八年级数学周周练
第8周——2022-2023学年人教版数学八年级上册周周测(含答案)

第八周——2022-2023学年人教版数学八年级上册周周测1.下面给出几个三角形:(1)有两个角为60°的三角形;(2)一边上的高也是这边上的中线的三角形;(3)有一个角为60°的等腰三角形,其中等边三角形的个数是( )A.0B.3C.2D.12.如图,在四边形ABCD中,,,P是CD边上的动点,要使的值最小,则点P应满足的条件是( )A. B. C. D.3.如图,是等边三角形,,,则的度数是( )A.40°B.50°C.60°D.70°4.如图,在钝角三角形ABC中,为钝角,以点B为圆心,AB的长为半径画弧,再以点C为圆心,AC长为半径画弧,两弧交于点D,连接AD,与CB的延长线交于点E.下列结论错误的是( )A.CE垂直平分ADB.CE平分C.是等腰三角形D.是等边三角形5.如图,牧童在A处放牛,其家在B处,A、B到河岸的距离分别为AC的长和BD的长,且,若点A到河岸CD的中点的距离为500米,则牧童从A处把牛牵到河边饮水再回家,最短距离是( )A.750米B.1000米C.1500米D.2000米6.如图,在等边中,BD平分交AC于点D,过点D作于点E,且,则AB的长为( )A.3B.4.5C.6D.7.57.如图,CD是的角平分线,的面积为12,BC的长为6,点E,F分别是CD,AC上的动点,则的最小值是( )A.6B.4C.3D.28.如图,等边三角形ABC的边长为4,AD是BC边上的中线,F是AD上的动点,E是AC边上一点.若,则取得最小值时,的度数为( )A.15°B.22.5°C.30°D.45°9.如图,在等边中,BD为AC边上的中线,CE为的平分线,BD、CE交于点M,则___________°.10.如图,在等边中,,点O在AC上,且,点P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD.要使点D恰好落在BC上,则AP的长是____________.11.如图,直线m是中BC边的垂直平分线,点P是直线m上的动点.若,,,则的周长的最小值是_____________.12.如图,A,B,C是平面内三点.(1)按要求作图:①作射线BC,过点B作直线l,使A,C两点在直线l两旁;②点P为直线l上任意一点,点Q为射线BC上任意一点,连接线段AP,PQ.(2)在(1)所作图形中,若点A到直线l的距离为2,点A到直线BC的距离为5,点A,B之间的距离为8,点A,C之间的距离为6,求的最小值,并写出其依据.答案以及解析1.答案:C解析:易知(1)有两个角为60°的三角形的三个内角都是60°,(3)有一个角是60°的等腰三角形是等边三角形,所以(1)(3)为等边三角形,故等边三角形的个数是2.2.答案:D解析:如图所示,作点A关于CD的对称点,连接,交CD于点P,连接AP,则的最小值为的长,点P即为所求.点与点A关于CD对称,,,,故D符合题意.由图可知,选项A和选项B不成立,而C只有在时才成立,故选项C不一定成立.故选D.3.答案:C解析:是等边三角形,,,在和中,,,,故选C.4.答案:D解析:由题意可得,,直线CB是AD的垂直平分线,即CE垂直平分AD,故A选项结论正确;CE垂直平分AD,,,,即CE平分,故B选项结论正确;,是等腰三角形,故C选项结论正确;AD与AC不一定相等,不一定是等边三角形,故D选项结论错误.故选D.5.答案:B解析:作A关于CD的对称点,连接交CD于P,则,,,在和中,,,,,P为CD的中点,米,米.6.答案:C解析:是等边三角形,,,,,,,BD平分,,.7.答案:B解析:如图,作点A关于CD的对称点H.CD是的角平分线,点H一定在BC上.过H作于F,交CD于E,此时的值最小,的最小值.过A作于G.的面积为12,BC的长为6,,CD垂直平分AH,,,,的最小值是4,故选B.8.答案:C解析:如图,连接交于点是等边三角形的中线,,此时的值最小.是的中点.是等边三角形,平分,.,.故选C.9.答案:60解析:是等边三角形,,BD为AC边上的中线,CE为的平分线,,,.10.答案:6解析:,,.在和中,,,,.11.答案:10解析:直线m垂直平分BC,B、C两点关于直线m对称,如图,设直线m交AB于D,连接CD,则.当P和D重合时,的值最小,最小值等于AB的长,的周长的最小值是.12.答案:(1)(作法不唯一)如图所示,射线BC,直线l,线段AP,PQ即为所求.(2)如图,过点A作于点Q,交直线l于点P,此时的值最小.因为点A到直线BC的距离为5,所以的最小值为5,依据是垂线段最短.。
周练试卷初二数学答案

一、选择题1. 答案:D。
解析:本题考查实数的运算。
根据实数的运算规则,-(-5)=5。
2. 答案:A。
解析:本题考查有理数的乘法。
同号得正,异号得负,绝对值相乘,所以(-2)×(-3)=6。
3. 答案:B。
解析:本题考查几何图形的周长。
正方形的周长为边长的4倍,所以周长为12cm。
4. 答案:C。
解析:本题考查比例尺的应用。
实际距离为图上距离除以比例尺,所以实际距离为2cm÷5=0.4cm。
5. 答案:D。
解析:本题考查平行四边形的性质。
对角线互相平分的四边形是平行四边形。
二、填空题6. 答案:0.2。
解析:本题考查小数的表示。
0.25的十分位是2,百分位是5,所以0.25=0.2。
7. 答案:-3。
解析:本题考查绝对值的性质。
|-3|=3,所以-|-3|=-3。
8. 答案:4。
解析:本题考查一元一次方程的解法。
方程2x-5=3的解为x=4。
9. 答案:3.14。
解析:本题考查圆的周长计算。
圆的周长公式为C=2πr,所以周长为2×3.14×1=6.28,约等于3.14。
10. 答案:三角形。
解析:本题考查图形的分类。
由三条线段首尾相连组成的封闭图形是三角形。
三、解答题11. 解答:首先,设这个数的十分位是x,那么这个数可以表示为10+x。
根据题意,有10+x=12.5,解得x=2.5。
所以这个数是10+2.5=12.5。
12. 解答:由题意可知,梯形的上底为2cm,下底为8cm,高为5cm。
梯形的面积公式为S=(上底+下底)×高÷2,所以面积为(2+8)×5÷2=30cm²。
13. 解答:首先,设这个数的百分位是x,那么这个数可以表示为100x。
根据题意,有100x=0.7,解得x=0.007。
所以这个数是100×0.007=0.7。
14. 解答:由题意可知,直角三角形的两条直角边分别为3cm和4cm。
初二数学周练试卷电子版

一、选择题(每题5分,共50分)1. 下列数中,有理数是()A. √9B. √-4C. √2D. π2. 下列代数式中,同类项是()A. 2x^2 + 3xB. 4x^2 - 5xC. 3x^2 + 2xD. 5x - 2x^23. 若a=3,b=-2,则代数式a^2 - 2ab + b^2的值为()A. 1B. 3C. 7D. 94. 下列图形中,中心对称图形是()A. 正方形B. 等边三角形C. 矩形D. 等腰梯形5. 已知等腰三角形底边长为6cm,腰长为8cm,则该三角形的周长为()A. 20cmB. 24cmC. 26cmD. 28cm6. 若一个数是正数,那么它的倒数()A. 一定是正数B. 一定是负数C. 一定是0D. 可能是正数,也可能是负数7. 在直角坐标系中,点P(-2,3)关于x轴的对称点是()A. (-2,-3)B. (2,3)C. (2,-3)D. (-2,3)8. 若一个数的平方是4,那么这个数是()A. ±2B. ±3C. ±4D. ±59. 在△ABC中,∠A=30°,∠B=75°,则∠C的度数是()A. 45°B. 60°C. 75°D. 90°10. 下列函数中,是二次函数的是()A. y = x^2 + 2x + 1B. y = 2x + 3C. y = 3x^2 + 2x + 1D. y = 4x^2 - 5x + 6二、填空题(每题5分,共50分)11. -3的平方根是______。
12. 5的立方根是______。
13. 若a=2,b=-3,则a^2 - b^2的值是______。
14. 等腰三角形的底边长是8cm,腰长是10cm,则其面积是______cm²。
15. 在直角坐标系中,点A(-1,2),点B(3,4),则线段AB的中点坐标是______。
八年级数学周周练

第1页,共3页八年级数学周周练考试总分: 100 分 考试时间: 45 分钟一、选择题(共 10 小题 ,每小题 3 分 ,共 30 分 )1.下面计算结果正确的是 ( ) A. B. C. D.2.已知 , ,则 的值等于( ) A.B. C. D. 3. 、 、 的大小关系是() A. B. C. D. 4. 的计算结果是( ) A. B. C. D.5.已知 的计算结果中不含 的项,则 的值为( )A. B. C.D. 6.下列计算中,正确的是( ) A. B.C. D.7.已知,则的值为( )A. B. C. D.8.已知, , ,那么 的值是( ) A. B. C. D.9.已知被除式是 ,商式是 ,余式是 ,则除式是( ) A. B. C. D.10.为求 的值,可令 ,则 ,因此 ,所以 .仿照以上推理计算出 的值是( ) A. B. C.D.二、填空题(共 8 小题 ,每小题 3 分 ,共 24 分 )11.计算: ________.12.若 , , 为整数,则 的值等于________. 13.若 ,则 ________. 14.若 ,则 ________. 15.因式分解: ________. 16.把多项式 因式分解的结果是________.17.商店经营一种产品,定价为 元/件,每天能售出 件,而每降价 元,则每天可多售 件,则降价 元后,每天的销售总收入是________.18.下表为杨辉三角系数表,它的作用是指导读者按规律写出形如 ( 为正整数)展开式的系数,请你仔细观察下表中的规律,填出 展开式中所缺的系数.则 ________ .三、解答题(共 6 小题 ,共 46 分 )19.(6分)先化简再求值 ,其中 , .20.(6分)已知 ,求代数式 的值.21.(9分) 因式分解.第2页,共3页22.(8分) 老师在黑板上写了一个正确的演算过程,随后用手掌捂住了一部分多项式,形式如下:求所捂的多项式;当 , 时,求所捂的多项式的值.23.(8分) 利用我们学过的知识,可以导出下面这个形式优美的等式:,该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美观. 请你检验这个等式的正确性;若 , , ,你能很快求出 的值吗?24.(9分) 探索题:…当 时, ________.试求: 的值判断 的值个位数字是________.答案 1.C 2.A 3.D 4.C第3页,共3页5.B6.A7.D8.B9.B 10.C 11.12. , , , 13. 14.15. 16.17. 元 18.19.解: ,当 , 时,原式 .20.解:原式 , 当 ,即 时,原式 .21.解: ;; .22.解: 原式 ; 当 , 时,原式 . 23.解:,,; , ,,.24. ; 原式; 原式 ,则结果个位上数字为 ; 故答案为 .。
八年级上册周周练试卷数学

一、选择题(每题3分,共30分)1. 若a < b,那么以下哪个选项一定正确?A. a² < b²B. a³ < b³C. -a > -bD. a + b > 02. 下列哪个数既是正数又是整数?A. -3B. 0C. 1/2D. 2.53. 如果x² = 4,那么x的值是:A. 2B. -2C. ±2D. ±44. 在直角坐标系中,点A(2,3)关于原点的对称点是:A. (2, -3)B. (-2, 3)C. (-2, -3)D. (2, 3)5. 下列哪个函数是反比例函数?A. y = 2x + 3B. y = x²C. y = 1/xD. y = 3x6. 下列哪个方程有唯一解?A. 2x + 5 = 0B. 2x + 5 = 2x + 5C. 2x + 5 = 2x + 10D. 2x + 5 = 2x + 07. 在一次函数y = kx + b中,若k > 0,那么函数图象:A. 一定经过第一、二、四象限B. 一定经过第一、二、三象限C. 一定经过第一、二、四象限D. 一定经过第一、三、四象限8. 下列哪个图形的面积可以用公式S = πr²计算?A. 正方形B. 长方形C. 圆D. 三角形9. 若一个三角形的三边长分别为3cm、4cm、5cm,那么这个三角形是:A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等腰三角形10. 下列哪个数是无限不循环小数?A. 0.333...B. 0.25C. 0.1010010001...D. 0.123456789...二、填空题(每题3分,共30分)11. 若a = 5,b = -3,那么a - b = ________。
12. 若x² = 49,那么x = ________。
13. 一次函数y = 2x - 3中,当x = 0时,y = ________。
第14周——2023-2024学年人教版数学八年级上册周周练(含答案)

第十四周——2023-2024学年人教版数学八年级上册周周练考查范围:15.3 1.下列关于x的方程:,,,中,分式方程的个数为( )A.1B.2C.3D.42.某工厂计划生产300个零件,由于采用新技术,实际每天生产零件的数量是原计划的2倍,因此提前5天完成任务.设原计划每天生产零件x个,根据题意,所列方程正确的是( )A. B. C. D.3.小明解分式方程的过程下.去分母,得.①去括号,得.②移项,合并同类项,得.③化系数为1,得.④以上步骤中,开始出错的一步是( )A.①B.②C.③D.④4.解分式方程,去分母得( )A. B.C. D.5.若关于x的方程的解为正数,则m的取值范围为( )A. B.且 C. D.且6.《九章算术》之“均输篇”中记载了中国古代的“运粟之法”:今有一批公粮,需运往距出发地420km的储粮站,若运输这批公粮比原计划每日多行10km,则提前1日到达储粮站.设运输这批公粮原计划每日行x km,则根据题意可列出的方程是( ).A. B.C. D.7.若关于x的分式方程的解为正数,则m的取值范围为( )A. B.C.且D.且8.中世纪意大利数学家斐波那契(1175年﹣1250年),编写的《计算之书》记载一道数学题,译文如下:一组人平分90枚硬币,每人分得若干,若再加上6人,平分120枚硬币,则第二次每人所得与第一次相同.求第二次分硬币的人数.设第一次分硬币的人数为x人,则可列方程为( )A. B.C. D.9.若是分式方程10.若分式方程无解,则m的值是_______.11.若关于x方程的解是,则a的值为______.12.一项工程,若由甲、乙两公司合作18天可以完成,共需付施工费144000元,若甲、乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,已知乙公司每天的施工费比甲公司每天的施工费少2000元.(1)求甲、乙两公司单独完成此项工程,各需多少天?(2)若由一个公司单独完成这项工程,哪个公司的施工费较少?答案以及解析1.答案:C解析:判定方程是分式方程的关键:方程里含有分母,且分母里含有未知数.只有方程的分母里不含未知数,不是分式方程,所以分式方程的个数是3.2.答案:C解析:根据“实际每天生产零件的数量是原计划的2倍,提前5天完成任务”可以列出分式方程.由题意可得,故选C.3.答案:B解析:,去分母,得,去括号,得,移项,得,合并同类项,得,以上步骤中,开始出错的一步是②.故选:B4.答案:A解析:,去分母,得,故选:A.5.答案:B解析:解方程得,,该方程的解是正数,且,,且,且.故选:B.6.答案:A解析:由题意可得,,故选:A.7.答案:D解析:原式去分母的,解得,方程的解为正数,,且,m的取值范围为且,故选:D.8.答案:D解析:第一次分硬币的人数为x人,设第二次分硬币的人数为人,第二次每人所得与第一次相同,列出分式方程:,故选D.9.答案: 5解析:因为是分式方程的根,所以.解得.10.答案:3解析:方程两边都乘以得,,分式方程无解,方程有增根,,解得,,解得.故答案为:3.11.答案:4解析:关于x方程的解是,,,故答案为:4.12.答案:(1)甲公司单独完成需要30天,乙公司单独完成需要45天;(2)乙公司施工费用较少;解析:(1)设甲公司单独完成此项工程需x天,则乙公司单独完成需要1.5x天,由题意,得,解得:,经检验是原方程的解,则,答:甲公司单独完成需要30天,乙公司单独完成需要45天;(2)设乙公司每天的施工费用为y元,则甲公司每天的施工费用为元,由题意,得,解得,则(元),乙公司施工费为:,甲公司施工费为:,答:乙公司施工费用较少.。
初二数学周练试卷答案

一、选择题1. 下列数中,绝对值最小的是()A. -3B. -2C. 0D. 1答案:C解析:绝对值表示数与零的距离,显然0与零的距离最小。
2. 如果一个数的平方是9,那么这个数可能是()A. 3B. -3C. 3或-3D. 0答案:C解析:一个数的平方是9,那么这个数可以是3或-3,因为3的平方是9,(-3)的平方也是9。
3. 一个长方形的长是10cm,宽是6cm,那么这个长方形的面积是()A. 60cm²B. 100cm²C. 54cm²D. 120cm²答案:A解析:长方形的面积计算公式是长×宽,所以10cm×6cm=60cm²。
4. 在直角三角形中,若一个锐角的度数是30°,那么另一个锐角的度数是()A. 30°B. 60°C. 90°D. 120°答案:B解析:在直角三角形中,两个锐角的和为90°,所以另一个锐角是90°-30°=60°。
5. 一个正方形的边长是4cm,那么它的周长是()A. 8cmB. 16cmC. 24cmD. 32cm答案:B解析:正方形的周长计算公式是4×边长,所以4cm×4=16cm。
二、填空题6. 如果a=5,那么a²的值是______。
答案:25解析:a²表示a乘以a,所以5×5=25。
7. 一个数的相反数是-2,那么这个数是______。
答案:2解析:一个数的相反数是指与这个数相加等于0的数,所以2+(-2)=0。
8. 一个圆的半径是r,那么这个圆的面积是______。
答案:πr²解析:圆的面积计算公式是π×半径²,所以πr×r=πr²。
9. 一个长方形的长是8cm,宽是5cm,那么这个长方形的对角线长度是______。
初二数学周周练.docx

2 •下列运算错误的是c. -^1 x 1-1 4.平行四边形一边长为10, —条对角线长为6,则它的另一条对角线长a 的取值范围为A. 4<a<16B. 14<a<26C. 12<a<20D. 8<a<32 5•如图,将AABC 沿着它的中位线DE 折叠后,点A 落到点若ZC = 120°, ZA = 26°,则ZA'DB 的度数是().A. 120°B. 112°C. 110°D. 108°6. 如图,点D 、E 、F 分别是△ABC 三边的屮点,则下列判断错误的是() A.四边形AEDF —定是平行四边形B.若ZA = 90°,则四边形AEDF 是矩形C.若4D 平分ZA,则四边形AEDF 是正方形D.若AD 丄BC,则四边形AEDF 是菱形7. 如图,E 、F 、G 、H 分别是BD 、BC 、AC. AD 的中点,且AB=CD.下列结论:①EG 丄FH,②四边 形EFGH 是矩形,③平分ZEHG,④四边形EFGH 是菱形.其中正确的个数是( )A. 1B. 2C. 3D. 48. 如图,在 RtAABC 中,ZA=90°, AB=3, AC=4, P 为边 BC 上一动点,PE 丄 AB 于 E, PF 丄AC 于 F, 10. 已知y —2与x 成反比例,当x=3时,y=l,则y 与x 的函数关系式为 ___________________________ ____________ 211. 若实数a 、b 满足J2G +4 + Jb+4 =0,则仝= ;初二数学周周练4 一、选择题(每小题3分,共24分) 1.下列图形分别是桂林、湖南、甘肃、 佛山电视•台的台徵,为中心对称图形的是( )• A.B. D.C. -m - n A. ---------- tn + n B. U1 m - n m — n n — m C.二D. m-nY n-m)2 =13.下列分式中, 属于戢简分式的是 B 严 JT +1 则刃的取值范圉是 _________A ・£ 9.若匚石在实数范阖内有意义, 笫8题-k 2 -212. ------------------------- 在函数y = (k 为常数)的图象上有三个点(一2, Yl ), (-1,y 2),的大小为 ________________ 13・若一址二一=二一+亠一,则加二 (a + 2)(a —1) Q + 2 Q — \ 14. 某同学从家去学校上学的速度为d,放学回家吋的速度是b,则该同学上学、放学的平均速度为 ______________ •Y 4- 727 31T115. 若关于兀的方程—— + ^=3的解为正数,则加的取値范围是x-3 3-A16. 如图,在平行四边形ABCD 中,AD-2AB, F 是M )的中点,作CE 丄AB,垂足E 在线段AB 上,连接EFCF,则下列结论屮一定成立的是 ________________ .(把所有正确结论的序号都填在横线上)① 4CF 冷 ZBCD ② EF=CF ③④ZDFE=3/AEF.17. 如图,平面直角坐标系中,DOABC 的顶点A 坐标为(6, 0) , C 点坐标为(2, 2),若直线y 二mx+2平19. (本题8分)解下列方程.5x — 4 4x + 10 (1) -------- = --------- -1x-2 3兀一6 20. (本题10分)甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去 学校,乙同学骑自行车去学校.已知甲步行的速度是乙骑自行车速度的丄,公交车的速度是乙骑自行车速 2函数值yi, y2, y3n= ____________分[Z10ABC 的周长,则m 的值为 三、解答题:18・(木题8分)计算:t b a 2ab ⑴ ----- + ------- _ ---- 7 a-b a + b b~ _cr (2) 壬红—1+S) a 2b-alr 2abX+1 4 x 2-l度的2倍.甲、乙两同学同时从家出发去学校,结果甲同学比乙同学早到2分钟.(1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?21.(本题8分)如图,直线y=kx+b与反比例函数y = —(xVO)的图象相交于点A、点B,与x轴交于点C,x其屮点A的坐标为(一2, 4),点B的横坐标为一4・(1)试确定反比例函数的关系式;(2)求ZiAOC的面积.22.(本题10分)如图,四边形ABCD中,ZA=ZABC=90° , AD=1, BC二3, E是边CD的中点,连接BE并延长与AD的延长线相交于点F. (1)求证:四边形BD FC是平行四边形;(2)若ABCD是等腰三角形,求四边形BDFC的面积.23.(本题12分)如图,矩形OABC的边0A在x轴正半轴上,边0C在y轴正半轴上,B点坐标为(1, 3).矩形O' A' BC'是矩形0ABC绕B点逆时针旋转得到的.(T点恰好在x轴的正半轴上,0/ C' 交AB于点D.①求点0,的坐标,并判断△()' DB的形状(要说明理由);②求边L (T所在直线的解析式;③延长BA到M使AM二1,在(2)屮求得的直线上是否存在点P,使得△P0M是以线段0M为直角边的直角三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学周周练
一、选择题:
1.下列图形中,轴对称图形有( )
A .1个 B.2个 C.3个 D.4个
2.下列轴对称图形中,对称轴最多的是( ) A .等腰直角三角形 B.正三角形 C.正方形 D.圆
3.电子手表上的“0,2,4,6,8”这几个数字在镜子中的像与原来一样的有( )
A .1个 B.2个 C.3个 D.4个
4.如图,ABC ∆首先沿DE 折叠CDE ∆与BDE ∆完全重合,然后沿BD 折叠ABD ∆ 与EBD ∆也完全重合,则ABC ∠的度数为( )A .30︒ B.40︒ C.50︒ D60︒
5.到三角形三个顶点距离相等的点,是这个三角形的( )
A .三条中线的交点 B.三边的垂直平分线的交点 C .三条高的交点 D.三条角平分线的交点 6.如图,ABC ∆中,90A ∠=︒,BD 为ABC ∠的平分线,
DE BC ⊥,E 是BC 的中点,则C ∠等于( )
A .20︒ B.30︒ C.40︒ D.50︒ 7.Rt ABC ∆中,90C ∠=︒,点D 是三个角平分线的交 点,若
3,4,5AC cm BC cm AB cm ===,点D 到三边的距离为( )A .25cm B.20cm C.1.5cm
D.1cm
二、填空题:
8.轴对称指____个图形的位置关系,轴对称图形指____个具有特殊形状的图形。
8.两个全等的三角形____关于某条直线对称;关于某条直线对称的两个三角形_____全等。
(填“一定”或“不一定”)
9.如图,五边形AEBCD 是一个轴对称图形,则点A 的对称点是____,点C 的对称点是____,在对称轴上的点是_____,相等线段有___对。
10.如图,由小正方形组成的L 形图形中,请你在下图中添画一个小正方形,使它成为轴对称图形,有_
___种不同添法。
11.如图,直线L 是线段AB 的垂直平分线,交AB 于点C ,M 为L 上任意一点,CD AM ⊥ 于D ,CE BM ⊥于E ,试写出三个你能得到的结论 :________ 。
12.如图,已知,35O ∠=︒,CD 为OA 的垂直平分线,则ACB ∠的度数为__.
13.Rt ABC ∆中,90C ∠=︒,A B ∠∠与的平分线的夹角为______。
14.如图ABC ∆中,90C ∠=︒,AD 平分CAB ∠交BC 于D ,若CD 5cm =,则点D 到AB 的距离是_________
E D
C B A
O E
D C B
A D
C B A
O D C B A
L M E D C B A E D C B A
15.如图,AB <AC ,BC 边上的垂直平分线DE 交BC 于D ,交AC 于E ,9AC cm =,ABE ∆的周长为16cm ,则AB =____cm 。
三、解答题(40分)
16.已知: ∠AOB 和点M 、N.
求作:点P ,使点P 在∠AOB 的平分线上,且PM=PN .(要求:用尺规作图,保留作图痕迹,不写作法) O
B M N
17.直线MN 表示一条河流的河岸,在河流同旁有A 、B 两个村庄,现要在河边修建一个供水站给A 、B 供水。
问:这个供水站建在什么地方,可以使铺设管道最短?请在图中找出表示供水站的点。
(要求:写出作图步骤,保留作图痕迹)
步骤:
18.如图,ABC ∆中,边AB 的垂直平分线交BC 于点E ,边AC 的垂直平分线交BC 于D 点,若BC =8,求
ADE ∆的周长。
19.如图,直线m n 交点为O ,点P 关于直线m 、直线n 的对称点分别为P 1、P 2 .
(1)若直线m 、n 相交的锐角是∠AOB=600,求∠P 1 O P 2的度数;
(2)若OP=3,P 1P 2=5,求△P 1 O P 2的周长。
20.已知:如图,AD ∥BC ,DC ⊥BC ,AE 平分∠BAD ,且点E 是DC 的中点.问:AD 、BC 与AB 之间有
何关系?试说明之. N M B
A E D C
B
A
21.有一个触壁游戏。
规则如下:球从P点出发,先触OA壁,反弹后再触壁,再次反弹,┅┅.若(至少
经过两次)反弹,球能返回P点,则胜利。
若你来玩这个游戏,假设速度不受其它限制,也不受其他因素干扰,你如何选择第一次的触壁点呢?
A
P
O
B。