD ∴∠=∠,则D 选项正确虽然,AC AE BC DE ==,但不能推出BC AE =,则B 选项错误故选:B .【点睛】本题考查了三角形全等的判定定理与性质、等腰三角形的性质、三角形的内角和定理等知识点,根据已知条件,证出ABC ADE ∆≅∆是解题关键.4.A【分析】根据容器内的水匀速流出,可得相同时间内流出的水相同,根据圆柱的直径越长,等体积的圆柱的高就越低,可得答案.【详解】解:最上面圆柱的直径较长,水流下降较慢;中间圆柱的直径最长,水流下降最慢;下面圆柱的直径最短,水流下降最快.故选:A .【点睛】本题考查了函数图象,利用了圆柱的直径越长,等体积的圆柱的高就越低. 5.A【分析】根据函数的定义,对任意的一个x 都存在唯一的y 与之对应可求.【详解】解:根据函数的定义,对任意的一个x 都存在唯一的y 与之对应,而B 、C 、D 都是一对多,只有A 是对任意的一个x 都存在唯一的y 与之对应.故选:A【点睛】本题主要考查了函数定义与函数对应的应用,要注意构成函数的要素之一:必须形成一一对应,但是不能一对多,属于基础试题.6.C【详解】由平移规律可知:点(2,3)平移后的横坐标为2-2=0;纵坐标为3+1=4; ①平移后点的坐标为(0,4).选C .【点睛】本题考查了平移变换,根据左右平移,横坐标变化,纵坐标不变,上下平移,横坐标不变,纵坐标变化,熟记“左减右加,下减上加”是解题关键.7.D【分析】先求出两小边的平方和和最长边的平方,看看是否相等即可.【详解】解:A 、①12+22≠32,①1,2,3不是勾股数,故本选项不符合题意;B 、①32+22≠42,①4,2,3不是勾股数,故本选项不符合题意;C 、①22213+≠,①13不是勾股数,故本选项不符合题意;D 、①52+122=132,①5,12,13是勾股数,故本选项符合题意;故选:D .【点睛】本题考查了勾股数和算术平方根,能熟记勾股数的意义是解此题的关键. 8.C【分析】根据三角形内角和定理求出最大内角,即可判断选项A 和选项B ,根据勾股定理的逆定理即可判断选项C 和选项D .【详解】解:A 、①A B C ∠∠=∠+,180A B C ∠+∠+∠=︒,①2180C ∠=︒,①90C ∠=︒,①ABC 是直角三角形,故本选项不符合题意;B 、①222a c b =-,①222+=a b c ,①以a ,b ,c 为边能组成直角三角形,故本选项不符合题意;C 、①23a =,24b =,25c =,2275a b +=≠,①222a b c +≠,①以a ,b ,c 为边不能组成直角三角形,故本选项符合题意;D 、①2251225144169+=+=,213169=,①22251213+=,①以a ,b ,c 为边能组成直角三角形,故本选项不符合题意.故选:C.【点睛】本题考查了勾股定理的逆定理和三角形内角和定理.理解和掌握勾股定理的逆定理是解题的关键,注意:如果一个三角形的两边a、b平方和等于第三边c的平方,那么这个三角形是直角三角形.9.A-,进行判断即可.【分析】根据第二象限,点的符号特征(),+-,【详解】解:①第二象限,点的符号特征是(),+①0x>,是正数;故选A.【点睛】本题考查坐标系下象限内点的符号特征.熟练掌握象限内点的符号特征,是解题的关键.10.C【详解】因为过圆心的直线都是圆的对称轴,所以这个图形的对称轴的条数即是正方形的对称轴的条数,而正方形有4条对称轴.故选C.11.D【分析】根据方向角的定义,即可解答.【详解】解:由题意得:90°-30°=60°,2.1×5=10.5(km),①点A在点O北偏东60°方向,距点O10.5km处,故选:D.【点睛】本题考查了方向角,熟练掌握方向角的定义是解题的关键.12.B【分析】根据题意可得各个点分别位于象限的角平分线上(A1和第四象限内的点除外),逐步探索出下标和个点坐标之间的关系,总结出规律,根据规律推理点A2017的坐标.【详解】通过观察可得数字是4的倍数的点在第三象限,数字是4的倍数余1的点在第四象限,数字是4的倍数余2的点在第一象限,数字是4的倍数的点在第二象限,且各个点分别位于象限的角平分线上(A1和第四象限内的点除外),①2017÷4=504…1,①点A 2017在第四象限,点A 2016在第三象限, ①20164=504, ①A 2016是第三象限的第504个点,①A 2016的坐标为(−504,−504),①点A 2017的坐标为 (505,-504).故选:B .【点睛】此题主要考查了点的坐标,属于规律型题目,解答此类题目一定要先注意观察,本题第三象限的点的坐标特点比较好判断,我们可以利用这一点达到简化步骤的效果. 13.B【分析】可先将不等式组求出解集,再通过m 的取值范围确定不等式组的解集中的整数解的个数即可.【详解】解:不等式组整理得:2x m x <⎧⎨≥⎩,解集为2x m ≤<, ①m 54<≤,①整数解为2,3,4,共3个,故选:B .【点睛】本题考查含参数的不等式,解题的关键是根据参数的范围来确定不等式组的解集. 14.B【分析】根据不等式的性质,依次分析各个选项,选出不等式的变形正确的选项即可.【详解】解:A 、①x y <,①22x y ->-,故该选项错误,不符合题意;B 、①x y <,①22x y -<-,故该选项正确,符合题意;C 、①x y <,①当0m n >>时,nx my <,故该选项错误,不符合题意;D 、①x y <,①22x y <,故该选项错误,不符合题意. 故选:B【点睛】本题考查了不等式的性质,能灵活运用不等式的性质进行变形是解本题的关键.不等式的性质1:不等式的两边都加(或减)同一个数或式子,不等号的方向不变;不等式的性质2:不等式的两边都乘(或除以)同一个正数,不等号的方向不变;不等式的性质3:不等式的两边都乘(或除以)同一个负数,不等号的方向改变.15.C【分析】利用图象分别得出快、慢者行驶的路程和时间,进而求出速度,再求出时间差.【详解】解:如图所示:快者的速度为:60÷10=6(米/秒),慢者的速度为:(60-10)÷10=5(米/秒),快者跑210米所用的时间为210÷6=35(秒),慢者跑210米所用的时间为(210-10)÷5=40(秒),①快者比慢者少用的时间为40-35=5(秒).故选:C .【点睛】此题主要考查了函数的图象,利用图象得出正确信息是解题关键.16.D【分析】①易证①CBE=①DAE ,用SAS 即可求证:①ADE①①BCE ;①根据①结论可得①AEC=①DEB ,即可求得①AED=①BEG ,即可解题;①证明①AEF①①BED 即可;①易证①FDC 是等腰直角三角形,则CE=EF ,S △AEF =S △ACE ,由①AEF①①BED ,可知S △BDE =S △ACE ,所以S △BDE =S △ACE .【详解】解:①AD 为①ABC 的高线①①CBE+①ABE+①BAD=90°,①Rt①ABE 是等腰直角三角形,①①ABE=①BAE=①BAD+①DAE=45°,AE=BE ,①①CBE+①BAD=45°,①①DAE=①CBE ,在①DAE 和①CBE 中,AE BE DAE CBE AD BC ⎪∠⎪⎩∠⎧⎨=== ①①ADE①①BCE (SAS );故①正确;①①ADE①①BCE ,①①EDA=①ECB ,AD=BC ,DE=EC ,①①ADE+①EDC=90°,①①EDC+①ECB=90°,①①DEC=90°,①CE①DE,①DEC是等腰直角三角形,易证①DFC是等腰直角三角形,故①正确,①DF=DC,①BC=BD+DC=BD+DF=AD,故①正确;①AD=BC,BD=AF,①CD=DF,①AD①BC,①①FDC是等腰直角三角形,①DE①CE,①EF=CE,①S△AEF=S△ACE,①①AEF①①BED,①S△AEF=S△BED,①S△BDE=S△ACE.故①正确;故选D.【点睛】本题考查了全等三角形的判定,等腰直角三角形的性质等知识,考查了全等三角形对应边相等的性质,熟练掌握全等三角形的判定与性质是解题的关键.17.C【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】由三角形的外角性质得,①ABD=①A+①C=80°+60°=140°.故选C.【点睛】考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.18.C【分析】蚂蚁有三种爬法,就是把正视和俯视(或正视和侧视,或俯视和侧视)二个面展平成一个长方形,然后求其对角线,比较大小即可求得最短的途径.【详解】解:如图所示,此时:AC;'此时,'AC此时,'AC>故选:C.【点睛】此题考查平面的最短路径问题,关键是把长方体拉平后用了勾股定理求出对角线的长度.19.A【分析】连接CD ,BD ,由①BAC 的平分线与BC 的垂直平分线相交于点D ,DE①AB ,DF①AC ,根据角平分线的性质与线段垂直平分线的性质,易得CD=BD ,DF=DE ,继而可得AF=AE ,易证得Rt △CDF①Rt △BDE ,则可得BE=CF ,继而求得答案.【详解】如图,连接CD ,BD ,①AD 是①BAC 的平分线,DE①AB ,DF①AC ,①DF=DE ,①F=①DEB=90°,①ADF=①ADE ,①AE=AF ,①DG 是BC 的垂直平分线,①CD=BD ,在Rt △CDF 和Rt △BDE 中,CD BD DF DE ⎧⎨⎩==, ①Rt △CDF①Rt △BDE (HL ),①BE=CF ,①AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE ,①AB=11,AC=5, ①BE=12×(11-5)=3.故选:A .【点睛】此题考查了线段垂直平分线的性质、角平分线的性质以及全等三角形的判定与性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题20.a <3【详解】7x 62a 5x +-=7x-5x=2a-62x=2a-6x=a-3因为关于x 的方程7x 62a 5x +-=的解是负数,所以a-3<0,所以a<3.故答案是:a<3.21.答案不唯一(如B E ∠=∠或AC FD =)【分析】根据题意可知BC=ED ,再结合三角形全等的判定定理“边角边”和“边边边”即可得出答案.【详解】①BD=EC ,①BC=ED ,由SSS 可知当AC=FD 时,①ABC①①EDF ;由SAS 可知当①B=①E 时,①ABC①①EDF ;故答案为:AC=FD 或①B=①E .【点睛】本题主要考查的是全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.22.三【分析】根据直角坐标系的象限特点即可判断.【详解】①点P 00,则点P 在第三象限. 【点睛】此题主要考查直角坐标系的象限分类,解题的关键是熟知各象限的坐标特点. 23.5-【分析】先把点(),a b 代入一次函数26y x =-,得到26b a =-,再代入代数式计算即可.【详解】①一次函数26y x =-的图像过点(),a b ,①26b a =-,①2126215b a a a -+=--+=-,故答案为:5-【点睛】此题主要考查了一次函数图像上点的坐标特点以及代数式求值的问题,关键是掌握凡是函数图像经过的点必能满足解析式.24.48【分析】设小正方形的边长为x ,在直角三角形ACB 中,利用勾股定理可建立关于x 的方程,利用整体代入的思想解决问题,进而可求出该长方形的面积.【详解】解:设小正方形的边长为x ,①46a b ==,,①4610AB =+=,在Rt ABC △中,222AC BC AB +=,即()()2224610x x +++=,整理得,210240x x +-=,即21024x x +=,而长方形面积为()()2461024242448x x x x ++=++=+=, 即该长方形的面积为48,故答案为:48.【点睛】本题考查了勾股定理的运用,利用勾股定理得到21024x x +=再整体代入计算是解题的关键.25.23y x =+【分析】利用将直线y kx b =+向上或平移n 个单位,再向左或向右平移m 个单位,平移后的函数解析式y k x m n ,据此可得到平移后的函数解析式.【详解】①将直线21y x =-向上平移4个单位长度,①平移后直线的函数的解析式21423y x x =-+=+.故答案为:23y x =+.【点睛】本题考查了直线的平移给函数解析式的影响,掌握一次函数图象的平移规律是解本题的关键.26. 200 40 5 160 64【分析】根据图象可得:5-10分钟小明在A 处办事,15-20分钟小明在B 处购物,20-25分钟为小明返回家途中,即可求解.【详解】解:(1)由图可知,x =5时小明到达A 处,A 处离家距离为200米;小明在从家到A 处过程中的速度是200÷5=40(米/分);(2)小明在B 处购物所用的时间是20-15=5(分);他从B 处回家过程中的速度是800÷(25-20)=160(米/分),(3)小明往返所走路程为800×2=1600(米),往返所用时间为25分,所以小明从离家到回家这一过程的平均速度是1600÷25=64(米/分).故答案为:(1)200,40;(2)5,160;(3)64.【点睛】本题考查函数与图象的结合,根据图象,解决实际问题,准确获取信息,找到题中各个点所对应坐标的实际意义是解题的关键.27.23a <≤【分析】根据不等式的正整数解为210,1,2--,,,即可确定出正整数a 的取值范围. 【详解】①不等式3x a -<<有5个正整数解,①这5个整数解为210,1,2--,,, 则23a <≤,故答案为23a <≤.【点睛】本题主要考查不等式组的整数解,解题的关键是掌握据得到的条件进而求得不等式组的整数解.28.30°【详解】试题分析:先根据平行四边形的性质求得①B 的度数,再由根据三角形的内角和定理求解即可.解:①平行四边形, ①①B=60°①①=180°-90°-60°=30°. 考点:平行四边形的性质,三角形的内角和定理点评:平行四边形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.29.718a > 【分析】先求出两个方程的解,然后解关于a 的一元一次不等式,即可得到答案.【详解】解:解方程3(4)25x a +=+, 得:273a x -=, 解方程(41)(34)43a x a x +-=, 得:163x a =-. 由题意得:271633a a ->-. 解得:718a >. 故答案为:718a >. 【点睛】本题考查的是解一元一次方程和解一元一次不等式,根据题意列出关于x 的不等式是解答此题的关键.30.65°或50°.【分析】由等腰三角形的一个内角为50°,可分别从50°的角为底角与50°的角为顶角去分析求解,即可求得答案.【详解】①等腰三角形的一个内角为50°,若这个角为顶角,则底角为:(180°﹣50°)÷2=65°,若这个角为底角,则另一个底角也为50°,①其一个底角的度数是65°或50°.故答案为65°或50°.31.20t v= 【分析】根据路程=速度×时间,可计算出家与单位之间的总路程,再根据速度v =路程÷时间,即可得出答案.【详解】解:①20602060⨯=(km) ①小华爸爸下班时路上所用时间t (单位h )与速度v (单位:/km h )之间的关系可表示为:20t v=. 故答案为:20t v =.【点睛】本题考查的知识点是用关系式表示变量之间的关系,读懂题意,比较容易解答.32【分析】分三种情况:①当“等周线”经过点C时,直线l交AB于点E;①当“等周线”经过点A时,直线l交BC于点E,①当“等周线”经过点B时,直线l交AC于点E.画图并运用勾股定理计算.【详解】①Rt①ABC中,①C=90°,AC=4,BC=3,①AB=5①如图,当“等周线”经过点C时,直线l交AB于点E,设BE=x,则AE=5-x,作CH①AB于H.由题意得:3+x=4+5-x解得:x=3①CH=125 BC ACAB⋅=①BH9 5 =①EH=395-=65在Rt①ECH中,CE=①“等周径”①如图,当“等周线”经过点A时,直线l交BC于点E,设BE=x,则CE=3-x由题意得:4+3-x=5+x解得:x=1①EC=2在Rt①ACE中,AE①“等周径”长为①如图,当“等周线”经过点B时,直线l交AC于点E,设AE=x,则CE=4-x由题意得:3+4-x=5+x解得:x=1①CE=3在Rt①BCE中,BE①“等周径”长为综上所述,满足条件的“等周径”【点睛】本题考查“新定义”问题,分类讨论并准确画图,灵活运用勾股定理是解题关键.33.62cm【分析】只要证明△ECD①①AEB,再根据三角形面积公式计算即可.【详解】如图,①①B=①D=①AEC=90°,①①1+①2=90°,①2+①a=90°,①①1=①A ,①EC=AE ,①①ECD①①AEB ,①CD=EB=2cm ,DE=AB=3cm ,①①CDE 和△ABE 的面积之和为2×12×2×3=6cm 2,故答案为62 c m .【点睛】本题考查全等三角形的判定和性质、三角形的面积等知识,解题的关键是正确寻找全等三角形全等的条件.34. (3,3),(6,-6) 1-0(1,1)2⎛⎫-- ⎪⎝⎭,, 【分析】(1)根据点(2,36)P a a -+到两坐标轴的距离相等,可得2=36a a -+,当点P 在第一或第三象限时2=36a a -+或当点P 在第二或第四象限时2+360a a -+=,解方程即可;(2)由正方形的两边与x ,y 轴的负方向重合,当点C 在第三象限时,当点C 在x 轴上,与y 轴上分类列方程与解方程即可.【详解】解:(1)①点(2,36)P a a -+到两坐标轴的距离相等, ①2=36a a -+,当点P 在第一或第三象限时2=36a a -+解得1a =-,当1a =-时,2213,36363a a -=+=+=-+=,①点(3,3)P ,当点P 在第二或第四象限时2+360a a -+=解得4a =-当4a =-时,22+46,361266a a -==+=-+=-,①点(6,-6)P ,故答案为(3,3),(6,-6);(2)①正方形的两边与x ,y 轴的负方向重合,当点C 在第三象限时,(2,23)C a a --,①2=23a a --,解得=1a ,当=1a 时,2121,23231a a -=-=--=-=-,点(1,1)C --.当点C 在x 轴上时,①23=0a - 解得32a =当32a =时,312222a -=-=- 点1,02C ⎛⎫- ⎪⎝⎭; 当点C 在y 轴上时,2=0a -,解得=2a当=2a 时,23=4-3=10a ->不合题意舍去 故答案为1,02⎛⎫- ⎪⎝⎭, (-1,-1). 【点睛】本题考查点到两坐标轴的距离问题,根据坐标的符号分类构建方程是解题关键. 35.6【详解】试题解析:设长方形短边为x ,则长边为x+2,根据勾股定理得:x 2+(x+2)2=42,整理得:x 2+2x-6=0,解得:±①长方形宽为则面积为6.36.1.3.【详解】因为壁虎与蚊子在相对的位置,则壁虎在圆柱展开图矩形两边中点的连线上,如图所示要求壁虎捉蚊子的最短距离,实际上是求在EF 上找一点P ,使PA+PB 最短,过A 作EF 的对称点A',连接A'B ,则A'B 与EF 的交点就是所求的点P .过B 作BM AA'⊥于点M ,在Rt A'MB ∆中,A'M 1.2=,BM 0.5=,①A'B 1.3==.①A'B AP PB =+,①壁虎捉蚊子的最短距离为1.3m .37.12m <≤【分析】首先确定不等式组的整数解,即可确定m 的范围.【详解】解:关于x 的不等式组1x x m><-⎧⎨⎩的解集是:﹣1<x <m , ①不等式组的整数解有2个①这2个整数解是:0,1,①12m <≤故答案为:12m <≤.【点睛】本题考查了不等式组的整数解,正确理解m 与1和2的大小关系是关键. 38.11【分析】如图,延长BE 交AC 于M ,利用三角形内角和定理,得出①3=①4,AB=AM=5,BM=2BE=6,再利用①4是①BCM 的外角,利用等腰三角形判定得到CM=BM ,利用等量代换即可求证.【详解】证明:如图,延长BE 交AC 于M①BE AE ⊥①①AEB=①AEM=90°①①3=90°-①1,①4=90°-①2①①1=①2①①3=①4①AB=AM=5①BE AE ⊥①BM=2BE=6①①4是①BCM 的外角①①4=①5+①C①3∠=∠ABC C①①ABC=①3+①5=①4+①5①3①C=①4+①5=2①5+①C①①5=①C①CM=BM=6①AC=AM+CM=AB+2BE=11.【点睛】本题考查学生对等腰三角形的判定与性质的理解和掌握,本题的关键是作好辅助线,延长BE 交AC 于M ,利用三角形内角和定理、三角形外角的性质,考查的知识点较多,综合性较强.39. 12 232n -【分析】(1)如图所示,设直线与x 轴的交点为D. 计算直线与x 轴y 轴的交点坐标,从而求出正方形111A B C O 边长,然后计算12B A 即可解决问题.(2)分别计算2S 和3S 的面积,然后研究它们面积之间存在的数量关系即可解决n S .。
初中数学中心对称图形专题训练50题含答案

初中数学中心对称图形专题训练50题含参考答案一、单选题1.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.2.下列各图中为中心对称图形的是()A.B.C.D.3.下列四个图形中,是中心对称图形的是()A.B.C.D.4.下列四个图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.5.如下是一种电子记分牌呈现的数字图形,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.6.下面四个交通标志中,是中心对称图形的是()A.B.C.D.7.下列图形中,是中心对称图形的是()A.B.C.D.8.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.9.下列图形属于中心对称图形的是()A.B.C.D.10.下列图形中,是轴对称图形但不是中心对称图形的是()A .B .C .D .11.在平面直角坐标系中,点()2,4P -关于原点对称的点的坐标是( )A .()2,4-B .()2,4C .()2,4--D .()4,2- 12.点(-2,3)关于原点对称的点的坐标是A .(2,3)B .(-2,-3)C .(2,-3)D .(-3,2) 13.在下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .14.下列汽车标志中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .15.下列图形既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 16.已知点()31,21P a a -+关于原点的对称点在第四象限,则a 取值范围是( )A .13a >B .12a <-C .1123a -<<D .无解集17.已知点A (1x ,1y )与点B (2x ,2y )关于原点对称,若112x y +=,则22x y +的值为( )A .2B .12C .12-D .2-18.下面是同学们利用图形变化的知识设计的一些美丽的图案,其中既是轴对称图形又是中心对称图形的是( )A .B .C .D . 19.下列新能源汽车的标志中,是中心对称图形的是( )A .B .C .D .二、填空题20.将点(3,1)B -绕坐标原点O 旋转180︒,则点B 的对应点B '坐标为______.21.如图,ABCD 的对角线AC 、BD 交于点O ,则图中成中心对称的三角形共有______对.22.在平面直角坐标系内,点A (a ,﹣3)与点B (1,b )关于原点对称,则a +b 的值_________.23.在平面直角坐标系中,点 A(﹣4,1)关于原点的对称点的坐标为_____24.点(a ,2)与点(b ,﹣2)关于原点中心对称,则a +b 的值是__.25.若点P (m ,-2)与点Q (3,n )关于原点对称,则2019()m n +=______.26.点A(-3,4)关于x 轴对称的点的坐标为__,关于y 轴对称的点的坐标为__,关于原点对称的坐标为__.27.在直角坐标系中,点()3,5-M 关于原点O 对称的点N 的坐标是(),x y ,则x y +=_____________;28.点P(1,-1)关于原点对称的点的坐标是_________.29.如图,所示的美丽图案中,既是轴对称图形又是中心对称图形的有_____个.30.在平面直角坐标系中,点()11P a -,与点()15Q b +,关于原点对称,ab = _______.31.已知三点A 、B 、O .如果点A'与点A 关于点O 对称,点B'与点B 关于点O 对称,那么线段AB 与A'B'的关系是_____________.32.平面直角坐标系内一点P (3,-1)关于原点对称的坐标为_____33.若点P 的坐标为()1,1x y +-,其关于原点对称的点'P 的坐标为()3,5--,则(),x y 为________.34.在分别写着“线段、钝角、平行四边形、等边三角形”的4张卡纸中,小刚从中任意抽取一张卡纸,抽到的图形是中心对称图形的概率为__________.35.已知()12P a -,和()23P b ,关于原点对称,则()2021a b +的值为 ___________.36.有下列图形:①线段,①三角形,①平行四边形,①正方形,①圆,①等腰梯形.其中不是中心对称图形的是__.(填序号)37.平面直角坐标系中,点1A 是点()2,3A -关于原点对称点;点1A 的坐标是________.38.三个能够重合的正六边形的位置如图.已知B 点的坐标是(,则A 点的坐标是___________.39.一辆汽车车牌的最后两个数字刚好组成一个中心对称图形,并且这两个数字不相等,则这两个数字的和是_____.三、解答题40.如图,已知三角形ABC 、直线l ,点O 是线段AB 的中点.(不写画法,保留画图痕迹,并写出画图结论)(1)画出三角形ABC关于直线l的轴对称的图形;(2)画出三角形ABC关于点O的中心对称的图形.41.如图,平面直角坐标系中,①ABC三个顶点的坐标分别为A(﹣3,5),B(﹣5,3),C(﹣2,2)平移到①A1B1C1,其中点A的对应点A1的坐标为(3,3).(1)请在图中画出①A1B1C1;(2)若将①ABC到①A1B1C1的过程看成两步平移,请描述平移过程:;(3)已知①A1B1C1与①A2B2C2关于原点O中心对称,请在图中画出①A2B2C2,此时①A2B2C2与①ABC关于某点中心对称这一点的坐标为.42.①ABC在平面直角坐标系xOy中的位置如图所示,A,B,C的坐标分别是(﹣2,3),(﹣1,1),(0,2).(1)作①ABC关于原点对称的①A1B1C1,并写出点A1的坐标.(2)求①ABC的面积.43.如图,已知ABC 和直线MN ,点O 在直线MN 上.(1)画出111A B C △,使111A B C △与ABC 关于直线MN 成轴对称;(2)画出222A B C △,使222A B C △与ABC 关于点O 成中心对称.44.在下列网格图中,每个小正方形的边长均为1个单位,在,90,3,4Rt ABC C AC BC ︒∆∠===.(1)在图中画出ABC ∆以A 为旋转中心,沿顺时针方向旋转90︒后的图形11AB C ∆; (2)若点B 的坐标为()3,5-,点C 的坐标为()3,1-,在图中建立直接坐标系,并画出ABC ∆关于原点对称的图形222A B C .45.(1)请画出①ABC 关于直线l 的轴对称图形①A 1B 1C 1.(2)将①ABC 绕着点B 旋转180°得到①A 2B 2C 2,并画出图形.(保留作图痕迹,不写画法,注明结论)46.如图,在平面直角坐标系中,已知ABC ∆的三个顶点的坐标分别为(4,2),(3,0),(1,2)A B C ---.(1)将ABC ∆先向右平移4个单位长度,再向上平移2个单位长度,得到111A B C ∆,画出111A B C ∆;(2)222A B C ∆与ABC ∆关于原点O 成中心对称,画出222A B C ∆;(3)111A B C ∆和222A B C ∆关于点M 成中心对称,请在图中画出点M 的位置.47.ABC 在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.(1)画出ABC 关于原点O 的对称图形111A B C △;(2)将ABC 绕点C 顺时针旋转90︒得到22A B C ,画出22A B C ,并求2AA 的长度; 48.(1)解方程:2430x x -+=(2)已知点P (a +b ,-1)与点Q (-5,a -b )关于原点对称,求a ,b 的值.49.如图,在网格图中建立平面直角坐标系,ABC 的顶点坐标为(2,3)A -、(3,2)B -、(1,1)C -.(1)若将ABC 向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的111A B C ∆;(2)画出111A B C ∆绕C 1顺时针方向旋转90°后得到的221A B C ∆;(3)A B C '''∆与ABC 是中心对称图形,请写出对称中心的坐标: ;并计算ABC 的面积: .参考答案:1.D【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;B.是轴对称图形,不是中心对称图形,故本选项不符合题意;C.不是轴对称图形,也不是中心对称图形,故本选项不符合题意;D.既是轴对称图形,也是中心对称图形,故本选项不符合题意.故选:D.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.B【分析】根据中心对称与轴对称的概念和各图形的特点即可求解.【详解】解:中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合,A、C、D都不符合;是中心对称图形的只有B.故选B.【点睛】考核知识点:中心对称图形的识别.3.A【分析】根据中心对称图形的定义,逐项判断即可求解.【详解】解:A、是中心对称图形,故本选项符合题意;B、不是中心对称图形,故本选项不符合题意;C、不是中心对称图形,故本选项不符合题意;D、不是中心对称图形,故本选项不符合题意;故选:A【点睛】本题主要考查了中心对称图形的定义,熟练掌握在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形是解题的关键.4.C【分析】根据轴对称图形和中心对称图形的概念判断即可.答案第1页,共19页【详解】A.图为轴对称图形不是中心对称图形,不满足题意;B.图为轴对称图形不是中心对称图形,不满足题意;C.图为中心对称图形不是轴对称图形,满足题意;D.图为轴对称图形不是中心对称图形,不满足题意;故选C.【点睛】本题考查轴对称图形和中心对称图形的判别,关键在于熟记基础概念.5.C【分析】根据轴对称和中心对称图形的概念可判别.【详解】A、既不是轴对称也不是中心对称,不合题意;B、是轴对称但不是中心对称,不合题意;C、是轴对称和中心对称,符合题意;D、是中心对称但不是轴对称,不合题意故选:C6.A【分析】根据中心对称图形的概念判断即可.【详解】A:图形旋转180°后能与原图形重合,故是中心对称图形;B:图形旋转180°后不能与原图形重合,故不是中心对称图形;C:图形旋转180°后不能与原图形重合,故不是中心对称图形;D:图形旋转180°后不能与原图形重合,故不是中心对称图形;故选:A.【点睛】本题考查了中心对称图形的概念,绕对称中心旋转180°后能与原图形重合是中心对称图形,熟知其概念是解题的关键.7.A【分析】根据中心对称图形的概念即可作出判断.【详解】A、是中心对称图形,符合题意;B、不是中心对称图形,不合题意;C、不是中心对称图形,不合题意;D、不是中心对称图形,不合题意.故选:A.【点睛】本题考查了中心对称图形的概念,正确把握相关定义是解题关键.8.A【分析】根据各个选项中的图形,可以写出是否为中心对称图形或轴对称图形,然后即可判断哪个选项符合题意.【详解】解: A .是中心对称图形,又是轴对称图形,故选项A 符合题意;B .不是轴对称图形,是中心对称图形,故选项B 不符合题意;C .是轴对称图形,不是中心对称图形,故选项C 不符合题意;D .不是中心对称图形,是轴对称图形,故选项D 不符合题意;故选:A .【点睛】本题考查中心对称图形、轴对称图形,解答本题的关键是明确题意,写出各个图形是否为中心对称图形或轴对称图形.9.C【详解】解:A .是轴对称图形,不是中心对称图形,故选项错误;.B .不是中心对称图形,故选项错误;.C .是中心对称图形,故选项正确;.D .是轴对称图形,不是中心对称图形,故选项错误.故选C .10.A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A .是轴对称图形,不是中心对称图形,故本选项符合题意;B .是中心对称图形但不是轴对称图形,故本选项不符合题意;C .是轴对称图形,也是中心对称图形,故本选项不符合题意;D .不是轴对称图形,也不是中心对称图形,故本选项不符合题意;故选:A .【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.11.A【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】解:点()2,4P -关于原点对称的点的坐标是()2,4-,故选:A.【点睛】此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.12.C【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即:求关于原点的对称点,横纵坐标都变成相反数.【详解】解:①点(-2,3)关于原点对称,①点(-2,3)关于原点对称的点的坐标为(2,-3).故选:C.13.C【分析】根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】解:A.是轴对称图形,不是中心对称图形,故不符合题意;B. 不是轴对称图形,是中心对称图形,故不符合题意;C. 既是轴对称图形,又是中心对称图形,符合题意;D.不是轴对称图形,是中心对称图形,故不符合题意;故选C.【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.14.B【分析】根据轴对称和中心对称图形的定义判断即可;【详解】解:A、不是轴对称图形,是中心对称图形,故本选项不合题意;B、既是轴对称图形又是中心对称图形,故本选项符合题意;C、是轴对称图形,不是中心对称图形,故本选项不合题意;D、不是轴对称图形,是中心对称图形,故本选项不合题意.故选:B.【点睛】本题主要考查了轴对称图形和中心对称图形的判定,准确判断是解题的关键.15.D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、不是轴对称图形,是中心对称图形,不合题意;B 、不是轴对称图形,不是中心对称图形,不合题意;C 、是轴对称图形,不是中心对称图形,不合题意;D 、是轴对称图形,也是中心对称图形,符合题意.故选D .【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.16.C【分析】直接利用关于原点对称点的性质以及第四象限内点的坐标特点得出关于a 的不等式组进而得出答案.【详解】解:①点()31,21P a a -+关于原点对称的点为:()'13,21P a a ---在第四象限,①130210a a ->⎧⎨--<⎩解得:1123a -<< 故选:C.【点睛】此题主要考查了关于原点对称点的性质以及解一元一次不等式组,正确解不等式组是解题关键.17.D【分析】首先根据关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反可得2x ,2y 的值,进而得到答案.【详解】解: ①A (1x ,1y )与点B (2x ,2y )关于原点对称,①2x = -1x , 2y = -1y ,①1x +1y =2,①2x +2y = -1x -1y = -(1x +1y )=-2,故选D.【点睛】本题考查了关于原点对称的点的坐标特点,关键是掌握点的坐标的变化规律. 18.A【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.【详解】A 、是中心对称图形,又是轴对称图形,故此选项正确;B 、是中心对称图形,不是轴对称图形,故此选项错误;C 、不是中心对称图形,是轴对称图形,故此选项错误;D 、不是中心对称图形,是轴对称图形,故此选项错误;故选A .【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.19.D【分析】根据中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.【详解】解:A 、不是中心对称图形,故本选项不合题意;B 、不是中心对称图形,故本选项不合题意,C 、不是中心对称图形,故本选项不合题意;D 、是中心对称图形,故选项符合题意.故选:D .【点睛】本题考查了中心对称图形,熟记定义是解答本题的关键.20.(3,1)-【分析】将点(3,1)B -绕坐标原点O 旋转180︒,即点B 关于原点对称,则点B 坐标与对应点B '坐标的横纵坐标互为相反数,由此即可求解.【详解】解:根据题意得,点B 坐标与对应点B '坐标的横纵坐标变为相反数, ①1()3,B '-,故答案是:(3,1)-.【点睛】本题主要考查求绕原点旋转一定角度的点的坐标,理解点关于原点对称的特点是解题的关键.21.4【分析】▱ABCD 是中心对称图形,根据中心对称图形的性质,对称点的连线到对称中心的距离相等,即对称中心是对称点连线的中点,并且中心对称图形被经过对称中心的直线平分成两个全等的图形,据此即可判断.【详解】解:图中成中心对称的三角形有①AOD 和①COB ,①ABO 与①CDO ,①ACD 与①CAB ,①ABD 和①CDB 共4对.故答案为:4【点睛】本题主要考查了平行四边形是中心对称图形,以及中心对称图形的性质.掌握中心对称图形的特点是解题的关键.22.2【分析】根据点关于原点对称的坐标特点即可完成.【详解】①点A (a ,﹣3)与点B (1,b )关于原点对称①13a b ,①132a b +=-+=故答案为:2【点睛】本题考查了平面直角坐标系中关于原点对称的点的坐标特征,即横、纵坐标均互为相反数,求代数式的值;掌握这个特征是关键.23.(4,-1)【分析】根据关于原点对称的两点坐标关系:横、纵坐标均互为相反数,即可得出结论.【详解】解:点 A(﹣4,1)关于原点的对称点的坐标为(4,-1)故答案为:(4,-1).【点睛】此题考查的是求一个点关于原点对称点的坐标,掌握关于原点对称的两点坐标关系:横、纵坐标均互为相反数是解题关键.24.0.【分析】直接利用关于原点对称点的性质得出答案.【详解】①点(a ,2)与点(b ,﹣2)关于原点中心对称,①a+b =0.故答案为:0.【点睛】本题主要考查了关于原点对称的点的坐标,解答此题的关键是要明确:两个点关于原点对称时,它们的坐标符号相反,即点(),P x y 关于原点O 的对称点是(),P x y '--. 25.-1【分析】根据坐标的对称性求出m,n 的值,故可求解.【详解】依题意得m=-3,n=2①2019()m n +=2019)1(1-=-故填:-1.【点睛】此题主要考查代数式求值,解题的关键是熟知直角坐标系的坐标特点. 26. (﹣3,﹣4), (3,4), (3,﹣4)【分析】根据在平面直角坐标系中,点关于x 轴对称时,横坐标不变,纵坐标为相反数,关于y 轴对称时,横坐标为相反数,纵坐标不变,关于原点对称时,横纵坐标都为相反数,即可解答本题.【详解】①在平面直角坐标系中,点关于x 轴对称时,横坐标不变,纵坐标为相反数, ①点A 关于x 轴对称的点的坐标是(﹣3,﹣4),①关于y 轴对称时,横坐标为相反数,纵坐标不变,①点A 关于y 轴对称的点的坐标是(3,4),①关于原点对称时,横纵坐标都为相反数,①点A 关于原点对称的点的坐标是(3,﹣4).故答案为(﹣3,﹣4),(3,4),(3,﹣4).【点睛】本题考查了在平面直角坐标系中,点关于x 轴,y 轴及原点对称时横纵坐标的符号,难度适中.27.2-【分析】根据关于原点对称的点的坐标特点求出x 、y ,计算即可.【详解】点()3,5-M 关于原点O 对称的点N 的坐标是()3,5M -,①3x =,5y =-,则2x y +=-,故答案为:2-.【点睛】本题考查的是关于原点对称的点的坐标特点,两个点关于原点对称时,它们的坐标符号相反,即点(),P x y 关于原点O 的对称点是(),P x y '--.28.(-1,1)【详解】点P (1,-1)关于原点对称的点的坐标是(-1, 1).故答案为(-1, 1).点睛:平面直角坐标系中若两个点关于原点对称,那么这两个点的横坐标互为相反数,纵坐标也互为相反数.29.3.【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:(1),(3),(4)是轴对称图形,也是中心对称图形.(2)是轴对称图形,不是中心对称图形.故答案为:3.【点睛】本题考查了轴对称与中心对称图形.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 30.12-【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数解答.【详解】①点()11P a -,与点()15Q b +,关于原点对称, ①11b -=+,15a -=-,解得:6a =,2b =-,①()6212ab =⨯-=-.故答案为:12-.【点睛】本题主要考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.31.平行且相等【详解】根据中心对称的性质,对应线段AB 与A'B'的关系是平行且相等,故答案为平行且相等.32.(-3,1)【分析】根据两个点关于原点对称时,它们的坐标符号相反,即点P (x ,y )关于原点O 的对称点是P′(-x ,-y ),进而得出答案.【详解】点P(3,−1)关于原点对称的点的坐标是:(−3,1).故答案为(−3,1)【点睛】此题考查关于原点对称的点,解题关键在于掌握关于原点对称的点的坐标. 33.()2,6【分析】根据两个点关于原点对称时,它们的坐标符号相反可得13x +=,15y -=,解可得x 、y 的值,进而可得答案.【详解】由题意得:13x +=,15y -=,解得:2x =,6y =,则(),x y 为()2,6.故答案为:()2,6.【点睛】此题主要考查了关于原点对称的点的坐标特点,关键是掌握点的坐标的变化规律. 34.12【分析】在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心,先判断4张卡纸中是中心对称图形的是线段、平行四边形,再由概率公式解题即可.【详解】解:在分别写着“线段、钝角、平行四边形、等边三角形”的4张卡纸中,是中心对称图形的是线段、平行四边形, 所以抽到的图形是中心对称图形的概率为21=42, 故答案为:12.【点睛】本题考查中心对称图形、概率公式等知识,是基础考点,难度较易,掌握相关知识是解题关键.35.1-【分析】点1P 和点2P 关于原点对称,则它们的横坐标互为相反数,纵坐标互为相反数. 【详解】解:因为()12P a-,和()23P b ,关于原点对称, 所以32a b =-=,,将32a b =-=,代入()2021a b +, 原式=()2021321-+=-,故答案为:1-.【点睛】本题主要考查了关于原点对称的点的坐标的特点,熟练掌握特点是关键.本题主要考查了关于原点对称的点的坐标的特点,熟练掌握特点是关键.36.①①【分析】根据中心对称图形的特点即可依次判断求解.【详解】线段,平行四边形,正方形,圆是中心对称图形,三角形,等腰梯形不是中心对称图形.故答案为:①①.【点睛】此题主要考查中心对称图形的识别,解题的关键是熟知中心对称图形的特点. 37.()2,3-【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数解答.【详解】解:①点1A 是点A (−2,3)关于原点对称点,①点1A 的坐标是(2,−3).故答案为(2,−3).【点睛】本题主要考查关于原点对称的点的坐标,熟悉掌握是关键.38.)3- 【分析】如图,延长正六边形的边BM 与x 轴交于点E ,过A 作AN x ⊥轴于N ,连接AO ,BO ,证明,BOE AON 可得,,A O B 三点共线,可得,A B 关于O 对称,从而可得答案.【详解】解:如图,延长正六边形的边BM 与x 轴交于点E ,过A 作AN x ⊥轴于N ,连接AO ,BO ,∴ 三个正六边形,O 为原点,,120,BM MO OH AH BMO OHA,BMO OHA ≌,OB OA()11209030,18012030,2MOE MBO MOB ∴∠=︒-︒=︒∠=∠=︒-︒=︒ 60,90,BOE BEO同理:120303060,906030,AON OAN,BOE AON∴三点共线,,,A O B∴关于O对称,,A BA3,3.故答案为:)3.-【点睛】本题考查的是坐标与图形的性质,全等三角形的判定与性质,关于原点成中心对称的两个点的坐标特点,正多边形的性质,熟练的应用正多边形的性质解题是解本题的关键.39.15【分析】逐个对0—9这十个数字进行分析即可,同时要满足两个数字不相等.【详解】解:逐个对0—9这十个数字进行分析,由题意可知,这两个数字同时要满足组成一个中心对称图形和两个数字不相等,故只有6和9,两个数字的和为15,故答案为15【点睛】理解中心对称的定义是解题的关键.40.(1)图形见解析;(2)图形见解析【分析】(1)分别作出点A、B、C关于直线l的对称点F、H、G,再依次连接即可画出三角形ABC关于直线l的轴对称的图形;(2)延长CO至E使OE=OC,则①ABE即为三角形ABC关于点O的中心对称的图形.【详解】(1)如图所示,①ABC关于直线l的轴对称的图形为①FHG;(2)如图所示,①ABC关于点O的中心对称的图形①BAE;【点睛】本题考查的是作图-轴对称作图和作中心对称图形,熟知轴对称和中心对称的性质是解答此题的关键.41.(1)见解析;(2)点A 向右平移6个单位,再向下平移2个单位到点A 1的位置;(3)画图见解析,()3,1-【分析】(1)根据平移的性质得出坐标,进而画出图形即可;(2)根据平移的性质即可求解;(3)根据中心对称的性质作出对称点,连接即可.(1)解:由题意知:点A 向右平移6个单位,再向下平移2个单位到点A 1的位置, ①①ABC 平移到①A 1B 1C 1时,点B 、C 对应的点B 1(1,1)、C 1(4,0),连接A 1B 1、B 1C 1、A 1C 1,如下图,则①A 1B 1C 1即为所求;(2)解:点A 向右平移6个单位,再向下平移2个单位到点A 1的位置;(3)解:①①A 1B 1C 1与①A 2B 2C 2关于原点O 中心对称,点A 2(-3,-3)、B 2(-1,-1)、C 2(-4,0),连接A 2B 2、B 2C 2、A 2C 2,如图,则①A 2B 2C 2即为所求;连接AA 2、BB 2、CC 2交于点(-3,1).故答案为:(-3,1).【点睛】本题主要考查中心变换和平移变换,熟练掌握中心变换和平移变换的定义是解题的关键.42.(1)图见解析,(2,﹣3);(2)32. 【分析】(1)根据网格结构找出点A 、B 、C 旋转后的对应点A 1、B 1、C 1的位置,然后顺次连接即可,再根据所作图形得出点A 1坐标;(2)利用割补法即可求①ABC 的面积.【详解】解:(1)如图,①A 1B 1C 1即为所求;点A 1的坐标为(2,﹣3);(2)①ABC 的面积=2×2﹣12×1×2﹣12×1×1﹣121×2=32. 【点睛】本题考查基本作图-中心对称图形、三角形的面积公式,熟练掌握中心对称图形的性质,会利用网格特点个割补法求解图形面积是解答的关键.43.(1)见解析(2)见解析【分析】(1)根据对称轴垂直平分对应点连线,可找到各点的对称点,顺次连接即可得到111A B C △;(2)根据中心对称点平分对应点连线,可得各点的对称点,顺次连接可得222A B C △.【详解】(1)解:111A B C △即为所求;;(2)解:222A B C △即为所求.【点睛】本题考查了中心对称作图及轴对称作图的知识,解答本题的关键是掌握轴对称及中心对称的性质.44.(1)见解析;(2)见解析【分析】(1)根据旋转的性质找出B 、C 的对应点B 1、C 1的位置,顺次连接即可;(2)首先根据点B 、C 的坐标建立直角坐标系,然后分别找出点A 、B 、C 关于原点对称的对应点A 2、B 2、C 2的位置,顺次连接即可.【详解】解:(1)11AB C ∆如图所示;(2)直角坐标系和222A B C ∆如图所示.【点睛】本题考查了作图—旋转变换和中心对称,准确找出对应点的位置是解题的关键. 45.(1) 答案见解析;(2)答案见解析.【分析】(1)分别作出点A ,B ,C 关于直线l 的对称点,再首尾顺次连接可得;(2)作出点A 与点C 绕着点B 旋转180°得到的对应点,再与点B 首尾顺次连接可得.。
浙教版初中数学七年级上册专题50题含答案

浙教版初中数学七年级上册专题50题含答案一、单选题1.2021年是中国共产党建党百年,走过百年光辉历程的中国共产党,成为拥有9100多万名党员的世界最大的马克思主义执政党.将“9100万”用科学记数法表示应为( ) A .9.1×103B .0.91×104C .9.1×107D .91×1062.小明如果以5 km/h 的速度从家去学校,则迟到2分钟,如果以6 km/h 的速度从家去学校,则会提前2分钟到校,设小明家到学校距离为x km ,那么可列方程为( ) A .2256x x +=-B .22560660x x -=+ C .2256x x -=+D .22560660x x +=- 3.据统计,到2017年底,广州市的常住人口将达到14330000人,这个人口数据用科学记数法表示为( ) A .4143310⨯B .81.43310⨯C .71.43310⨯D .80.143310⨯4.下列各数中,无理数是( )AB .912C D .2275.下列说法正确的是( ) A .有最大的有理数 B .有最小的负有理数 C .有最小的正有理数D .有绝对值最小的有理数6.如图,∠AOB ,以OA 为边作∠AOC ,使∠BOC =12∠AOB ,则下列结论成立的是( )A .AOC BOC ∠=∠B .AOC AOB ∠<∠C .AOC BOC ∠=∠或2AOC BOC ∠=∠D .AOC BOC ∠=∠或3AOC BOC ∠=∠7.下列各组式子中,是同类项的是( ) A .23x y 与23xy -B .2xy 与2yx -C .2x 与22xD .5xy 与5yz8.下列说法正确的个数为( )∠两点确定一条直线 ∠连接两点的线段叫两点间的距离∠两点之间的所有连线中,线段最短 ∠AC+BC=AB ,则C 是AB 的中点 A .1B .2C .3D .49.如图,下列说法错误的是( )A .直线AC 与射线BD 相交于点AB .BC 是线段 C .直线AC 经过点AD .点D 在直线AB 上10.要使4x -32的值不大于3x +5,则x 的最大值是( )A .4B .6.5C .7D .不存在112(2)0y +=,则2015()x y +等于( ) A .-1B .1C .20153D .20153-12.12⎛⎫-- ⎪⎝⎭,1-,0,22-,4(1)-,2--,2(1)--中,是正有理数的有( )个.A .1B .2C .3D .413.已知()2330a b ++-=,则a b -=( ) A .12-B .6-C .0D .614.下列几何体中,是圆锥的为( )A .B .C .D .15.下列说法正确的是 ( ) A .近似数5.20与5.2的精确度一样 B .近似数32.010⨯与2000的意义一样 C .3.25万精确到百位D .0.35万与⨯33.510的精确度不同16.将一副直角三角尺按如图所示的不同方式摆放,则图中α∠与∠β相等的是( )A .B .C .D .17.关于x 的多项式3238310x x x -+-与多项式324259x mx x +-+的和不含2x 这一项,则m 为( ) A .4B .2C .-2D .-418.“a ,b 两数的平方差”用代数式表示为( ) A .b 2- a 2B .(a - b)2C .(b - a)2D .a 2- b 219.对于有理数a ,b ,定义a ∠b 2a b =-,则[(x y +) ∠(x y -)] ∠3x 化简后得( ) A .-+x y B .2x y -+ C .6x y -+D .4x y -+二、填空题20.(﹣a +2b +3c )(a +2b ﹣3c )=[2b ﹣( )][2b +(a ﹣3c )].21.在地理学中使用海平面作为高度的一种衡量标准,例如,某地区的平均高度高于海平面310m ,记为海拔310m +,则低于海平面270m 记为____.22.杭州一月某天的最高气温是5C ︒,最低气温是3C -︒,那么这天的温差是___________C ︒.23.﹣3是_____的立方根,81的平方根是_____.24.如图,已知点A 在数轴上的位置如下,请写出一个表示点A 的无理数___________ .25.﹣(﹣2)=___;﹣|﹣2|=___.26.如果收入100元记作+100元,那么支出120元记作____元.27.计算041822023-⎛⎫⨯--= ⎪⎝⎭______.28.112-的倒数是__________,绝对值等于10的数是__________.29.若正方体的棱长为4410⨯,那么它的体积为___________.(用科学记数法表示)30.计算()()()342211250%⎡⎤-⨯--÷-⎣⎦=______. 31.比较大小:(1)|-14|____|-15|;(2)-6____-8; (3)-12____-13;(4)-|-56|____+(-67).32.把四张形状大小完全相同的小长方形卡片(如图1)不重复地放在一个底面为长方形(长为cm ,影部分周长和是 _____cm .(用m 和n 的式子表示)33.若25113m n a b -+与33ab -的和为单项式,则m n +=__________.34.计算-2÷3×13,应该先算_____,再算_____,正确的结果为____.35.今年小明12岁,小明的爸爸40岁,则___________年后小明爸爸的年龄将是小明年龄的2倍.36.计算:-2-5=______.37.如图,四边形ABCD CEFG 、均为正方形,其中正方形ABCD 面积为28cm .图中阴影部分面积为25cm ,正方形CEFG 面积为_________.38.“干支纪年法”是我国历法的一种传统纪年法,甲、乙、丙、丁、戊、已、庚、辛、壬、癸被称为“十天干”:子、丑、寅、卯、辰、已、午、未、申、酉、戍、亥叫做“十二地支”;“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为甲子、乙丑、丙寅…癸酉;甲戌、乙亥、丙子…癸未;甲申、乙酉、丙戌…癸已;…共得到60个组合,称六十甲子,周而复始,无穷无尽.2021年是“干支纪年法”中的辛丑年,那么2050年是“干支纪年法“中的________________.39.若a 、b 为实数,且10a +,则a b +的值________.三、解答题 40.计算题(1)4211[3(3)]2----;(2)1311()()24324-+-÷-41.若|3||4|0a b -+-=,求a b -的值.42.计算:211321133⎛⎫⎛⎫-⨯⨯-÷- ⎪ ⎪⎝⎭⎝⎭.43.解方程 (1)1224x x+-= (2)3157146y y ---= 44.一只蚂蚁从点P 出发,在一条水平直线上来回匀速爬行.记向右爬行的路程为正,向左爬行的路程为负,爬行的路程依次为(单位:厘米):7,6,5,6,13,3+---+-. (1)请通过计算说明蚂蚁最后是否回到了起点P .(2)若蚂蚁爬行的速度是0.5厘米/秒,问蚂蚁共爬行了多少时间?45.如图,B 、C 两点把线段AD 分成2:5:3三部分(即:AB :BC :CD =2:5:3),M 为AD 的中点.(1)判断线段AB 与CM 的大小关系,说明理由;(2)若CM =6cm ,求AD 的长.46.定义:如果2m =n (m ,n 为正数),那么我们把m 叫做n 的D 数,记作m =D (n ).(1)根据D 数的定义,填空:D (2)= ,D (16)= . (2)D 数有如下运算性质:D (s •t )=D (s )+D (t ),D (qP)=D (q )﹣D (p ),其中q >p .根据运算性质,计算: ∠若D (a )=1,求D (a 3);∠若已知D (3)=2a ﹣b ,D (5)=a +c ,试求D (15),D (53),D (108),D(2720)的值(用a 、b 、c 表示). 47.计算:(1)312138(2)(8)595⎛⎫⨯--⨯-+-⨯ ⎪⎝⎭(2)2171198(2)132653⎛⎫⎛⎫-⨯-+-÷-+⨯- ⎪ ⎪⎝⎭⎝⎭(3)222223418333⎛⎫⎛⎫⎛⎫⨯--⨯--÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(4)33821(1)(4)421⎛⎫-+⨯-+-⨯- ⎪⎝⎭48.解方程: (1)13125x xx +-=+ (2)2531162x x -+-= 49.七年级175名同学在5位老师的带领下准备到离学校22千米处的某地进行社会实践,共有两辆各能坐50人的汽车,第一辆已经在学校,第二辆在30分钟后才能赶到学校.师生可以选择步行或是乘车的方式前往目的地,已知师生步行的速度是5千米/时,汽车的速度是55千米/时,上、下车时间忽略不计.如果你是这次行动的总指挥,请解决以下问题:(1)若汽车将师生送到目的地后再返回接送余下师生,余下师生一边步行一边等待汽车返回,则全体师生到达目的地需要多少时间?(2)有10位学生因身体原因不适合步行,留在原地等待第二辆汽车接送,要怎样安排师生乘车,才能使全体师生花最短的时间到达目的地?最短的时间是多少?参考答案:1.C【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对10时,n 是正数;当原数的绝对值1<时,n 是负数. 【详解】解:1万为410,则将9100万用科学记数法表示为79.110⨯. 故选:C .【点睛】本题考查科学记数法的表示方法,解题的关键是掌握科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数,表示时关键要正确确定a 的值以及n 的值.2.B【分析】设小明家到学校距离为x km ,根据“以5km/h 的速度从家去学校,则迟到2分钟,如果以6km/h 的速度从家去学校,则会提前2分钟”即可列出方程. 【详解】解:设小明家到学校距离为x km , 根据题意得:22560660x x -=+, 故选:B .【点睛】本题主要考查了由实际问题抽象出一元一次方程,根据时间找出等量关系是解决问题的关键. 3.C【详解】14330000=1.433×107. 故选C.点睛:掌握科学记数法. 4.C【分析】根据无理数的概念及其三种形式:∠开方开不尽的数,∠无限不循环小数,∠含有π的数,结合选项解答即可.【详解】解:A .2=-,是整数,属于有理数;B .192,是分数,属于有理数;C D .227是分数,属于有理数. 故选:C .【点睛】本题主要考查了无理数的概念,解答本题的关键是掌握无理数的三种形式:∠开方开不尽的数,∠无限不循环小数,∠含有π的数.5.D【分析】利用有理数的有关知识即可进行判断.【详解】解:A、没有最大的有理数,故A错误;B、没有最小的负有理数,故B错误;C、没有最小的正有理数,故C错误;D、绝对值最小的有理数是0,故D正确;故选:D.【点睛】本题考查了有理数的相关知识,解题的关键是熟记有理数的相关定义.6.D【分析】分OC在∠AOB内部和OC在∠AOB外部两种情况讨论,画出图形即可得出结论.【详解】解:当OC在∠AOB内部时,∠∠BOC=12∠AOB,即∠AOB=2∠BOC,∠∠AOC=∠BOC;当OC在∠AOB外部时,∠∠BOC=12∠AOB,即∠AOB=2∠BOC,∠∠AOC=3∠BOC;综上,∠AOC=∠BOC或∠AOC=3∠BOC;故选:D.【点睛】本题考查了角平分线的定义,熟练掌握角平分线的定义,数形结合解题是关键. 7.B【分析】根据同类项的定义(所含字母相同,并且相同字母的指数也分别相同的项叫做同类项)逐项判断即可得.【详解】解:A 、23x y 与23xy -中字母,x y 的指数均不相同,则此项不是同类项,不符合题意;B 、2xy 与2yx -是同类项,则此项符合题意;C 、2x 与22x 中字母x 的指数不相同,则此项不是同类项,不符合题意;D 、5xy 与5yz 所含字母不相同,则此项不是同类项,不符合题意; 故选:B .【点睛】本题考查了同类项,熟记定义是解题关键. 8.B【分析】根据线段、直线、射线等相关的定义或定理分别判断得出答案即可. 【详解】解:∠过两点有且只有一条直线,此选项正确; ∠连接两点的线段的长度叫两点间的距离,此选项错误; ∠两点之间所有连线中,线段最短,此选项正确;∠AC+BC=AB ,说明点C 在线段AB 上,不能说明点C 是线段AB 的中点,故此选项错误;故正确的有2个. 故选B .【点睛】本题主要考查学生对线段、直线、射线概念公理的理解及掌握程度,熟记其内容是解题关键. 9.D【分析】根据射线、直线与线段的定义,结合图形解答. 【详解】解:如图:A 、直线AC 与射线BD 相交于点A ,说法正确,故本选项错误;B 、B 、C 是两个端点,则BC 是线段,说法正确,故本选项错误; C 、直线AC 经过点A ,说法正确,故本选项错误;D 、如图所示,点D 在射线BD 上,说法错误,故本选项正确. 故选:D .【点睛】本题考查了直线、射线、线段,注意:直线没有端点. 10.B【分析】根据题意列出不等式,求出解集即可确定出x 的最大值. 【详解】解:根据题意可得: 34352x x ,-≤+ 解得: 6.5.x ≤ ∠x 的最大值为6.5. 故选B.【点睛】此题考查了解一元一次不等式,熟练掌握解不等式的基本步骤是解本题的关键. 11.A【分析】根据算术平方根及偶次幂的非负性求出x 、y 的值,然后代入求解即可.【详解】解:2(2)0y +=, ∠10,20x y -=+=, 解得:x 1,y 2==-, ∠()()20152015121x y +=-=-;故选A .【点睛】本题主要考查算术平方根及偶次幂的非负性,熟练掌握算术平方根及偶次幂的非负性是解题的关键. 12.B【分析】先化简各数,再判断即可. 【详解】1122⎛⎫--= ⎪⎝⎭是正有理数,242-=-是负有理数,4(1)1-=是正有理数,2=2---是负有理数,2(1)1--=-是负有理数, 正有理数有12⎛⎫-- ⎪⎝⎭,4(1)-, 故选B .【点睛】本题考查了有理数的分类,绝对值的定义,多重符号的化简,以及乘方的意义,正确化简各数是解答本题的关键.13.B【分析】先根据绝对值、偶次方的非负性求出a ,b 的值,再代入代数式进行计算即可. 【详解】解:()2330a b ++-=,30a ∴+=,30b -=, 解得3a =-,3b =,336a b ∴-=--=-.故选:B .【点睛】本题考查的是非负数的性质,熟知任意一个数的绝对值都是非负数是解答此题的关键.14.C【分析】根据圆锥的特征进行判断即可.【详解】解:圆锥是由一个圆形的底面,和一个弯曲的侧面围成的,因此选项C 中的几何体符合题意,故选:C .【点睛】本题考查认识立体图形,掌握几种常见几何体的形体特征是正确判断的前提. 15.C【分析】根据最后一位所在的位置就是精确度,即可得出答案.【详解】解:A 、5.20精确到百分位,5.2精确到十分位,精确度不一样,故本选项错误; B 、近似数2.0×103精确到百位,2000精确到个位,意义不一样,故本选项错误; C 、3.25万精确到百位,故本选项正确;D 、0.35万与3.5×103的精确度相同,都是精确到百位,故本选项错误;故选:C .【点睛】此题考查了近似数,解答此题应掌握数的精确度的知识,最后一位所在的位置就是精确度.16.C【分析】A 、由图形可得两角互余,不合题意;B 、由图形得出两角的关系,即可做出判断;C 、根据图形可得出两角都为45︒的邻补角,可得出两角相等;D 、由图形得出两角的关系,即可做出判断.【详解】解:A 、由图形得:90αβ+=︒,不合题意;B 、由图形得:90βγ+=︒,60αγ+=︒,可得30βα-=︒,不合题意;C 、由图形可得:18045135αβ==︒-︒=︒,符合题意;D 、由图形得:45903090αβ+︒=︒+︒=︒,,可得4560αβ=︒=︒,,不合题意. 故选:C .【点睛】此题考查了角的计算,弄清图形中角的关系是解本题的关键.17.A【分析】先把两个多项式相加,再根据和中不含x 2项,可知x 2项的系数为0,得到关于m 的方程,解方程即可求出m 的值.【详解】解:∠3238310x x x -+-+324259x mx x +-+=7x 3+(2m-8)x2-2x-1,又结果中不含x 2项,∠2m-8=0,解得m=4.故选A .【点睛】本题考查了整式的加减,掌握整式加减的法则是解题的关键.18.D【分析】本题考查列代数式,要明确给出文字语言中的运算关系,先求平方,然后求差.【详解】解:被减数为a 的平方,减数为b 的平方.∠平方差为:a 2-b 2.故选D .【点睛】列代数式的关键是正确理解文字语言中的关键词,比如该题中的“平方”、“差”等,从而明确其中的运算关系,正确地列出代数式.19.C【分析】根据新定义的计算规则先计算括号内,按法则转化为整式加减计算,去括号合并,再根据新定义转化为整式的加减计算去括号,最后合并同类项即可.=-,,【详解】解:∠a∠b2a b∠[(x+y)∠(x-y)]∠3x=[2(x+y)-(x-y)]∠3x=(2x+2y-x+y)∠3x=(x+3y)∠3x=2(x+3y)-3x=2x+6y-3x=-x+6y.故选C.【点睛】本题考查新定义运算法则,掌握新定义运算法则实质,化为整式加减的常规计算,去括号,合并同类项是解题关键.20.a﹣3c【分析】多项式因式根据添括号法则进行求解.【详解】(﹣a+2b+3c)(a+2b﹣3c)=[2b﹣(a-3c)][2b+(a﹣3c)]故答案为:a-3c【点睛】本题考查的是添括号法则.灵活的运用法则内容是解题的关键.-21.270m【分析】明确“正”和“负”所表示的意义;再根据题意作答.【详解】解:∠高于海平面310m,记为海拔310m+,-∠低于海平面270m记为270m-故答案为:270m【点睛】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.22.8【分析】用最高气温减去最低气温,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.【详解】解:5-(-3)=5+3=8∠.故答案为:8.【点睛】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.23. -27 ±9【分析】利用平方根、立方根定义计算即可求出所求.【详解】﹣3是﹣27的立方根,81的平方根是±9,故答案为﹣27;±9.【点睛】此题考查了立方根,以及平方根,熟练掌握各自的定义是解本题的关键. 24.π-(答案不唯一)【分析】观察数轴,写出一个在3-和4-之间的无理数即可.【详解】观察数轴,A 点在3-和4-之间,这个区间的无理数有π-、出一个即可,故答案为:π-(答案不唯一).【点睛】本题考查数轴、无理数的知识点,掌握无理数的定义,熟记常见的无理数是解题关键.25. 2 -2【分析】根据绝对值的性质和化简多重符号进行计算即可得解.【详解】解:﹣(﹣2)=2;﹣|﹣2|=﹣2,故答案为:2;﹣2.【点睛】本题考查了多重符号化简和绝对值的性质,是基础题,熟记性质是解题的关键. 26.−120【分析】因为收入与支出相反,所以由收入100元记作+100元,可得到结论.【详解】如果收入100元记作+100元.那么支出120元记作−120元.故答案为:−120.【点睛】此题考查正数和负数的意义,运用正数和负数来描述生活中的实例.27.12- 【分析】先利用负整数指数幂性质,零指数幂性质计算,然后再利用实数混合运算的法则计算即可.【详解】解:041822023-⎛⎫⨯-- ⎪⎝⎭ 18116=⨯- 112=- 12=- , 故答案为:12- 【点睛】本题考查了实数的运算,熟练掌握负整数指数幂性质,零指数幂性质是解题的关键.28. 23- ±10 【详解】试题解析:∠131=22--,32-的倒数是23-, ∠112-的倒数为23-, ∠+1010=,-1010= ∠1010±=. 故答案为23-,±10. 29.136.410⨯【分析】根据正方体的体积公式进行求解即可.【详解】解:401004400=⨯,由题意得,该正方体体积为1340000400004000064000000000000 6.410⨯⨯==⨯, 故答案为:136.410⨯.【点睛】本题主要考查了科学记数法和有理数乘法计算,熟知正方体体积公式是解题的关键.30.40【分析】先计算有理数的乘方、百分数化为分数,再计算有理数的乘除法,然后计算有理数的加法即可得. 【详解】解:原式2181122⎡⎤⎛⎫=-⨯-÷-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,14812⎛⎫=--÷- ⎪⎝⎭, 848=-+,40=.故答案为:40.【点睛】本题考查了含乘方的有理数混合运算,熟记运算法则是解题关键.31. > > < >【分析】根据:1、两个正数比较大小,绝对值大的数大;2、两个负数比较大小,绝对值大的数反而小.【详解】根据有理数大小比较方法得:(1)|-14|>|-15|; (2)因为|-6|<|-8|,所以,-6>-8;(3)因为|-1|2>|-1|3,所以,-12<-13; (4)因为,-|-56|= -5 6,+(-67)= -67,所以-|-56|>+(-67). 故答案为(1). > (2). > (3). < (4). >【点睛】本题考核知识点:有理数大小比较.解题关键点:理解有理数大小比较方法. 32.4n【分析】设小长方形卡片的长为a cm ,宽为b cm ,由图形可知:a +2b =m ,接下来分别求出上下两块阴影部分的周长,可得结论.【详解】解:设小长方形卡片的长为a cm ,宽为b cm ,则下面的阴影的周长为2(m -2b +n -2b )cm ,上面的阴影的周长为2(n -a +m -a )cm ,所以两块阴影部分的周长和为2(m -2b +n -2b )+2(n -a +m -a )=[4m +4n -4(a +2b )]cm .因为a +2b =m ,所以4m +4n -4(a +2b )=4m +4n -4m =4n (cm),即图∠中两块阴影部分的周长和是4n cm .故答案为:4n .【点睛】本题考查整式的加减的应用,列代数式等知识,解题的关键是学会利用参数解决问题.33.5【分析】直接利用合并同类项法则得出关于m ,n 的等式求解.【详解】解:∠25113m n a b -+与33ab -的和为单项式, ∠2m-5=1,n+1=3,解得,m=3,n=2,∠m+n=5.故答案为:5.【点睛】本题考查同类项及合并同类项法则,理解同类项概念是解答此题的关键. 34. 除法 乘法 -29【分析】根据有理数混合运算的法则进行计算即可.【详解】解:根据有理数的运算法则可得先算除法,再算乘法,计算结果:-2÷3×13=-23×13=-29, 故答案为:除法;乘法;-29.【点睛】本题考查了有理数乘除的运算,掌握运算法则是解题关键.35.16【分析】设过了x 年后,由爸爸的年龄正好是小明的2倍,列方程解方程可得答案.【详解】解:设过了x 年后,爸爸的年龄正好是小明的2倍.则 ()21240x x +=+24240x x ∴+=+16.x ∴=故答案为:16.【点睛】本题考查的是一元一次方程的应用,解答此类试题主要是学会列未知数,进而求解,列未知数要注意基本的解题技巧36.3-【分析】先计算|-2|=2,再计算2-5即可. 【详解】解:-2-5=2-5=-3.故答案为:-3.【点睛】此题主要考查了有理数的减法,熟练掌握运算法则是解答此题的关键. 37.18【分析】先设出正方形边长,再分别求出它们的边长,即可求解.【详解】设正方形ABCD 的边长为a ,正方形CEFG 的边长为b ,∠28a =,∠0a >, ∠a =∠阴影面积为()()11522S b b b =-⨯=, ∠0b > ∠b =∠218b =,故答案为:18.【点睛】本题考查了实数运算的实际应用,解题关键是正确求出正方形的边长并且表示出阴影面积.38.庚午【分析】需要弄清“干支”纪年是从公元4年开始,故可以列一个数字对应表.用公元年数字的最后一个数字来对应“天干”,用公元年数字除以12,余数对应“地支”.【详解】解:需要弄清“干支”纪年是从公元4年开始,故可以列一个数字对应表.用公元年数字的最后一个数字来对应“天干”,用公元年数字除以12,余数对应“地支”.例如公元2021年的个位数是1,对应“天干”的“辛”;2021÷4得到余数是5,对应“地支”中“丑”,故是“辛丑”年;同样公元2050年的个位数是0,对应“天干”的“庚”;2050÷4得到余数是10,对应“地支”中“午”.故答案为:庚午.【点睛】本题考查“天干、地支”的循环纪年,转化为用数字的循环来计算的数学方法.此题关键是弄清“干支”纪年是从公元4年开始.39.0【分析】根据非负数的性质列式求出a 、b 的值,然后代入代数式进行计算即可得解.【详解】由题意得,a+1=0,b-1=0,解得a=-1,b=1,所以,a+b=-1+1=0.故答案为0.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0. 40.(1)2(2)2【分析】(1)根据有理数的混合运算法则即可求解;(2)根据乘法分配律即可求解.【详解】(1)4211[3(3)]2---- =11[39]2--- =1162-+⨯ =-1+3=2(2)1311()()24324-+-÷- =131()(24)243-+-⨯- =12-18+8=2【点睛】此题主要考查有理数的运算,解题的关键是熟知有理数的运算法则.41.-1【分析】利用绝对值的非负性求得a 、b ,再代入代数式求解.【详解】解:依题意:3a =, 4b =,∠341a b -=-=-.【点睛】本题考查绝对值的非负性,有理数的减法法则,熟练掌握基础知识即可. 42.6-【分析】直接根据有理数的四则混合运算法则计算即可. 【详解】解:211321133⎛⎫⎛⎫-⨯⨯-÷- ⎪ ⎪⎝⎭⎝⎭2312346⎛⎫⎛⎫=-⨯-⨯- ⎪ ⎪⎝⎭⎝⎭=-【点睛】本题考查了有理数的计算,解决本题的关键是注意计算过程中的正负号. 43.(1)x =6;(2)y =﹣1.【分析】(1)按照去分母、去括号、移项、合并同类项的步骤即可得;(2)按照去分母、去括号、移项、合并同类项、系数化为1的步骤即可得.【详解】(1)两边同乘以4去分母,得2(1)8x x +-=去括号,得228x x +-=移项,得228x x -=-+合并同类项,得6x =故原方程的解为6x =;(2)两边同乘以12去分母,得3(31)122(57)y y --=-去括号,得93121014y y --=-移项,得91014312y y -=-++合并同类项,得1y -=系数化为1,得1y =-故原方程的解为1y =-.【点睛】本题考查了一元一次方程的解法,解法步骤包括:去分母、去括号、移项、合并同类项、系数化为1,熟记解法是解题关键.44.(1)蚂蚁最后是回到了起点P ;(2)80秒.【分析】(1)根据正负数的运算法则进行计算,然后看最后结果的正负,即可判断. (2)根据蚂蚁爬行路线,先求蚂蚁爬行的路程,然后利用公式:时间=路程÷速度,求其时间.【详解】解:(1)7(6)(5)(6)(13)(3)++-+-+-+++-0=,∠蚂蚁最后是回到了起点P ;(2)765613340++-+-+-+++-=,∠400.580÷=(秒).答:蚂蚁共爬行了80秒.【点睛】本题主要考查了正负数以及有理数的加减乘除混合运算,关键根据正负数加减法的运算法则计算.45.(1)AB =CM ,理由见解析;(2)AD =30cm .【分析】(1)设AB=2x ,BC=5x ,CD=3x ,则AD=10x ,根据M 为AD 的中点,可得AM=DM=12AD=5x ,然后求出CM=2x ,即可求解; (2)由CM=6cm ,可得x=3cm ,即可得到答案.【详解】解:(1)设AB =2x ,BC =5x ,CD=3x则AD =10x ,∠M 是AD 的中点,∠MD =12AD =12×10x =5x , ∠CM =MD -CD =5x -3x =2x∠AB =CM ;(2)由(1)可知,∠CM =2x =6cm∠x =3cm∠AD =10x =30cm ;【点睛】本题考查了两点间的距离,利用线段的和差,线段中点的性质是解题关键. 46.(1)1,4;(2)∠3()3D a =;∠(15)3D a b c =-+,5()3D a b c =-++,(108)632D a b =-+,27()53220D a b c =---.【分析】(1)根据题意的新定义解答;(2)∠根据()()()()D a a a D a D a D a ⋅⋅=++解答;∠根据(15)(35)(3)(5)D D D D =⨯=+,5()3D (5)(3)D D =-,(108)(33322)D D =⨯⨯⨯⨯,27()(27)(20)20D D D =-解答即可.【详解】(1)解:12=21=(2)D ∴ 42=16(16)4D ∴=故答案为:1,4;(2)∠ D (a 3)=()()()()D a a a D a D a D a ⋅⋅=++,()=1D a3()1+1+1=3D a ∴=∠(15)(35)D D =⨯(3)(5)D D =+2a b a c =-++3a b c =-+ 5()3D (5)(3)D D =- +c (2)a a b =--a b c =-++(108)(33322)D D =⨯⨯⨯⨯(3)(3)(3)(2)(2)D D D D D =++++3(3)2(2)D D =⨯+⨯3(2)2a b =-+632a b =-+ 27()(27)(20)20D D D =- (333)(225)D D =⨯⨯-⨯⨯3(3)2(2)(5)D D D =--3(2)21()a b a c =--⨯-+632a b a c =----532a b c =---【点睛】本题考查阅读题的理解,运用所给定义进行化简,对公式能够活学活用是解题关键.47.(1)1 239-;(2)-12;(3) 2032-;(4)14 3-【分析】(1)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可; (2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可;(3)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可;(4)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可.【详解】解:(1)原式()12131238818888242359555999⎛⎫⎛⎫=-⨯-⨯--⨯=-⨯++=-+=- ⎪ ⎪⎝⎭⎝⎭; (2)原式62412=---=-;(3)原式449443818209343323=-⨯--⨯=---=-; (4)原式2148433=--+=-. 【点睛】本题考查的知识点是有理数的混合运算,掌握运算顺序,熟记运算法则是解此题的关键.48.(1)15x =-(2)2x =-【分析】(1)利用去分母,去括号,移项,合并同类项,系数化1进行计算即可; (2)利用去分母,去括号,移项,合并同类项,系数化1进行计算即可;【详解】(1)解:13125x x x +-=+ 方程两边同乘10得:()10512310x x x -+=⨯+,去括号得:1055610x x x --=+,移项合并同类项得:15x -=,解得:15x =-;(2)解:2531162x x -+-= 方程两边同乘6得:()253316x x --+=,去括号得:25936x x ---=,移项合并同类项得:714x -=,解得:2x =-.【点睛】本题考查解一元一次方程,注意在去分母得时候,常数项不要漏乘最小公倍数,去括号时,括号前面是“—”号,要注意变号.49.(1)体师生到达目的地所用时间为8960小时 (2)要使全体师生花最短的时间到达目的地,可安排第一辆汽车接送3组,第二辆汽车接送1组,最短时间为75小时【分析】(1)根据最后一组应该由第二辆车接送,先算第一趟使用时间,再算第二趟时间即可得到答案;(2)将学生分为四组,分类讨论求出时间即可得到答案;【详解】(1)解:最后一组应由第二辆汽车接送:221=0.9552+,220.95755524-⨯=+,7890.922460+⨯=, ∠全体师生到达目的地所用时间为8960小时; (2)解:因有10位学生不适合步行,可留50位学生乘坐第二辆汽车直接前往目的地. ∠两辆车各接送2组,由(1)可知,全体师生到达目的地所需时间为8960小时; ∠第一辆汽车接送1组,第二辆汽车接送3组,所用时间明显多于∠的情况情况; ∠第一辆汽车接送3组,第二辆汽车接送1组:设3组师生乘坐第一辆汽车的时间均为t 小时,则图中AC =55t ,CB =22-55t ,汽车从C 到E (F 到G )用去的时间为55555556t t t -=+, 汽车到达C 处后2次回头,又2次向B 处开去,共用去时间5112263t t t ⨯+=,∠11225553t t -=⨯,解得310t =, 这时3225537101055-⨯+=,∠7221552>+, ∠第二辆汽车已到达.综上所述,要使全体师生花最短的时间到达目的地,可安排第一辆汽车接送3组,第二辆汽车接送1组,最短时间为75小时.【点睛】本题考查一元一次方程解决行程问题,解题的关键是找到等量关系式及分类讨论.。
初中数学中心对称图形专题训练50题(含参考答案)

初中数学中心对称图形专题训练50题含参考答案一、单选题1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.下列图形中,是轴对称图形的是()A.B.C.D.3.下列四边形中,是中心对称但不是轴对称的图形是()A.矩形B.等腰梯形C.正方形D.平行四边形4.下列选项中的垃圾分类图标,属于中心对称图形的是()A.B.C.D.5.下列图形中,一定既是轴对称图形又是中心对称图形的是()A.等腰三角形B.矩形C.平行四边形D.正五边形6.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.7.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.8.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.9.下列汽车车标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D .10.如图,将ABC ∆绕点()1,1C 旋转180︒得到''.A B C ∆设点A 的坐标为(,)a b , 则点'A 的坐标为( )A .()1,1a b -+-+B .()1,1a b ----C .()2,2a b -+-+D .2,2()a b ----11.下列命题中,正确的是( )A .菱形的对角线相等B .平行四边形既是轴对称图形,又是中心对称图形C .正方形的对角线相等且互相垂直D .矩形的对角线不能相等12.下列图案中,既是中心对称又是轴对称图形的个数有( )A .1个B .2个C .3个D .4个 13.对于等边三角形,下列说法正确的为( )A .既是中心对称图形,又是轴对称图形B .是轴对称图形,但不是中心对称图形C .是中心对称图形,但不是轴对称图形D .既不是中心对称图形,又不是轴对称图形14.在平面直角坐标系中,点(2,1)-关于原点对称的点的坐标是( )A .(2,1)B .(2,1)-C .(1,2)-D .(2,1)-- 15.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .16.下列图形中,是轴对称图形不是中心对称图形的有( )A .1个B .2个C .3个D .4个 17.下列图形中,既是轴对称又是中心对称图形的是( )A .B .C .D .18.如图,菱形ABCD 对角线交点与坐标原点O 重合,点()2,5A -,则点C 的坐标为( )A .()5,2-B .()2,5-C .()2,5D .()2,5-- 19.如图,四边形ABCD 与四边形FGHE 关于点O 成中心对称,下列说法中错误的是( )A .//AD EF =,//AB GF =B .BO GO =C .B 、O 、G 三点在一条直线上D .DO HO =20.下列图形中既是轴对称图形又是中心对称图形的是( )A .AB .BC .CD .D二、填空题21.圆不仅是轴对称图形,而且是______图形,它的对称中心是______.22.请写出一个是轴对称图形但不一定是中心对称图形的几何图形名称:____________________.23.已知点()4,3P -和点(),Q x y 关于原点对称,则x y +=______.24.下列图形:①平行四边形;①菱形;①等边三角形;①正方形,其中既是轴对称图形,又是中心对称图形的有_____(填序号).25.在平面直角坐标系中,点(-1,2)关于x 轴对称的点的坐标是____________,关于y 轴对称的点的坐标是____________,关于原点对称的点的坐标是_____________.26.已知点A (a ,1)与点B (﹣3,b )关于原点对称,则ab 的值为_____. 27.在平面直角坐标系中,以原点为中心,把点A (3,﹣5)逆时针旋转180°,得到的点B 的坐标为 _________.28.数轴上A B 点表示-2,则A 点关于B 点的对称点A '表示的数为_______________.29.成中心对称的两个图形________,对应点的连线都经过________,并且被对称中心________.30.如果点P(-3,1),那么点P(-3,1)关于原点的对称点P '的坐标是P '___.31.直线2y x =+上有一点()1,,P m 则P 点关于原点的对称点为P'________________(不含字母m ).32.阅读下面材料,并解决相应的问题:在数学课上,老师给出如下问题,已知线段AB ,求作线段AB 的垂直平分线.小明的作法如下:(1)分别以A ,B 为圆心,大于12AB 长为半径作弧,两弧交于点C ; (2)再分别以A 、B 为圆心,大于12AB 长为半径作弧,两弧交于点D ; (3)作直线CD ,直线CD 即为所求的垂直平分线.同学们对小明的作法提出质疑,小明给出了这个作法的证明如下:连接AC ,BC ,AD ,BD由作图可知:AC BC =,AD BD =①点C ,点D 在线段的垂直平分线上(依据1:______)①直线就是线段的垂直平分线(依据2:______)(1)请你将小明证明的依据写在横线上;(2)将小明所作图形放在如图的正方形网格中,点A ,B ,C ,D 恰好均在格点上,依次连接A ,C ,B ,D ,A 各点,得到如图所示的“箭头状”的基本图形,请在网格中添加若干个此基本图形,使其各顶点也均在格点上,且与原图形组成的新图形是中心对称图形.33.若某函数图象上至少存在不同的两点关于原点对称,则把该函数称之为“H 函数”,其图象上关于原点对称的两点叫做一对“H 点”.根据该约定,下列关于x 的函数:①2y x =;①()0m y m x =≠;①31y x =-;①2y x .其中是“H 函数”的为________.(填上序号即可)34.旋转对称图形______________(填“一定是”、“一定不是”或“不一定是”)中心对称图形;中心对称图形________(填“一定是”、“一定不是”或“不一定是”)旋转对称图形.35.给出下列5种图形:①平行四边形①菱形①正五边形、①正六边形、①等腰梯形中,既是轴对称又是中心对称的图形有________个.36.若点P (﹣m ,3﹣m )关于原点的对称点在第四象限,则m 满足_____. 37.在下列字型的数字中,既是轴对称图形又是中心对称图形的有______________.38.在平面直角坐标中,点()1,2P -关于原对称的点的坐标为_______________________.39.在方格纸中,选择标有序号的一个小正方形涂黑,与图中阴影构成中心对称图形,涂黑的小正方形序号为__________;若与图中阴影构成轴对称图形,涂黑的小正方形序号为__________.三、解答题40.(1)如图①所示,图中的两个三角形关于某点对称,请找出它们的对称中心O . (2)如图①所示,已知①ABC 的三个顶点的坐标分别为A (4,﹣1),B (1,1),C (3,﹣2).将①ABC 绕原点O 旋转180°得到①A 1B 1C 1,请画出①A 1B 1C 1,并写出点A 1的坐标.41.如图,ABC 的三个顶点都在正方形网格的格点上,其中点A 的坐标为()1,0-.(1)在网格中作A B C ''',使A B C '''与ABC 关于原点O 成中心对称.(2)如果四边形BCDE 是以BC 为一边,且两条对角线相交于原点O 的平行四边形,请你直接写出点D 和点E 的坐标.42.如图,在85⨯的正方形网格中,每个小正方形的边长均为1,ABC 的三个顶点均在小正方形的顶点上.(1)在图1中画ABD △(点D 在小正方形的顶点上),使ABD △与ABC 全等,且点D 在直线AB 的下方(点D 不与点C 重合);(2)在图2中画ABE △(点E 在小正方形的顶点上),使ABE △与ABC 全等,且//AC BE ;(3)请直接写出ABC 的面积.43.如图,有三张背面相同的纸牌A B C 、、,其正面分别画有三个不同的图形,将这三张纸牌背面朝上洗匀后随机摸出一张,记下图案放回洗匀后再随机摸出一张.求两次摸出的纸牌正面图形都是中心对称图形的概率,(纸牌用A B C 、、表示)44.如图,在平面直角坐标系内,已知①ABC 的三个顶点坐标分别为A (1,3)、B (4,2)、C (3,4).(1)将①ABC 沿水平方向向左平移4个单位得①A 1B 1C 1,请画出①A 1B 1C 1; (2)画出①ABC 关于原点O 成中心对称的①A 2B 2C 2;(3)若①A 1B 1C 1与①A 2B 2C 2关于点P 成中心对称,则点P 的坐标是45.如图,D 是△ABC 边BC 的中点,连接AD 并延长到点E,使DE=AD ,连接BE .(1)图中哪两个图形成中心对称;(2)若△ADC 的面积为4,求△ABE 的面积.46.如图所示的正方形网格中,ABC ∆的顶点均在格点上,在所给直角坐标系中解答下列问题;(1)作出ABC ∆关于坐标原点成中心对称的111A B C ∆;(2)分别写出点11,A B 两点的坐标;47.作出下列图形的对称中心.48.如图,在ABC 中,D 为BC 上任一点,//DE AC 交AB 于点//E DF AB ,交AC 于点F ,求证:点E F ,关于AD 的中点对称.49.由16个边长相等的小正方形组成的图形如图所示,请你用一条割线(可以是折线)将它分割成两个图形,使之关于某一点成中心对称,要求给出两种不同的方法.参考答案:1.D【分析】根据轴对称图形与中心对称图形的概念判断即可.【详解】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,但不是中心对称图形;C、既不是轴对称图形,也不是中心对称图形;D、既是轴对称图形,又是中心对称图形.故选:D.【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.B【分析】根据轴对称图形的定义判断即可.【详解】A是中心对称图形,B是轴对称图形,C是中心对称图形,D即不是中心对称图形也不是轴对称图形.故选B.【点睛】本题考查对称轴图形的判断,关键在于牢记对称轴图形的定义.3.D【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形;中心对称图形的概念:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合的图形,依次进行判定即可.【详解】A、既是轴对称图形,也是中心对称图形,故不符题意;B、是轴对称图形,不是中心对称图形,故不符题意;C、既是轴对称图形,也是中心对称图形,故不符题意;D、是中心对称图形,不是轴对称图形,故符合题意;故选:D.【点睛】本题考查轴对称图形和中心对称图形,解题的关键是熟练掌握轴对称和中心对称图形的概念.4.C【分析】一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.根据中心对称图形的概念对各选项分析判断即可得解.【详解】解:A.不是中心对称图形,故选项错误,不符合题意;B.不是中心对称图形,故选项错误,不符合题意;C.是中心对称图形,故选项正确,符合题意;D.不是中心对称图形,故选项错误,不符合题意.故选:C.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.B【分析】根据在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;在平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫做轴对称图形对各选项进行判断即可.【详解】解:①等腰三角形,正五边形均为轴对称图形,但不是中心对称图形;平行四边形是中心对称图形,但不是轴对称图形;故A,C,D不符合题意;矩形既是轴对称图形又是中心对称图形故B符合题意;故选B.【点睛】本题考查了轴对称图形与中心对称图形.解题的关键在于熟练掌握轴对称图形与中心对称图形的定义.6.B【分析】根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴,如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【详解】解:A是轴对称图形,不是中心对称图形.不符合题意;B既是轴对称图形,又是中心对称图形,符合题意;C是轴对称图形,不是中心对称图形,不符合题意;D既不是轴对称图形,又不是中心对称图形,符合题意;故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形关键是要寻找对称中心,图形旋转180°后与原图重合.7.C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误,故选:C.【点睛】本题考查两种对称图形,掌握轴对称图形与中心对称图形的概念是解决问题的关键.8.A【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行解答.【详解】解:A.既是轴对称图形,又是中心对称图形,故此选项符合题意;B.是轴对称图形,不是中心对称图形,故此选项不合题意;C.不是轴对称图形,是中心对称图形,故此选项不合题意;D.是轴对称图形,不是中心对称图形,故此选项不合题意;故选:A.【点睛】此题主要考查了中心对称图形和轴对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.9.B【分析】中心对称图形定义:把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;轴对称图形定义:如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,根据定义逐项判定即可得出结论.【详解】解:A、是轴对称图形,不是中心对称图形,故选项不符合题意;B、是轴对称图形,也是中心对称图形,故选项符合题意;C 、是轴对称图形,不是中心对称图形,故选项不符合题意;D 、不是轴对称图形,是中心对称图形,故选项不符合题意;故选:B .【点睛】本题考查中心对称图形与轴对称图形的定义,熟练掌握中心对称图形与轴对称图形的定义是解决问题的关键.10.C【分析】根据旋转变换的对应点关于旋转中心对称,再根据中点公式列式求解即可.【详解】根据题意,点A 、A′关于点C 对称,设点A’的坐标是(x ,y ), 则12a x +=,12b y +=, 解得x =−a+2,y =−b+2,①点A’的坐标是()2,2a b -+-+.故选:C .【点睛】本题考查了利用旋转进行坐标与图形的变化,根据旋转的性质得出点A 、A′关于点C 成中心对称是解题的关键,还需注意中点公式的利用,也是容易出错的地方. 11.C【分析】根据菱形、平行四边形、正方形、矩形的性质逐项判断即可得出答案.【详解】解:菱形的对角线互相垂直,但不一定相等,故选项A 说法错误,不合题意; 平行四边形不是轴对称图形,是中心对称图形,故选项B 说法错误,不合题意; 正方形的对角线相等且互相垂直,故选项C 说法正确,符合题意;矩形的对角线一定相等,故选项D 说法错误,不合题意;故选C .【点睛】本题考查菱形、平行四边形、正方形、矩形的性质,以及轴对称、中心对称图形的识别,属于基础题,熟练掌握特殊平行四边形的特点是解题的关键.12.B【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.【详解】解:第一个图形是轴对称图形,又是中心对称图形,第二个图形既是轴对称图形,不是中心对称图形,第三个图形是中心对称图形,不是轴对称图形,第四个图形是轴对称图形,又是中心对称图形,综上所述,既是轴对称图形又是中心对称图形的是第二个图形共2个.故选B .【点睛】本题考查了轴对称图形,中心对称图形的识别,解题的关键是掌握轴对称图形,中心对称图形的定义.13.B【分析】根据中心对称图形与轴对称图形的概念分析即可.【详解】等边三角形是轴对称图形,不是中心对称图形.故选:B .【点睛】本题考查判断轴对称图形与中心对称图形.掌握轴对称图形和中心对称图形的概念是解答本题的关键.14.B【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】解:点(2,1)-关于原点对称的点的坐标是(2,1)-,故选:B .【点睛】本题考查了关于原点对称的点的坐标,掌握两个点关于原点对称时,它们的坐标符号相反是解题的关键.15.D【分析】根据轴对称图形和中心对称图形的定义判断即可.【详解】①不是中心称图形,①不符合题意;①不是对称图形,①不符合题意;①不是轴对称图形,①不符合题意;①是轴对称图形,也是中心对称图形,①符合题意;故选D.【点睛】本题考查了轴对称图形即沿着某条直线折叠,直线两旁的部分完全重合;中心对称图形绕某点旋转180°与原图形完全重合;熟练掌握定义是解题的关键.16.A【分析】利用轴对称图形和中心对称图形的定义即可求解.【详解】解:等腰三角形是轴对称图形,不是中心对称图形,符合题意;菱形既是轴对称图形,又是中心对称图形,不符合题意;圆既是轴对称图形,又是中心对称图形,不符合题意;平行四边形不是轴对称图形,是中心对称图形,不符合题意;故选:A.【点睛】本题考查识别轴对称图形和中心对称图形,掌握轴对称图形和中心对称图形的定义是解题的关键.17.B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故错误;B、是轴对称图形,是中心对称图形,故正确;C、不是轴对称图形,是中心对称图形,故错误;D、是轴对称图形,不是中心对称图形,故错误.故选B.【点睛】本题考查的是中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.18.B【分析】根据菱形的中心对称性,A、C坐标关于原点对称,利用横反纵也反的口诀求解即可.【详解】①菱形是中心对称图形,且对称中心为原点,①A、C坐标关于原点对称,2,5-,①C的坐标为()故选C.【点睛】本题考查了菱形的中心对称性质,原点对称,熟练掌握菱形的性质,关于原点对称点的坐标特点是解题的关键.19.D【分析】根据中心对称的性质即“中心对称的两个图形全等,对称点到对称中心的距离相等”可得到结论.【详解】解:①四边形ABCD与四边形FGHE关于点O成中心对称,=,B、O、G三点在一条直线① AD与EF、AB GF与的关系是相等并且平行,BO GO=,上,DO EO①A、B、C选项正确,D选项错误.故选D.【点睛】本题考查中心对称的图形性质,得出对应顶点、对应边是解题关键.20.D【详解】根据轴对称图形又和中心对称图形的定义,易得D.21.中心对称圆心【分析】圆是一种比较特殊的几何图形,圆既是轴对称图形,又是中心对称图形,对称中心是圆心.【详解】解:圆是轴对称图形,圆也是中心对称图形,圆心是其对称中心,故答案为中心对称,圆心.【点睛】此题考查的知识点是中心对称图形,关键是结合中心对称图形和轴对称图形的概念对圆的认识.22.等腰三角形(答案不唯一)【分析】根据轴对称图形与中心对称图形的概念求解.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心. 如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】解:是轴对称,但不是中心对称的几何图形名称:如等腰三角形或正三角形(答案不唯一).故答案为:等腰三角形(答案不唯一).【点睛】本题考查的是中心对称图形与轴对称图形的含义.掌握“轴对称图形与中心对称图形的概念”是解本题的关键.23.1-【分析】直接利用两个点关于原点对称时,它们的坐标符号相反,即点P (x ,y )关于原点O 的对称点是P ′(﹣x ,﹣y ),进而得出答案.【详解】解:①点()4,3P -和点(),Q x y 关于原点对称,①4,3x y =-=,则1x y +=-.故答案为:1-.【点睛】此题主要考查了关于原点对称点的性质,解题的关键是正确掌握横纵坐标的符号关系.24.①①【分析】根据中心对称图形及轴对称图形的定义即可解答.【详解】①只是中心对称图形;①、①两者都既是中心对称图形又是轴对称图形,①只是轴对称图形.故答案为①①.【点睛】本题主要考查了中心对称与轴对称的概念.轴对称的关键是寻找对称轴,图象沿对称轴折叠后可重合,中心对称是要寻找对称中心,旋转180°后与原图重合.25. (-1,-2) (1,2) (1,-2)【详解】试题分析:根据关于x 轴、y 轴、原点对称的点的坐标的特征即可得到结果. 点(-1,2)关于x 轴对称的点的坐标是(-1,-2),关于y 轴对称的点的坐标是(1,2),关于原点对称的点的坐标是(1,-2).考点:本题考查的是关于x 轴、y 轴、原点对称的点的坐标的特征点评:解答本题的关键是熟练掌握关于x 轴对称的点的横坐标不变,纵坐标变为相反数;关于y 轴对称的点的纵坐标不变,横坐标变为相反数;关于原点对称的点的横、纵坐标均变为相反数.26.-3【分析】根据关于原点对称的两个点横纵坐标互为相反数得出,a b 的值,代入计算即可.【详解】解:①点A (a ,1)与点B (﹣3,b )关于原点对称,①a =3,b =﹣1,故ab =﹣3.故答案为:﹣3.【点睛】此题主要考查了关于原点对称点的性质,正确记忆关于原点对称点的性质是解题关键.27.(-3,5)【分析】根据旋转180°后的对应点与点A 关于原点对称进行求解即可.【详解】解:①将点A 绕原点逆时针旋转180°后,点A 的对应点B 与点A 关于原点对称, ①点B 的坐标为(-3,5),故答案为:(-3,5).【点睛】本题主要考查了绕原点旋转一定角度的点的坐标特征,熟知绕原点旋转180度对应点关于原点对称是解题的关键.28.4-【分析】根据对称中心是对应点的中点,可得答案.【详解】①点A 和点A '关于点B 对称,①B 是A 与A '连线的中点,设A '表示的数是x ,则)122x =-,解得:4x =-故答案为:4-.【点睛】本题考查了实数与数轴,利用对称中心是对应点的中点得出方程是解答本题的关键.29. 全等 对称中心 平分【分析】根据中心对称的性质直接填空得出即可.【详解】成中心对称的两个图形全等,对应点的连线都经过对称中心,并且被对称中心平分.故填:全等,对称中心,平分.【点睛】此题主要考查了中心对称的定义,熟练掌握中心对称的定义是解题关键.30.(3,-1)【详解】试题分析:根据中心对称的性质,得点P(﹣3,1)关于原点对称的点的坐标是(3,﹣1).故答案为(3,-1).考点:关于原点对称的点的坐标.31.(-1,-3).【分析】根据一次函数图象上点的坐标性质得出P点坐标,再利用关于原点的对称点的性质得出答案.【详解】解:①直线y=x+2上有一点P(1,m),①x=1,y=1+2=3,①P(1,3),①P点关于原点的对称点P′的坐标为:(-1,-3).故答案为:(-1,-3).【点睛】此题主要考查了一次函数图象上点的坐标性质以及关于原点的对称点的性质,正确把握相关定义是解题关键.32.(1)到一条线段两个端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线;(2)见解析【分析】(1)根据线段的垂直平分线的判定进行解题即可.(2)根据题意用基本图形设计中心图案即可.【详解】解:(1)连接AC,CB,AD,DB.由作图可知:AC=BC,AD=BD.①点C,点D在线段的垂直平分线上(到一条线段两个端点距离相等的点在这条线段的垂直平分线上).①直线就是线段的垂直平分线(两点确定一条直线).故答案为:到一条线段两个端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线;(2)如图所示:【点睛】本题考查利用旋转设计图案,线段的垂直平分线的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.33.①①【分析】设函数上一个点的坐标为(,)a b ,先根据关于原点对称的点坐标变换规律可得对称点的坐标为(,)a b --,再代入函数的解析式逐个检验即可得.【详解】解:设函数上一个点的坐标为(,)a b ,则其关于原点对称的点坐标为(,)a b --, ①将点(,)a b 代入2y x =得:2b a =,当x a =-时,2y a b =-=-,即点(,)a b --在函数2y x =上,则函数2y x =是“H 函数”;①将点(,)a b 代入()0m y m x =≠得:m b a =, 当x a =-时,m y b a ==--,即点(,)a b --在函数()0m y m x =≠上, 则函数()0m y m x=≠是“H 函数”; ①将点(,)a b 代入31y x =-得:31b a =-,即31a b =+,当x a =-时,312y a b =--=--,则点(,)a b --不在函数31y x =-上,此函数不是“H 函数”;①将点(,)a b 代入2y x 得:2b a =,当x a =-时,22()y a a b =-==,则点(,)a b --不在函数2y x 上,此函数不是“H 函数”;综上,是“H 函数”的为①①,故答案为:①①.【点睛】本题考查了关于原点对称的点坐标变换规律,理解“H 函数”的定义是解题关键. 34. 不一定是; 一定是【分析】根据中心对称的定义及旋转对称的定义:如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形;把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;即可得出答案.【详解】旋转对称图形不一定是中心对称图形,中心对称图形一定是旋转对称图形. 故答案为:不一定是;一定是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学圆形专题训练50题含参考答案一、单选题1.下列说法错误的是()A.等弧所对的圆心角相等B.弧的度数等于该弧所对的圆心角的度数C.经过三点可以作一个圆D.三角形的外心到三角形各顶点距离相等【答案】C【分析】根据三角形的外心的性质,确定圆的条件,圆心角、弧、弦的关系判定即可.【详解】解:A等弧所对的圆心角相等,故不符合题意;B、弧的度数等于该弧所对的圆心角的度数,故不符合题意;C、经过不在同一条直线上的三点可以作一个圆,故符合题意;D、三角形的外心到三角形各顶点距离相等,故不符合题意;故选:C.【点睛】本题考查了三角形的外接圆与外心,确定圆的条件,圆心角、弧、弦的关系,正确的理解题意是解题的关键.2.已知O的半径是5cm,线段OP的长为4cm,则点P()A.在O外B.在O上C.在O内D.不能确定【答案】C【分析】根据点到圆心的距离和圆的半径之间的数量关系,即可判断点和圆的位置关系.点到圆心的距离小于圆的半径,则点在圆内;点到圆心的距离等于圆的半径,则点在圆上;点到圆心的距离大于圆的半径,则点在圆外.OP=<【详解】解:45∴点P在O内,故选:C.【点睛】本题考查了点和圆的位置关系,熟悉点和圆的位置关系的判断是关键.3.用直角钢尺检查某一工件是否恰好是半圆环形,根据图所表示的情形,四个工件哪一个肯定是半圆环形?()A.B.C .D . 【答案】B【详解】试题分析:根据直径所对的圆周角为直角可得:B 为正确答案.4.已知⊙O 的半径是一元二次方程2340x x --=的一个根,点A 与圆心O 的距离为6,则下列说法正确在是( )A .点A 在⊙O 外B .点A 在⊙O 上C .点A 在⊙O 内D .无法判断 【答案】A【分析】先求方程的根,可得r 的值,由点与圆的位置关系的判断方法可求解.【详解】解:⊙2340x x --=,⊙1x =﹣1,2x =4,⊙⊙O 的半径为一元二次方程2340x x --=的根,⊙r =4,⊙6>4,⊙点A 在⊙O 外,故选:A .【点睛】本题考查了解一元二次方程,点与圆的位置关系,解决此类问题可通过比较点到圆心的距离d 与圆半径大小关系完成判定.5.如图,AB 是半圆O 的直径,28BAC ∠=︒,则D ∠的度数是( )A .62︒B .118︒C .152︒D .138︒【答案】B 【分析】连接BC ,则直径所对的圆周角是直角可求得B ∠的度数,再由圆内接四边形的性质即可求得结果的度数.【详解】连接BC ,如图所示,AB 是直径,90ACB ∴∠=︒, 90902862B BAC ∴∠=︒-∠=︒-︒=︒,180********D B ∴∠=︒-∠=︒-︒=︒;故选:B .【点睛】本题考查了直径所对的圆周角是直角,圆内接四边形的性质等知识,掌握这两条性质是关键.6.如图,AB 是O 的直径,CD 是O 的弦.若=21BAD ∠︒,则ACD ∠的大小为( )A .21°B .59°C .69°D .79°【答案】C 【分析】先求出ABD ∠的度数,然后再根据圆周角定理的推论解答即可.【详解】解:⊙AB 是O 的直径⊙=90BDA ∠︒,⊙=21BAD ∠︒,⊙=1809021=69ABD ∠--︒︒︒︒,又⊙=AD AD ,⊙==69ACD ABD ∠∠︒,故答案为:C .【点睛】本题主要考查了圆周角定理的推论,解题的关键是熟练掌握在同圆或等圆中同弧或等弧所对圆周角相等;直径所对圆周角等于90°.7.如图,圆与圆的位置关系没有( )A .相交B .相切C .内含D .外离 【答案】A 【分析】根据圆与圆的位置关系,寻找交点个数即可解题.【详解】解:圆与圆相交有两个交点,但是图像中没有两个交点的情况,所以圆与圆的位置关系没有相交,故选A.【点睛】本题考查了圆与圆的位置关系,属于简单题,熟悉位置关系的辨析方法是解题关键.8.已知在Rt ABC 中, 9034ACB AC BC ∠=︒==,,, 则Rt ABC 的外接圆的半径为( ) A .4B .2.4C .5D .2.5 Rt ABC 中,根据勾股定理得,223BC =直角三角形的外心为斜边中点,Rt ABC 的外接圆的半径为故选:D .【点睛】本题考查了直角三角形的外心的性质,勾股定理的运用,关键是明确直角三角形的斜边为三角形外接圆的直径.9.如图,12∠=∠,则AB CD =的是( ).A .B .C .D .【答案】C【分析】根据圆周角与弧的关系即可求解.【详解】解:根据同圆或等圆,相等的弧所对的圆周角相等,只有C 选项符合题意;⊙12∠=∠,⊙AB CD =.故选:C .【点睛】本题考查了圆周角与弧的关系,掌握同圆或等圆中,相等的圆周角所对的弧相等是解题的关键.10.ABC ∆中,10AB AC cm ==,12BC cm =,若要剪一张圆形纸片盖住这个三角形,则圆形纸片的最小半径为( )cm .A .5B .6C .152D .254 AB AC =BD DC ∴=连接OB ,在Rt⊙ABD 设圆形纸片的半径为【点睛】本题考查的是三角形的外接圆与外心、等腰三角形的性质,掌握等腰三角形的三线合一、三角形外接圆的性质及勾股定理是解题的关键. 11.如图所示,MN 是半圆O 的直径,MP 与半圆0相切于点M ,R 是半圆上一动点,RE MP ⊥于E ,连接MR .设MR x =,MR RE y -=,则下列函数图象能反映y 与x 之间关系的是( )A .B .C .D .,可得~EMR RNM ,设半圆2)r ,根据函数的解析式即可判断函数图象⊙~EMR RNM , ER MR MR MN=, 设半圆O 的半径为值2(02x y x x r=-+<<可得到y 是x 的二次函数,开口方向向下,对称轴12.如图,在平面直角坐标系中有一正方形AOBC ,反比例函数y=k x经过正方形AOBC 对角线的交点,半径为4-⊙ABC ,则k 的值为( ).A B .2 C .4 D .=4,⊙DN×NO=4,即:xy=k=4.故选C .考点:反比例函数图象上点的坐标特征;正方形的性质;三角形的内切圆与内心. 13.若5cm AB =,作半径为4cm 的圆,使它经过A 、B 两点,这样的圆能作( ) A .0个B .1个C .2个D .无数个【答案】C【分析】先作AB 的垂直平分线l ,再以点A 为圆心,4cm 为半径作圆交l 于O 1和O 2,然后分别以O 1和O 2为圆心,以4cm 为半径作圆即可;【详解】解:这样的圆能画2个.如图:作AB 的垂直平分线l ,再以点A 为圆心,4cm 为半径作圆交l 于O 1和O 2,然后分别以O 1和O 2为圆心,以4cm 为半径作圆,则⊙O 1和⊙O 2为所求【点睛】本题考查了点与圆的位置关系:设⊙O 的半径为r ,点P 到圆心的距离OP =d ,则有点P 在圆外⇔d >r ;点P 在圆上⇔d =r ;点P 在圆内⇔d <r . 14.如图,在ABC 中,3AB =,6BC =,60ABC ∠=︒,以点B 为圆心,AB 长为半径画弧,交BC 于点D ,则图中阴影部分的面积是( )A .3πB 2π-C πD 32πAB BD =ABD ∴是等边三角形,AD AB ∴=6BC =,3CD ∴=,AD CD ∴=C CAD ∴∠=∠C CAD ∠+∠30C ∴∠=BAC ∴∠=AC ∴=∴图中阴影部分的面积15.如图,已知AB 是O 的直径,弦CD AB ⊥,垂足为E ,且30BCD ∠=︒,CD = )A .24π-B .83π-C .43π-D .348π-故选:B .【点睛】本题考查了扇形的面积计算,勾股定理,含30︒角的直角三角形的性质,等边三角形的性质和判定等知识点,能把求不规则图形的面积转化成求规则图形的面积是解此题的关键.16.已知扇形的圆心角为120°,半径为6,则扇形的弧长是( ).A .3πB .4πC .5πD .6π17.如图,四边形ABCD 内接于O ,:2:1,2ABC ADC AB ∠∠== ,点C 为BD 的中点,延长AB 、DC 交于点E ,且60E ∠=,则O 的面积是( )A .πB .2πC .3πD .4π 【答案】D 【分析】连接BD ,根据圆内接四边形的外角等于其内对角可得∠D =∠CBE =60°,根据等边对等角以及三角形内角和定理求出∠BCE =60°,可得∠A =60°,点C 为BD 的中点,可得出∠BDC =∠CBD =30°,进而得出⊙ABD =90°,AD 为直径,可得出AD =2AB =4,再根据面积公式计算得出结论;【详解】解:连接BD ,∵ABCD 是⊙O 的内接四边形,∴∠CBE =∠ADC ,∠BCE =∠A⊙:2:1ABC ADC ∠∠=∴:2:1ABC CBE ∠∠=∴∠CBE =∠ADC=60°,∠CBA =120°⊙60E ∠=⊙⊙CBE 为等边三角形⊙∠BCE =∠A=60°,⊙点C 为BD 的中点,⊙∠CDB =∠DBC=30°⊙⊙ABD =90°,⊙ADB =30°⊙AD 为直径⊙AB =2⊙AD =2AB =4 ⊙O 的面积是=224ππ⨯=故答案选:D【点睛】本题考查了圆内接四边形的性质,圆周角定理,等边三角形的判定与性质,三角形内角和定理,掌握相关性质及公式是解题的关键.18.一个圆锥的侧面展开图是半径为8,圆心角为120°的扇形,则这个圆锥的高为( )A cmB .163 cmC cmD .83cm19.⊙O 的半径为10cm, A 是⊙O 上一点, B 是OA 中点, C 点和B 点的距离等于5cm, 则C 点和⊙O 的位置关系是 ( )A .C 在⊙O 内B .C 在⊙O 上 C .C 在⊙O 外D .C 在⊙O 上或C 在⊙O 内【答案】D【详解】试题解析:因为⊙O 的半径是10cm ,A 是圆上一点,所以OA=10cm , 又B 是OA 的中点,所以BA=5cm .而BC=5cm ,所以点C 应在以B 为圆心,5cm 为半径的⊙B 上.⊙B 上的点除点A 在⊙O 上外,其它的点都在⊙O 内.故选D .20.如图,在ABC 中,90ACB ∠=︒.AC BC =,4cm AB =.CD 是中线,点E 、F 同时从点D 出发,以相同的速度分别沿DC 、DB 方向移动,当点E 到达点C时,运动停止,直线AE 分别与CF 、BC 相交于G 、H ,则在点E 、F 移动过程中,点G 移动路线的长度为( ).A .2B .πC .2πD .π2【答案】D 【详解】试题解析:如图,,90CA CB ACB AD DB =∠==,,⊙CD ⊙AB ,⊙⊙ADE =⊙CDF =90,CD =AD =DB ,在⊙ADE 和⊙CDF 中,AD CD ADE CDF DE DF ,=⎧⎪∠=∠⎨⎪=⎩⊙⊙ADE ⊙⊙CDF (SAS),⊙⊙DAE =⊙DCF ,⊙⊙AED =⊙CEG ,90,四点共圆,的运动轨迹为弧CD90,的运动轨迹的长为二、填空题21.如图,点C为半圆的中点,AB是直径,点D是半圆上一点,AC、BD交于点BD=,则AC=________.E,若1AD=,722.如图,将长为8cm 的铁丝首尾相接围成半径为2cm 的扇形.则S =扇形________2cm .23.如图,ABC ∆中,90,6,4,ACB BC AC D ∠=︒==是AC 边上的一个动点,过点C 作,CE BD ⊥垂足为,E 则AE 长的最小值为_______________________.【答案】2【分析】取BC 中点F ,连接AE 、EF .易得点E 在以BC 长为直径的圆周上上运动,24.如图,⊙O内接正五边形ABCDE与等边三角形AFG,则⊙FBC=__________.【分析】连接OA,OB,OF,OC,分别求出正五边形ABCDE和正三角形AFG的中心角,结合图形计算即可.【详解】解:连接OA,OB,OF,OC.25.如图,点A、B在半径为3的⊙O上,劣弧AB长为π2,则⊙AOB=____.26.如图,Rt⊙ABC中,⊙ACB=90°,⊙A=30°,BC=6,D,E分别是AB,AC边的中点,将⊙ABC绕点B顺时针旋转60°到⊙A′BC′的位置,则整个旋转过程中线段DE所扫过部分的面积(即图中阴影部分面积)为_____.【详解】27.四边形ABCD 是O 的内接四边形,2C A ∠=∠,则C ∠的度数为___.【答案】120°##120度【分析】根据圆内接四边形对角互补,再结合已知条件求解即可.【详解】解:四边形ABCD 是O 的内接四边形,180C A∴∠+∠=︒2C A∠=∠,120C∴∠=︒.故答案为:120︒.【点睛】本题主要考查了圆内接四边形的性质,掌握圆内接四边形对角互补是解答本题的关键.28.如图,在Rt⊙ABC中,⊙C=90°,AB=13,AC=5,以点C为圆心r为半径作圆,如果⊙C与AB相切,则半径r的值是_______.【答案】6013##8413来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了勾股定理.29.如图,在⊙O中,点C在优弧ACB上,将弧沿BC折叠后刚好经过AB的中点D,若⊙O AB=4,则BC的长是_____.30.如图,AB 与⊙O 相切于点B ,线段OA 与弦BC 垂直,垂足为,2D AB BC ==,则AOB ∠=_________.31.如图,在正方形网格中建立平面直角坐标系,一条圆弧经过点()()()0,4,4,4,6,2A B C --.(1)若该圆弧所在圆的圆心为D ,则AD 的长为__________.(2)该圆弧的长为___________.90255180π=【详解】解:(1)如图,易知点2425+=即D 的半径为AD CD ==2AD DC +ACD ∆为直角三角形,根据题意得90255180π=即该圆弧的长为5π.【点睛】本题主要考查圆,扇形等知识的综合应用,掌握确定圆心的方法,即确定出的坐标是解题的关键.OD BC,OD与32.如图,已知AB是半圆O的直径,C、D是半圆O上的两点,且//∠=______.AC交于点E,若E是OD中点,,则CAD【答案】30°【分析】先判定AC垂直平分OD,进而可判定⊙OAD是等边三角形,再由三线合一即可求出⊙CAD的度数.【详解】⊙AB是半圆O的直径,⊙⊙ACB=90°.OD BC,⊙//⊙⊙AED=90°.⊙E是OD中点,⊙AC垂直平分OD,⊙AD=OA,⊙OA=OD,⊙⊙OAD是等边三角形,⊙⊙OAD=60°,⊙⊙CAD=30°.故答案为:30°.【点睛】本题考查了圆周角定理,平行线的性质,线段垂直平分线的判定与性质,以及等边三角形的判定与性质,熟练掌握圆周角定理、线段垂直平分线的判定与性质是解答本题的关键.33.如图,在半径为2cm的扇形纸片AOB中,⊙AOB=90°,将其折叠使点B落在点O 处,折痕为DE,则图中阴影部分的面积为________cm2334.若点O 是等腰ABC 的外心,且60,BOC ∠=︒底边4,BC =则ABC 的边BC 上的高为 ____________________.E,如果点F是弧EC的中点,联结FB,那么tan⊙FBC的值为.关系;解直角三角形.【答案】【详解】试题分析:连接CE交BF于H,连接BE,根据矩形的性质求出AB=CD=3,AD=BC=5=BE,⊙A=⊙D=90°,根据勾股定理求出AE=4,求出DE=1,根据勾股定理求出CE,求出CH,解直角三角形求出即可.解:连接CE交BF于H,连接BE,⊙四边形ABCD是矩形,AB=3,BC=5,⊙AB=CD=3,AD=BC=5=BE,⊙A=⊙D=90°,由勾股定理得:AE==4,DE=5﹣4=1,由勾股定理得:CE==,由垂径定理得:CH=EH=CE=,在Rt⊙BFC中,由勾股定理得:BH==,所以tan⊙FBC===.故答案为.36.O是ABC的外心,且140∠=________;若I是ABC的内心,∠=,则ABOC且140∠=________.BIC∠=,则A70100是ABC的外心,且140,如图所示:是ABC的内心,且140,如图所示:⊙I 是⊙ABC 的内心,⊙⊙A=180°-(⊙ABC+⊙ACB)= 180°-2(⊙IBC+⊙ICB)=180°-2(180°-140°)=100°. 故答案为70°;100°.【点睛】本题考查了三角形内外心的性质,熟知三角形内外心的性质是解题的关键. 37.冬天的雪是我们的乐园,一次下雪后,小伙伴们堆了一大雪人,准备给雪人制作一个底面半径为9cm ,母线长为30cm 的圆锥形礼帽,则这个圆锥形礼帽的侧面积为____________cm 2 .(结果保留π)【答案】270π.【详解】试题分析:S=πrl=9×30π=270π(2cm ).考点:圆锥的侧面积计算.38.已知O 的直径10AB =cm ,CD 是O 的弦,AE CD ⊥,垂足为点E ,BF CD ⊥,垂足为点F ,且8CD =cm ,则BF AE -的长为________cm .39.如图,I 是直角ABC 的内切圆,切点为D 、E 、F ,若10AF ,3BE =,则ABC 的面积为_____.的值,再利用三角形的面积公式求得ABC 的面积即可.【详解】解:I 是直角ABC 的内切圆,且10AF ,BE =3,10AF AD ==,CE 13=,x ,则3BC x ,AC 中,222AC BC AB +=,即)22313x +=,(不符题意,舍去)ABC ∴的面积为故答案为:【点睛】本题考查了切线长定理、勾股定理、一元二次方程的应用,熟记切线长定理是解题的关键.40.如图,正六边形ABCDEF内接于半径为1cm的⊙O,则图中阴影部分的面积为_____cm2(结果保留π).三、解答题41.如图,在边长为4的正方形ABCD中,以AD为直径作⊙O,以C为圆心,CD长为半径作⊙C,两圆交于正方形内一点E,连CE并延长交AB于F.(1)求证:CF 与⊙O 相切;(2)求△BCF 和直角梯形ADCF 的周长之比. 【答案】(1)证明见详解;(2)6:7.【分析】(1)连接OE 、DE ,根据等腰三角形性质推出⊙ODE =⊙OED ,⊙CDE =⊙CED ,推出⊙OED +⊙CED =90°,根据切线的判定推出即可;(2)过F 作FM⊙DC 于M ,得出四边形ADMF 是矩形,推出AD =FM =4,AF =DM ,求出AF =EF ,设AF =EF =x ,DM =x ,在Rt △FMC 中,由勾股定理得出方程()()222444x x +-=+,求出x 的值,即可求出△BCF 的周长和直角梯形ADCF 的周长.【详解】(1)证明:连接OE ,DE ,⊙OD =OE ,CE =CD ,⊙⊙ODE =⊙OED ,⊙CDE =⊙CED ,⊙四边形ABCD 是正方形,⊙⊙ADC =90°,⊙⊙ADC =⊙ODE +⊙CDE =90°,⊙⊙OED +⊙CED =90°,即OE⊙CF ,⊙OE 为半径,⊙CF 与⊙O 相切.(2)解:如图:过F 作FM⊙DC 于M ,⊙四边形ABCD 是正方形,⊙AD =DC =BC =AB =CE =4,⊙FAD =⊙ADM =⊙FMD =⊙FMC =90°,⊙四边形ADMF 是矩形,⊙AD =FM =4,AF =DM⊙⊙OAF =90°,OA 为半径,⊙AF 切⊙O 于A ,CF 切⊙O 于E ,⊙AF =EF ,设AF =EF =x ,DM =x ,在Rt △FMC 中,由勾股定理得:222FM MC CF +=,()()222444x x +-=+, 解得:x =1,⊙AF =EF =DM =1,⊙CF =4+1=5,⊙⊙BCF 的周长是BC +CF +BF =4+5+4−1=12,直角梯形ADCF 的周长是AD +DC +CF +AF =4+4+5+1=14,⊙⊙BCF 和直角梯形ADCF 的周长之比是12:14=6:7.【点睛】本题考查了正方形性质,切线的性质和判定,矩形的性质和判定,勾股定理的应用,主要考查学生综合运用定理进行推理的能力.42.已知ABC 内接于O ,BAC ∠的平分线交O 于点D ,连接DB ,DC . (1)如图⊙,当120BAC ∠=时,请直接写出线段AB ,AC ,AD 之间满足的等量关系式: ;(2)如图⊙,当90BAC ∠=时,试探究线段AB ,AC ,AD 之间满足的等量关系,并证明你的结论;(3)如图⊙,若BC=5,BD=4,求AD AB AC+ 的值.43.如图,在Rt⊙ABC中,⊙C=90°,BE平分⊙ABC交AC于点E,点D在AB边上且DE⊙BE.(1)判断直线AC与⊙DBE外接圆的位置关系,并说明理由;(2)若AD=6,BC的长.【答案】(1)直线AC与⊙DBE外接圆相切.(2)BC=4.【分析】(1)取BD的中点O,连接OE,证明⊙OEB=⊙CBE后可得OE⊙AC;(2)设OD=OE=OB=x,利用勾股定理求出x的值,再证明△AOE⊙⊙ABC,利用线段比求解.【详解】(1)直线AC与⊙DBE外接圆相切.理由:⊙DE⊙BE⊙BD为⊙DBE外接圆的直径取BD的中点O(即⊙DBE外接圆的圆心),连接OE⊙OE=OB⊙⊙OEB=⊙OBE⊙BE平分⊙ABC⊙⊙OBE=⊙CBE⊙⊙OEB=⊙CBE⊙⊙CBE+⊙CEB=90°⊙⊙OEB+⊙CEB=90°,即OE⊙AC44.如图,已知AB是⊙O的直径,⊙O交⊙ABE边AE于点D,点P在BA的延长线上,PD交BE于点C.现有3个选项:⊙AB=BE,⊙PC⊙BE,⊙PD是⊙O的切线.(1)请从3个选项中选择两个作为条件,余下一个作为结论,得到一个真命题,并证明;你选择的两个条件是,结论是(只要填写序号);(2)在(1)的条件下,连接OC,如果P A=2,sin⊙ABC=45,求OC的长.=AB BE∴∠=BAE∴∥OD BE∴∠=ODP∴PD是⊙4CP =2,PA OD∴=OD OA45.如图,BD是⊙O的直径,过点D的切线交⊙O的弦BC的延长线于点E,弦AC⊙DE交BD于点G(1)求证:BD平分弦AC;(2)若弦AD=5㎝,AC=8㎝,求⊙O的半径.46.如图,⊙ABC 为⊙O 的内接三角形,其中AB 为⊙O 的直径,过点A 作⊙O 的切线P A .(1)求证:⊙P AC =⊙ABC ;(2)若⊙P AC =30°,AC =3,求劣弧AC 的长.603180π=π.【点睛】本题考查了切线的性质,圆周角定理的推论,弧长公式,熟练掌握相关知识是解题的关键.47.如图,在⊙ABC中,AB=AC,以AB为直径的半圆分别交AC,BC边于点D,E,连结BD,(1)求证:DE BE=;(2)当AB=10,BD=8,求CD和BE的长.48.在复习菱形的判定方法时,某同学进行了画图探究,其作法和图形如下:⊙画线段AB;⊙分别以点A,B为圆心,大于AB长的一半为半径作弧,两弧相交于M、N两点,作直线MN交AB于点O;⊙在直线MN上取一点C(不与点O重合),连接AC、BC;⊙过点A作平行于BC的直线AD,交直线MN于点D,连接B D.(2)该同学在图形上继续探究,他以点O为圆心作四边形ADBC的内切圆,构成如图所示的阴影部分,若AB=⊙BAD=30°,求图中阴影部分的面积.1149.如图,AB是⊙O的直径,CD与⊙O相切于点C,且与AB的延长线交于点D,连接AC.作CE⊙AB于点E.(1)求证:⊙BCE=⊙BCD;(2)若AD=8,12BCAC=,求CD的长.【答案】(1)见解析;(2)CD=4【分析】(1)连接OC,如图,利用圆周角定理得到⊙ACB=90°,利用切线的性质得到⊙DCO=90°,则根据等角的余角相等得到⊙ACO=⊙BCD,同样方法证明⊙A=⊙BCE,从而得到⊙BCE=⊙BCD;(2)证明⊙ACD⊙⊙CBD,然后利用相似比求CD的长.【详解】(1)证明:连接OC,如图,⊙AB是⊙O的直径,⊙⊙ACB=90°,即⊙ACO+⊙OCB=90°,⊙CD与⊙O的相切于点C,⊙⊙DCO=90°,即⊙BCD+⊙OCB=90°,⊙⊙ACO=⊙BCD,⊙OC=OA,⊙⊙A=⊙ACO,50.如图,ABC 中,90ACB ∠=︒,30A ∠=︒,2AB =,点P 从点A 出发,以每秒12个单位长度的速度沿AB 向点B 运动,到点B 停止.同时点Q 从点A 出发,沿AC CB -的线路向点B 运动,在边AC BC 上的速度为每秒2个单位长度,到B 停止,以PQ 为边向右或右下方构造等边PQR ,设P 的运动时间为t 秒,解答下列问题:(1)填空:BC =__________,AC =__________.(2)当Q 在AC 上,R 落在BC 边上时,求t 的值.(3)连结BR .⊙当Q 在边AC 上,BR 与ABC 的一边垂直时,求PQR 的边长.⊙当Q 在边BC 上且R 不与点B 重合时,判断BR 的方向是否变化,若不变化,说明理由.理由见解析⊙ABC中,90,30∠,ABA=,3作QD⊙AB59⊙⊙QPR是等边三角形,⊙⊙QRP=60°,⊙⊙ABC=90°-⊙A=60°,⊙⊙QBP=⊙QRP=60°,⊙Q、P、B、R四点共圆,⊙⊙QBR=⊙QPR=60°,⊙BR的方向不变.【点睛】本题主要考查了等边三角形的性质,含30度角的直角三角形的性质,四点共圆等等,解题的关键在于能够熟练掌握相关知识进行求解.。