九年级数学上学期期中测试题
无锡市锡山区锡山高级中学实验学校2023-2024学年九年级上学期期中数学试题

省锡中实验学校2023—2024学年度第一学期初三数学期中测试一、选择题(每题3分,共30分)1.sin60°的值等于()A.12B.1C.32D.32.已知O 的半径为4,3OP =,则点P 与O 的位置关系是()A.点P 在O 内B.点P 在O 上C.点P 在O 外D.不能确定3.在△ABC 中,∠C =90°,AC =1,BC =2,则cos A 的值是()A.12B.5C.55D.2554.如图,AB 是O 的直径,CD 是O 的弦,如果35ACD ∠=︒,那么BAD ∠为()A .35°B.55°C.65°D.75°5.在⊙O 中,弦AB 所对的圆心角的度数为80°,则弦AB 所对的圆周角的度数为()A.40B.160oC.80 或160oD.40 或1406.在下列命题中,正确的是()A.任何三角形有且只有一个内切圆B.三点确定一个圆C.三角形的内心到三角形的三个顶点的距离相等D.垂直于半径的直线一定是这个圆的切线7.已知A ∠是锐角,且cosA =34,那么锐角A 的取值范围是()A.030A ︒<∠<︒B.3045A ︒<∠<︒C.4560A ︒<∠<︒D.6090A ︒<∠<︒8.如图,AB 是半O 的直径,点C 是 AB 的中点,点D 为 BC 的中点,连接AD ,CE AD ⊥于点E .若1DE =,则AE 的长为()A.3B.22C.21+ D.322+9.如图,ABC 中660BC A =∠=︒,,点O 为ABC 的重心,连接AO BO CO 、、,若固定边BC ,使顶点A 在ABC 所在平面内进行运动,在运动过程中,保持BAC ∠的大小不变,则线段AO 的长度的取值范围为()A.232OA <≤B.332OA ≤≤C.323OA ≤≤ D.223OA <≤10.如图,在ABC 中,90BAC ∠=︒,CE 平分ACB ∠,BD CE ⊥,垂足为点D ,连结AD .下列结论:①若30ABC ∠=︒,则BD AD >;②若=45ABC ∠︒,则4ACE BDE S S = ;③若1sin 3ABC ∠=,则ABC ABD S S =△△;④若tan ABC m ∠=,则2CE m BD =⋅.正确的有()A.①③B.②③C.②④D.③④二、填空题(每空3分,共24分)11.已知α是锐角,4tan 5α=,则cos α=____°12.一个人从山下沿30︒角的坡路登上山顶,共走了50m ,那么这山的高度是_____m .13.圆内接四边形ABCD 中,∠A :∠B :∠C =2:3:7,则∠D =_____°.14.已知圆锥的母线长为8cm ,底面圆的半径为3cm ,则圆锥的侧面展开图的面积是_____cm 2.15.如图,点O I 、分别是锐角ABC 的外心、内心,若648CAB OAC ∠=∠=︒,则BCI ∠=______°16.如图,边长为2的正方形ABCD 中心与半径为2的O 的圆心重合,E 、F 分别是AD BA 、的延长线与O 的交点,则图中阴影部分的面积是_____.17.将点()3,3A -绕x 轴上的点G 顺时针旋转90°后得到点'A ,当点'A 恰好落在以坐标原点O 为圆心,2为半径的圆上时,点G 的坐标为________.18.如图,在四边形ABCD 中,9086BAD BCD BC CD ∠+∠=︒==,,,1sin 4BCD ∠=,连接AC BD ,,当ABD △是以BD 为腰的等腰三角形时,则AC 的值为____.三、解答题(10小题,共96分)19.计算:(1)2033cos 30π-+(2)21tan 45|5|2-︒⎛⎫-+- ⎪⎝⎭20.在Rt ABC △中,90ACB A B C ∠=︒∠∠∠,、、的对边分别是a b c 、、,已知32b c =,斜边上的高3CD =(1)求tan A 的值;(2)求BD 的长.21.如图,在O 中,弦BC 垂直于半径OA ,垂足为E ,D 是优弧 BC上一点,连接BD ,AD ,OC ,30ADB ∠=︒.(1)求AOC ∠的度数;(2)若弦18cm BC =,求图中劣弧 BC 的长.(结果保留π)22.如图,在矩形ABCD 中,32AB BC ==,,H 是AB 的中点,将CBH 沿CH 折叠,点B 落在矩形内点P 处,连接AP .(1)求AP 的长;(2)求tan DCP ∠的值.23.如图,在等边ABC 中,点M N 、分别在AB AC 、边上.(1)在BC 边上求作点P ,使60MPN ∠=︒;(尺规作图,不写作法,保留作图痕迹,请找出所有满足条件的点.)(2)若95AB BM ==,,设CN a =,若要使得(1)中只能作出唯一的点P ,则=a .24.如图,点C 在O 的直径AB 的延长线上,点D 是O 上一点,过C 作CE AC ⊥,交AD 的延长线于点E ,连接,CD DB ,且CD CE =.(1)求证:直线DC 与O 相切;(2)若15AB =,1tan 2BDC ∠=,求CE 的长.25.如图1,我国古建筑的大门上常常悬挂着巨大的匾额,图2中的线段BC 就是悬挂在墙壁AM 上的某块匾额的截面示意图.已知 2.5BC =米,37MBC ∠=︒.从水平地面点D 处看点C ,仰角=45ADC ∠︒,从点E 处看点B ,仰角53AEB ∠=︒.且 4.5DE =米,求匾额悬挂的高度AB 的长.(参考数据:3sin 375︒≈,4cos375≈︒,3tan 374︒≈)26.如图,在矩形ABCD 中,6cm 12cm AB BC ==,,点P 从点A 出发沿AB 以1cm/s 的速度向点B 移动;同时,点Q 从点B 出发沿BC 以2cm/s 的速度向点C 移动.各自到达终点后停止运动.设运动时间为t 秒.(1)在运动过程中,当2t =时,PQ =;(2)在运动过程中,当45DPQ ∠=︒时,求t 的值;(3)在运动过程中,当以Q 为圆心,QP 为半径的圆,与矩形ABCD 的边共有4个公共点时,请直接写出t 的取值范围.27.已知平面直角坐标系中,以原点O 为圆心,5为半径的O 交y 轴的正半轴于点P ,小刚同学用手中的三角板(90308B ACB AB ∠=︒∠=︒=,,)进行了如下的实验操作:(1)如图1,将三角板的斜边放置于x 轴上,边AB 恰好与O 相切于点D ,则切线长AD =;(2)如图2,将三角板的顶点A 在O 上滑动,直角顶点B 恰好落在x 轴的正半轴上,若BC 边与O 相切于点M ,求点B 的坐标;(3)请在备用图上继续操作:将三角板的顶点A 继续在O 上滑动,直角顶点B 恰好落在O 上且在y 轴右侧,BC 边与y 轴的正半轴交于点G ,与O 的另一交点为H ,若1PG =,求GH 的长.28.在平面直角坐标系xOy 中,对已知的点A ,B ,给出如下定义:若点A 恰好在以BP 为直径的圆上,则称点P 为点A 关于点B 的“联络点”.(1)点A 的坐标为()2,1-,则在点()11,2P ,21,12P ⎛⎫ ⎪⎝-⎭-,()32,1P -中,O 关于点A 的“联络点”是______(填字母);(2)直线112y x =-+与x 轴,y 轴分别交于点C ,D ,若点C 关于点D 的“联络点”P 满足1tan 2CPD ∠=,求点P 的坐标;(3)T e 的圆心在y ,点M 为y 轴上的动点,点N 的坐标为()4,0,在T e 上存在点M 关于点N 的“联络点”P ,且PMN 为等腰三角形,直接写出点T 的纵坐标t 的取值范围.省锡中实验学校2023—2024学年度第一学期初三数学期中测试一、选择题(每题3分,共30分)1.sin60°的值等于()A.12B.1C.2D.【答案】C 【解析】【分析】根据特殊角的三角函数值直接解答即可.【详解】根据特殊角的三角函数值可知:sin60°=32故选:C .【点睛】此题比较简单,只要熟记特殊角的三角函数值即可解答.2.已知O 的半径为4,3OP =,则点P 与O 的位置关系是()A.点P 在O 内B.点P 在O 上C.点P 在O 外D.不能确定【答案】A 【解析】【分析】本题考查了点与圆的位置关系,(r 为圆半径,d 为点到圆心距离),当r d >,点在圆内;当r d <,点在圆内;当r d =,点在圆上;据此作答即可.【详解】解:∵O 的半径为4,3OP =,∴43>∴点P 在O 内故选:A3.在△ABC 中,∠C =90°,AC =1,BC =2,则cos A 的值是()A.12B.C.55D.255【答案】C 【解析】【分析】根据勾股定理求出斜边AB 的值,在利用余弦的定义直接计算即可.【详解】解:在Rt △ACB 中,∠C =90°,AC =1,BC =2,∴222125AB AC BC =+=+=,∴15cos 55AC A AB ===,故选:C .【点睛】本题主要考查直角三角形中余弦值的计算,准确应用余弦定义是解题的关键.4.如图,AB 是O 的直径,CD 是O 的弦,如果35ACD ∠=︒,那么BAD ∠为()A.35°B.55°C.65°D.75°【答案】B 【解析】【分析】本题考查了圆周角定理,连接BD ,先利用直径所对的圆周角是直角可得90ADB ∠=︒,再利用同弧所对的圆周角相等可得35ABD ∠=︒,然后利用直角三角形的两个锐角互余进行计算即可解答.【详解】解:连接BD AB 是O 的直径,90ADB ∴∠=︒,35ACD ∠=︒ ,35ACD ABD ∴∠=∠=︒,9055BAD ABD ∴∠=︒-∠=︒,故选:B .5.在⊙O 中,弦AB 所对的圆心角的度数为80°,则弦AB 所对的圆周角的度数为()A .40B.160oC.80 或160oD.40 或140【答案】D【解析】【分析】根据题意画出图形,分类讨论,根据圆周角定理计算即可.【详解】解:当点C在优弧AB上时,由圆周角定理得,∠ACB=12∠AOB=40°,当点C在劣弧AB上时,∵四边形ACBC′是⊙O的内接四边形,∴∠AC′B=180°-∠ACB=140°,∴弦AB所对的圆周角的度数为40°或140°,故选D.【点睛】本题考查的是圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.6.在下列命题中,正确的是()A.任何三角形有且只有一个内切圆B.三点确定一个圆C.三角形的内心到三角形的三个顶点的距离相等D.垂直于半径的直线一定是这个圆的切线【答案】A【解析】【分析】此题考查了三角形的内切圆与内心,圆与切线的判定,熟练运用确定圆的条件的性质是本题的关键.【详解】A、任何三角形有且只有一个内切圆,则A正确;B、不共线的三点确定一个圆,则B错误;C、三角形内心到三边的距离相等,则C错误;D、过半径的外端垂直于半径的直线是圆的切线,则D错误.故选A7.已知A ∠是锐角,且cosA =34,那么锐角A 的取值范围是()A.030A ︒<∠<︒B.3045A ︒<∠<︒C.4560A ︒<∠<︒D.6090A ︒<∠<︒【答案】B 【解析】【分析】本题考查的是锐角三角函数的定义,熟知锐角三角函数的余弦函数值随角增大而减小是解答此题的关键.先求出cos30︒,cos 45︒及cos60︒的近似值,然后得出结论即可.【详解】解:3cos300.92︒=≈ ,2cos 450.72︒=≈,1cos 600.52︒==,又∵解:3cos300.92︒=≈ ,2cos 450.72︒=≈,1cos 600.52︒==,又∵53c 4os 0.7A ∠==,余弦函数随角增大而减小,∴133242<<3045A ∴︒<∠<︒.故选:B .8.如图,AB 是半O 的直径,点C 是 AB 的中点,点D 为 BC 的中点,连接AD ,CE AD ⊥于点E .若1DE =,则AE 的长为()A.3B.22C.21+ D.322+【答案】C 【解析】【分析】本题考查了圆周角定理及推论、等腰直角三角形的判定与性质、勾股定理;连接AC ,BC ,CD ,在EA 上取一点T ,使得ET EC =,连接CT ,证明DCE △和ETC △是等腰直角三角形,求出2TA TC ==,可得结论.【详解】解:如图,连接AC ,BC 、CD .∵AB 是直径,∴90ACB ∠=︒,∵ AC BC=,∴AC CB =.∴45CAB ABC ∠=∠=︒.∵ CDDB =,∴122.52CAD DAB BAC ∠=∠==︒∠.∵ AC AC =,∴45∠=∠=︒ADC ABC .∵CE DE ⊥,∴90CED ∠=︒.∴45ECD EDC ∠=∠=︒.∴1EC DE ==,在EA 上取一点T ,使得1ET EC ==,连接CT ,∴2CT =.∵45ETC TAC ACT ∠=︒=∠+∠,∴22.5TAC TCA ∠=∠=︒.∴2AT TC ==,∴21AE AT TE =+=+.故选:C .9.如图,ABC 中660BC A =∠=︒,,点O 为ABC 的重心,连接AO BO CO 、、,若固定边BC ,使顶点A 在ABC 所在平面内进行运动,在运动过程中,保持BAC ∠的大小不变,则线段AO 的长度的取值范围为()A.232OA <≤B.32OA ≤≤C.323OA ≤≤D.223OA <≤【答案】D【解析】【分析】本题考查了三角形的重心,等边三角形的判定与性质,作ABC 的外接圆O ',延长AO 交BC 于D ,因此点A 在 BAC上运动,由三角形重心的性质得到D 是BC 的中点,当AD BC ⊥时,AD 长最大,求出3363322AD BC ==⨯=,推出333AD <≤,得到2233333AO ⨯<≤⨯,即可得解,熟练掌握以上知识点并灵活运用是解此题的关键.【详解】解:如图,作ABC 的外接圆O ',延长AO 交BC 于D ,,BAC ∠ 的大小不变,∴点A 在 BAC 上运动(不与B C 、重合),O 是ABC 的重心,D ∴是BC 的中点,当AD BC ⊥时,AD 长最大,AD ∴垂直平分BC ,AB AC ∴=,60BAC ∠=︒ ,ABC ∴ 是等边三角形,3363322AD BC ∴===,A 不与BC 、重合,12BC AD ∴<,333AD ∴<≤O 是ABC 的重心,23AO AD ∴=,2233333AO ∴⨯<≤⨯,223AO ∴<≤,故选:D .10.如图,在ABC 中,90BAC ∠=︒,CE 平分ACB ∠,BD CE ⊥,垂足为点D ,连结AD .下列结论:①若30ABC ∠=︒,则BD AD >;②若=45ABC ∠︒,则4ACE BDE S S = ;③若1sin 3ABC ∠=,则ABC ABD S S =△△;④若tan ABC m ∠=,则2CE m BD =⋅.正确的有()A.①③B.②③C.②④D.③④【答案】D【解析】【分析】①延长BD ,CA 交于点G ,证明BD DG =,根据直角三角形斜边中线的性质得AD BD =,可作判断;②如图2,过点E 作EF BC ⊥于F ,设AE x =,则,2BF EF x BE ===,2AB AC x x ==,证明△BDE ∽△CAE ,利用相似三角形面积的比等于相似比的平方可作判断;③根据1sin 3EF AC ABC BE BC ∠===,设,3,EF a BE a ==,则AE EF a ==,证明Rt Rt ACE FCE ≌,得2AC CF a ==,根据三角形面积公式进行计算可作判断;④延长,BD CA 交于点G ,证明AEC AGB ∽,列比例式,并结合三角函数可作判断.【详解】①如图1,延长BD ,CA 交于点G ,∵30,90ABC BAC ∠=︒∠=︒,∴60ACB ∠=︒,∵CE 平分ACB ∠,∴30ACD BCD ∠=∠=︒,在Rt BDC 中,90,30BDC BCD ︒︒∠=∠=,∴60DBC ∠=︒,∴ GBC 是等边三角形,∵CD BG ⊥,∴BD DG =,Rt BAG 中,12AD BG BD ==,故①错误;②如图2,过点E 作EF BC ⊥于F ,∵CE 平分ACB ∠,90BAC ∠=︒,∴AE EF =,∵90,45BAC ABC ∠=︒∠=︒,∴AB AC =,同理得BEF △是等腰直角三角形,∴BF EF =,设AE x =,则,2BF EF x BE x ===,2AB AC x ==,∴()22222422CE AE AC x x x x =+=+++,∵DEB AEC ∠=∠,90BDE EAC ∠=∠=︒,∴BDE CAE ∽△△,∴222(422)()222ACE BDES CE x S BE x ∆∆+⋅===+,∴(22)ACE BDE S S =+ ,故②错误;③如图3,过点E 作EF BC ⊥于F ,∵1sin 3EF AC ABC BE BC ∠===,设,3,EF a BE a ==,则AE EF a ==,∴.22BF a =,∵90,EAC CFE CE CE ∠=∠=︒=,AE EF =,∴Rt Rt (HL)ACE FCE ≌,∴AC CF =,∵222AB AC BC +=,∴()()22232a a AC a AC++=+∴2AC CF a ==.延长,BD CA 交于点G ,∵,GCD BCD CD BG ∠=∠⊥,∴CBD G ∠=∠,∴32,CG CB a BD DG ===,∴22AG a =,∴21112422222ABD ABG S S a a a =⋅=⨯⨯⨯= ,2124222ABC S a a a =⋅⋅= ,∴ABC ABD S S =△△.故③正确;④如图4,延长,BD CA 交于点G ,∵90,BDE CAE DEB AEC ∠=∠=︒∠=∠,∴ACE DBE ∠=∠,∵90EAC BAG ︒∠=∠=,∴AEC AGB ∽,∴CE AC BG AB=,由③知:2BG BD =,∵tan AC ABC m AB ∠==,∴2CE m BD=,∴2CE m BD =⋅.故④正确;本题正确的结论有:③④.故选:D .【点睛】本题考查了全等三角形的判定和性质,角平分线的性质,等腰直角三角形判定和性质,含30°角的直角三角形的性质,三角函数,三角形相似的判定和性质等知识,解决问题的关键是正确作辅助线.二、填空题(每空3分,共24分)11.已知α是锐角,4tan 5α=,则cos α=____°【答案】54141【解析】【分析】此题考查了求锐角的三角函数值.求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值.【详解】如图:由a 4tan 5b α==,设45a x x ==,b ,则c ==,故5b cos c x α===12.一个人从山下沿30︒角的坡路登上山顶,共走了50m ,那么这山的高度是_____m .【答案】25【解析】【分析】本题考查了解直角三角形的应用一坡度坡角问题,根据含30︒角所对的直角边等于斜边的一半计算即可求解,掌握含30︒角的直角三角形的性质是解题的关键.【详解】解:根据题意可得,山的高度15025m 2=⨯=,故答案为:25.13.圆内接四边形ABCD 中,∠A :∠B :∠C =2:3:7,则∠D =_____°.【答案】120【解析】【分析】根据圆内接四边形对角互补,求出∠A 与∠B ,∠C 的度数即可得出答案.【详解】解:设∠A 、∠B 、∠C 分别为2x 、3x 、7x ,根据圆内接四边形对角互补有2x+7x =180°,解得,x =20°,∴∠B =3x =60°,∴∠D =180°﹣∠B =120°,故答案为:120.【点睛】此题主要考查了圆内接四边形对角互补的性质,根据已知得出,∠A+∠C=3x+7x=180°是解题关键.14.已知圆锥的母线长为8cm ,底面圆的半径为3cm ,则圆锥的侧面展开图的面积是_____cm 2.【答案】24π【解析】【分析】先求出底面周长,再根据公式求解即可.【详解】解:底面半径为3cm ,则底面周长=6πcm ,∴侧面面积=12×6π×8=24πcm 2.故答案为:24π.【点睛】此题考查了扇形面积计算公式,圆的周长计算公式,熟记扇形面积公式是解题的关键.15.如图,点O I 、分别是锐角ABC 的外心、内心,若648CAB OAC ∠=∠=︒,则BCI ∠=______°【答案】25【解析】【分析】本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角,也考查了三角形外心的性质和圆周角定理,连接OC ,先计算出8OAC ∠=︒,再根据三角形外心的性质得到OA OC =,则利用等腰三角形的性质和三角形内角和可计算出164AOC ∠=︒,接着根据圆周角定理得到82ABC ∠=︒,则利用三角形内角和可计算出50∠=°ACB ,然后根据三角形内心的性质得到BCI ∠的度数.【详解】解:如图,连接OC ,,648CAB OAC ∠=∠=︒ ,8OAC ∴∠=︒,点O 是锐角ABC 的外心,OA OC ∴=,8OCA OAC ∴∠=∠=︒,180164AOC OCA OAC ∴∠=︒-∠-∠=︒,1822ABC AOC ∴∠=∠=︒,18050ACB CAB ABC ∴∠=︒-∠-∠=︒,点I 是锐角ABC 的内心,1252BCI ACB ∴∠=∠=︒,故答案为:25.16.如图,边长为2的正方形ABCD 中心与半径为2的O 的圆心重合,E 、F 分别是AD BA 、的延长线与O 的交点,则图中阴影部分的面积是_____.【答案】3π-【解析】【分析】本题主要考查了圆面积的计算、正方形的性质、全等形的性质等知识点,正确添加常用辅助线、构造全等图形成为解题的关键.如图:延长DC CB ,交⊙O 于M ,N ,连接OF ,过点O 作OH AB ⊥于H ,再根据垂径定理、勾股定理、三角形的面积公式可得31DAF S =- ,然后再根据阴影部分的面积()14O ADF ABCD S S S -- 正方形即可解答.【详解】解:如图:延长DC CB ,交⊙O 于M ,N ,连接OF ,过点O 作OH AB ⊥于H .在Rt OFH △中,2222213F O O H F H =--,∵112AH BH AB ===,∴31AF FH AH =-=-∴()112313122DAF S AD AF =⋅=⨯⨯-=- ,∴图中阴影部分的面积()()()21122231344O ADF ABCD S S S ππ=--=⋅-⨯--=- 正方形.故答案为3π-.17.将点()3,3A -绕x 轴上的点G 顺时针旋转90°后得到点'A ,当点'A 恰好落在以坐标原点O 为圆心,2为半径的圆上时,点G 的坐标为________.【答案】()32,0-+或()32,0--##()32,0--或()32,0-+【解析】【分析】设点G 的坐标为(,0)a ,过点A 作AM x ⊥轴交于点M ,过点A '作A N x '⊥轴交于点N ,由全等三角形求出点A '坐标,由点A '在2为半径的圆上,根据勾股定理即可求出点G 的坐标.【详解】设点G 的坐标为(,0)a ,过点A 作AM x ⊥轴交于点M ,过点A '作A N x '⊥轴交于点N ,如图所示:∵()3,3A -,∴3AM =,3GM a =+,∵点A 绕点G 顺时针旋转90°后得到点A ',∴AG A G '=,90AGA '∠=︒,∴90AGM NGA '∠+∠=︒,∵AM x ⊥轴,A N x '⊥轴,∴90AMG GNA '∠=∠=︒,∴90AGM MAG ∠+∠=︒,∴MAG NGA '∠=∠,在AMG 与GNA ' 中,AMG GNA MAG NGA AG GA ∠=∠⎧⎪∠=∠'='⎨'⎪⎩,∴()AMG GNA AAS '≅ ,∴3GN AM ==,3A M GM a '==+,∴3ON a =+,∴(3,3)A a a '++,在Rt ONA ' 中,由勾股定理得:222(3)(3)2a a +++=,解得:32a =-+或32a =--,∴()32,0M -+或()32,0M --.故答案为:()32,0-+,()32,0--.【点睛】本题考查旋转的性质、全等三角形的判定与性质以及勾股定理,掌握相关知识之间的应用是解题的关键.18.如图,在四边形ABCD 中,9086BAD BCD BC CD ∠+∠=︒==,,,1sin 4BCD ∠=,连接AC BD ,,当ABD △是以BD 为腰的等腰三角形时,则AC 的值为____.【答案】213或7373213【解析】【分析】分BD BA =和BD AD =两种情况进行解答;①当BD BA =时,如图1:过点B 作BH AD ⊥于H ,过点C 作CE CD ⊥,在CE 上截取142CE BC ==,连接BE ,先证BAD BCE ∽ 可得ABD CBE BDA BEC ∠=∠∠=∠,,进而证ABC 和DBE 全等,即AC DE =,然后在Rt DCE V 中,利用勾股定理求出DE 即可;②当BD AD =时,如图2:过点D 作DN AB ⊥于N ,过点C 作CM CD ⊥,在CM 上截取216CM BC ==,连接BM ,先证ABD CBM ∽ 可得ABD CBM ∠=∠,进而证ABC DBM ∽ 可得12BC DM AB BD ==:::,则12BC DM =,然后在Rt DCM 中利用勾股定理求出DM 即可.【详解】解:∵ABD △是以BD 为腰的等腰三角形,∴有以下两种情况:①当BD BA =时,如图1:过点B 作BH AD ⊥于H ,过点C 作CE CD ⊥,在CE 上截取142CE BC ==,连接BE ,∵BD BA BH AD =⊥,,∴290BAD BDA AD AH BAD ABH ∠=∠=∠+∠=︒,,,∵90BAD BCD ∠+∠=︒,∴ABH BCD ∠=∠,∵1sin 4BCD ∠=,∴1sin 4AH ABH AB ∠==,∴42AB AH AD ==,∴12AD AB =::,∵142CE BC ==,∴12BC CE =::,∴AD AB BC CE =::,∵CE CD ⊥,∴90BCE BCD ∠+∠=︒.∵90BAD BCD ∠+∠=︒,∴BAD BCE ∠=∠,又∵AD AB BC CE =::,∴BAD BCE ∽ ,∴ABD CBE BDA BEC ∠=∠∠=∠,,∴BDA BEC BDA BCE ∠=∠=∠=∠,∴8BC BE ==,∵ABD CBE ∠=∠,∴ABD DBC CBE DBC ∠+∠=∠+∠,即ABC DBE ∠=∠,在ABC 和DBE 中,,,BD BA ABC DBE BC BE =∠=∠=,∴()SAS ABC DBE ≌,∴AC DE =,在Rt DCE V 中,64CD CE ==,,由勾股定理得:22213DE CD CE =+=;即213AC =②当BD AD =时,如图2:过点D 作DN AB ⊥于N ,过点C 作CM CD ⊥,在CM 上截取216CM BC ==,连接BM ,∵BD AD DN AB =⊥,,∴290DAB DBA AB AN ADN BAD ∠=∠=∠+∠=︒,,,又∵90BAD BCD ∠+∠=︒,∴ADN BCD ∠=∠,∵1sin 4BCD ∠=,∴1sin 4AN ADN AD ∠==,∴42AD AN AB ==,∴12AB AD =::,∵216CM BC ==,∴12BC CM =::,∴AB AD BC CM =::,∵CM CD ⊥,∴90BCM BCD ∠+∠=︒,又∵90BAD BCD ∠+∠=︒,∴BAD BCM ∠=∠,又∵AB AD BC CM =::,∴ABD CBM ∽ ,∴ABD CBM ∠=∠,∴ABD CBM DAB BCM ∠=∠=∠=∠,∴216BM CM BC ===,∵ABD CBM ∠=∠,∴ABD DBC CBM DBC ∠+∠=∠+∠,即ABC DBM ∠=∠,∵1212AB BD BC BM ==::,::,∴AB BD BC BM =::,∴ABC DBM ∽ ,∴12BC DM AB BD ==:::,∴12BC DM =在Rt DCM 中,616CD CM ==,,由勾股定理得:DM ==,∴12BC DM ==综上所述:AC 的长为故答案为或【点睛】本题主要考查了全等三角形的判定和性质、相似三角形的判定和性质,锐角三角函数等知识点,正确地添加辅助线构造全等三角形和相似三角形以及分类讨论思想的应用是解题的关键和难点.三、解答题(10小题,共96分)19.计算:(1)20cos 30π-+(2)21tan 45|5|2-︒⎛⎫-+- ⎪⎝⎭【答案】(1)72(2)8【解析】【分析】本题考查实数的运算,掌握负整数指数幂、零指数幂的性质并牢记特殊角的三角函数值是解决问题的关键.(1)将01π=,cos302= 代入原式,运算结果即可.(2)将tan 451︒=代入原式,运算结果即可.【小问1详解】解:20cos 30π-+312=-+72=【小问2详解】解:21tan 45|5|2-︒⎛⎫-+- ⎪⎝⎭415=-+8=20.在Rt ABC △中,90ACB A B C ∠=︒∠∠∠,、、的对边分别是a b c 、、,已知32b c =,斜边上的高CD =(1)求tan A 的值;(2)求BD 的长.【答案】(1)2(2)152【解析】【分析】本题主要考查了解直角三角形,勾股定理,熟知解直角三角形的方法是解题的关键.(1)先求出23b c =,进而利用勾股定理求出53BC c =,再根据正切的定义可得答案;(2)先解Rt ADC 得到2155AD =,再解Rt ABC △,得到2cos 3A =,则可解Rt ADC ,得到3155AC =,进而求出91510AB =,则152BD AB AD =-==.【小问1详解】解:在Rt ABC △中,9032ACB b c =︒=∠,,∴23b c =,∴2253BC AB AC c =-=,∴5tan 2BC A AC ==;【小问2详解】解:在Rt ADC 中,5tan 2CD A AD ==,∴2155AD =,在Rt ABC △中,2cos 3AC A AB ==,∴在Rt ADC 中,315cos 5AD AC A ==,∴3915210AB AC ==,∴915215151052BD AB AD =-=-=.21.如图,在O 中,弦BC 垂直于半径OA ,垂足为E ,D 是优弧 BC上一点,连接BD ,AD ,OC ,30ADB ∠=︒.(1)求AOC ∠的度数;(2)若弦18cm BC =,求图中劣弧 BC 的长.(结果保留π)【答案】(1)60︒(2)43πcm【解析】【分析】(1)连接OB ,结合垂径定理得到»»AB AC =,根据“同圆或等圆中,等弧所对的圆心角为圆周角的两倍”得到AOB ∠和AOC ∠之间的关系,进而求出AOC ∠的度数;(2)要求劣弧 BC的长,需要知道圆的半径以及弧所对圆心角的度数,由垂径定理得到BE 的长,进而在Rt BOE 中利用勾股定理求出OE 的长,利用弧长公式进行计算即可解决问题.【小问1详解】解:连接OB ,∵OA BC ⊥,∴»»AB AC =,∴AOC AOB ∠=∠,由圆周角定理得,260AOB ADB ∠=∠=︒,∴60AOC AOB ∠=∠=︒.【小问2详解】解:∵OA BC ⊥,∴192BE BC ==,在Rt BOE 中,60AOB ∠=︒,∴2OB OE =,∴2239BE OB OE OE =-==,∴33cm OE =,63cm OB =.∴劣弧 BC 的长()120π6343πcm 180⨯==.【点睛】本题考查了垂径定理,圆周角定理,勾股定理等知识点,能熟记垂径定理是解此题的关键.22.如图,在矩形ABCD 中,32AB BC ==,,H 是AB 的中点,将CBH 沿CH 折叠,点B 落在矩形内点P 处,连接AP .(1)求AP 的长;(2)求tan DCP ∠的值.【答案】(1)95(2)724【解析】【分析】此题重点考查矩形的性质、轴对称的性质、勾股定理、锐角三角函数与解直角三角形等知识,正确地作出所需要的辅助线是解题的关键.(1)连接PB ,由四边形ABCD 是矩形,32AB BC ==,,H 是AB 的中点,得出52CH =,由折叠得点P 与点B 关于CH 对称,PH BH AH ==,CH 垂直平分PB ,HPB HBP ∠=∠,证明90APB ∠=︒得出AP CH ∥,PAB BHC ∠=∠,得出3cos cos 5AP PAB BHC AB=∠=∠=,即可得出答案;(2)作PE CD ⊥于点E ,交AB 于点F ,则2EF BC ==,90BFE ∠=︒,90AFP ∠=︒,求出3cos 5AF PAB AP =∠=,4sin sin 5PF PAB BHC AP =∠=∠=,得到2725AF =,3625PF =,从而得到1425PE =,即可得出答案.【小问1详解】解:如图,连接PB ,,四边形ABCD 是矩形,32AB BC ==,,H 是AB 的中点,90ABC ∴∠=︒,1322AH BH AB ===,222235222CH BH BC ⎛⎫∴=+=+ ⎪⎝⎭,由折叠得点P 与点B 关于CH 对称,PH BH AH ==,CH ∴垂直平分PB ,HPB HBP ∠=∠,1180902APB HPB HPA HBP HAP ∴∠=∠+∠=∠+∠=⨯︒=︒,AP BP ⊥ ,CH BP ⊥,C AP H ∴∥,PAB BHC ∠=∠∴,332cos cos 552AP BH PAB BHC AB CH ∴=∠=∠===,3393555AP AB ∴==⨯=,AP ∴的长是95;【小问2详解】解:如图,作PE CD ⊥于点E ,交AB 于点F ,,90FEC ECB FBC ∠=∠=∠=︒ ,∴四边形BCEF 是矩形,2EF BC ∴==,90BFE ∠=︒,90AFP ∴∠=︒,324cos sin sin 5552AF PF BC PAB PAB BHC AP AP CH ∴=∠==∠=∠===,,3392755525AF AP ∴==⨯=,4493655525PF AP ==⨯=,274832525CE BF AB AF ∴==-=-=,361422525PE EF PF =-=-=,14725tan 482425PE DCP CE ∴∠===,tan DCP ∴∠的值为724.23.如图,在等边ABC 中,点M N 、分别在AB AC 、边上.(1)在BC 边上求作点P ,使60MPN ∠=︒;(尺规作图,不写作法,保留作图痕迹,请找出所有满足条件的点.)(2)若95AB BM ==,,设CN a =,若要使得(1)中只能作出唯一的点P ,则=a .【答案】(1)见解析(2)8120【解析】【分析】本题考查了作图—复杂作图,等边三角形的性质、相似三角形的判定与性质,解题的关键是熟练掌握以上知识点并灵活运用,正确的作出图形.(1)以A 为圆心,AN 为半径画弧,交AB 于点D ,作DMN 的外接圆,交BC 于1P 、2P ,即可完成作图;(2)证明11BMP CP N ∽,可得11CP MB BP CN =,设1BP x =,则19CP x =-,可得59x x a -=,从而得到2950x x a +=-,由只能作出唯一的点P ,得到该方程有两个相等的实数根,由此进行计算即可得出答案.【小问1详解】解:以A 为圆心,AN 为半径画弧,交AB 于点D ,作DMN 的外接圆,交BC 于1P 、2P ,如图,1P 、2P 即为所求,,如图,连接DN ,1MP ,1NP ,2NP ,2MP ,,由作图可得:AD AN =,ABC 是等边三角形,=60B ∠︒,AB AC ∴=,AB AD AC AN ∴-=-,即BD CN =,B DNC ∴∥,60MDN B ∴∠=∠=︒,由圆周角定理可得:1260MP N MP N MDN ∠=∠=∠=︒;【小问2详解】解:如图,,160MP N ∠=︒ ,11120MPB CP N ∴∠+∠=︒,ABC 是等边三角形,60A B C ∴∠=∠=∠=︒,9BC AB ==,11120BMP MPB ∴∠+∠=︒,11BMP CP N ∴∠=∠,11BMP CP N ∴ ∽,11CPMB BP CN ∴=,设1BP x =,则19CP x =-,59xx a -∴=,259a x x ∴=-,2950x x a ∴-+=,只能作出唯一的点P ,∴该方程有两个相等的实数根,()2Δ94150a ∴=--⨯⨯=,8120a ∴=,故答案为:8120.24.如图,点C 在O 的直径AB 的延长线上,点D 是O 上一点,过C 作CE AC ⊥,交AD 的延长线于点E ,连接,CD DB ,且CD CE =.(1)求证:直线DC 与O 相切;(2)若15AB =,1tan 2BDC ∠=,求CE 的长.【答案】(1)证明见解析(2)10【解析】【分析】(1)连接OD ,先根据等腰三角形的性质可得ODA A ∠=∠,CDE E ∠=∠,再根据直角三角形的性质可得90A E ∠+∠=︒,从而可得OD DC ⊥,然后根据圆的切线的判定即可得证;(2)连接OD ,设()0CD CE x x ==>,先求出A BDC ∠=∠,根据正切的定义可得22AC CE x ==,再在Rt COD 中,利用勾股定理求解即可得.【小问1详解】证明:如图,连接OD ,OA OD = ,ODA A ∴∠=∠,CD CE = ,CDE E ∴∠=∠,⊥ CE AC ,90A E ∴∠+∠=︒,90ODA CDE ∴∠+∠=︒,()18090ODC ODA CDE ∴∠=︒-∠+∠=︒,即OD DC ⊥,又OD 是O 的半径,∴直线DC 与O 相切.【小问2详解】解:如图,连接OD ,设()0CD CE x x ==>,15AB = ,11522OA OD AB ∴===,AB 是O 的直径,90ADB ∴∠=︒,90CDE BDC BDE ∴∠+∠=∠=︒,又90A E ∠+∠=︒ ,CDE E ∠=∠,A BDC ∴∠=∠,1tan 2BDC ∠= ,1tan 2CE A AC∴==,22AC CE x ∴==,1522OC AC OA x ∴=-=-,由(1)已证:OD DC ⊥,∴在Rt COD 中,222OD CD OC +=,即2221515222x x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,解得10x =或0x =(不符合题意,舍去),所以CE 的长为10.【点睛】本题考查了圆的切线的判定、等腰三角形的性质、正切、勾股定理、圆周角定理等知识,熟练掌握圆的切线的判定是解题关键.25.如图1,我国古建筑的大门上常常悬挂着巨大的匾额,图2中的线段BC 就是悬挂在墙壁AM 上的某块匾额的截面示意图.已知 2.5BC =米,37MBC ∠=︒.从水平地面点D 处看点C ,仰角=45ADC ∠︒,从点E 处看点B ,仰角53AEB ∠=︒.且 4.5DE =米,求匾额悬挂的高度AB 的长.(参考数据:3sin 375︒≈,4cos375≈︒,3tan 374︒≈)【答案】4米【解析】【分析】通过作垂线构造直角三角形,在Rt △BCN 中,求出CN 、BN ,在Rt △ABE 中用AB 的代数式表示AE ,再根据∠ADC =45°得出CF =DF ,列方程求解即可.【详解】解:过点C 作CN ⊥AB ,CF ⊥AD ,垂足为N 、F ,如图所示:在Rt △BCN 中,CN =BC •sin ∠MBC =2.5×35=1.5(米),BN =BC ×cos 37°=2.5×45=2(米),∵CN ⊥AB ,CF ⊥AD ,MA ⊥AD ,∴四边形AFCN 为矩形,∴CN =AF =1.5,BN +AB =CF ,在Rt △ABE 中,∵∠AEB =53°,∴∠ABE =90°-53°=37°,AE =AB •tan ∠ABE =AB ×tan 37°=34AB ,∵∠ADC =45°,∴CF =DF ,∴BN +AB =AD -AF =AE +ED -AF ,即:2+AB =34AB +4.5-1.5,解得,AB =4(米)答:匾额悬挂的高度AB 的长约为4米.【点睛】本题考查了直角三角形的边角关系,通过作垂线构造直角三角形,利用锐角三角函数表示边,再利用各条边之间的关系,列方程求解是解决问题的常用方法.26.如图,在矩形ABCD 中,6cm 12cm AB BC ==,,点P 从点A 出发沿AB 以1cm/s 的速度向点B 移动;同时,点Q 从点B 出发沿BC 以2cm/s 的速度向点C 移动.各自到达终点后停止运动.设运动时间为t 秒.(1)在运动过程中,当2t =时,PQ =;(2)在运动过程中,当45DPQ ∠=︒时,求t 的值;(3)在运动过程中,当以Q 为圆心,QP 为半径的圆,与矩形ABCD 的边共有4个公共点时,请直接写出t 的取值范围.【答案】(1)42cm(2)1517-(3)12613185t <<【解析】【分析】(1)当2t =时,()2cm AP =,()4cm BQ =,()4cm BP =,再由勾股定理进行计算即可;(2)连接DP ,过Q 作QM DP ⊥于M ,过M 作MN AB ⊥于N ,过Q 作QK MN ⊥于K ,根据题意可得:cm AP t =,2cm BQ t =,()6cm BP t =-,由45DPQ ∠=︒,得出PQM 是等腰直角三角形,证明()AAS PMN MQK ≌得出PN MK =,MN QK =,设cm PN MK x ==,则()62t x t x -+=-,得出362t x -=,证明MPN DPA ∽得到1623622tt t =-+,求解即可;(3)当Q 与AD 相切于T 时,Q 与矩形ABCD 的边共有3个公共点,连接QT ,可得()()22626t t -+=,解得125t =,由图可知,Q 与矩形ABCD 的边共有4个公共点,需满足125t >;当Q 经过点D 时,Q 与矩形ABCD 的边共有3个公共点,可得()()()2222621226t t t -+=-+,解得61318t =-,由图可知,Q 与矩形ABCD 的边共有4个公共点,需满足61318t <-,即可得出答案.【小问1详解】解:当2t =时,()212cm AP =⨯=,()224cm BQ =⨯=,()624cm BP AB AP ∴=-=-=,()22224442cm PQ BP BQ ∴=+=+=,故答案为:42cm ;【小问2详解】解:如图,连接DP ,过Q 作QM DP ⊥于M ,过M 作MN AB ⊥于N ,过Q 作QK MN ⊥于K ,,根据题意可得:cm AP t =,2cm BQ t =,()6cm BP t ∴=-,由作图可知四边形BQKN 是矩形,BN QK ∴=,2cm BQ NK t ==,45DPQ ∠=︒ ,PQM ∴ 是等腰直角三角形,90PMQ ∴∠=︒,PM QM =,90PMN QMK KQM ∴∠=︒-∠=∠,90MNP QKM ∠=︒=∠ ,()AAS PMN MQK ∴ ≌,PN MK ∴=,MN QK =,设cm PN MK x ==,则()2cm MN NK MK t x QK =-=-=,BN QK = ,()62t x t x ∴-+=-,362t x -∴=,()36cm 2t PN -∴=,()3662cm 22t t MN t -+=-=,MPN DPA ∠=∠ ,90MNP A ∠=︒=∠,MPN DPA ∴ ∽,PN MN AP AD ∴=,即1623622t t t =-+,解得:15317t =+(舍去)或15317t =-,t ∴的值为15317-;【小问3详解】解:如图,当Q 与AD 相切于T 时,Q 与矩形ABCD 的边共有3个公共点,连接QT ,,90A B ATQ ∠=∠=∠=︒ ,∴四边形ABQT 是矩形,6cm QT AB PQ ∴===,()()22626t t ∴-+=,解得:0=t (舍去)或125t =,由图可知,Q 与矩形ABCD 的边共有4个公共点,需满足125t >;如图,当Q 经过点D 时,Q 与矩形ABCD 的边共有3个公共点,,此时PQ DQ =,()()()2222621226t t t ∴-+=-+,解得:61318t =-或61318t =--(舍去),由图可知,Q 与矩形ABCD 的边共有4个公共点,需满足61318t <-,综上所述,当12613185t <<-时,Q 与矩形ABCD 的边共有4个公共点.【点睛】本题考查了圆的综合应用,涉及勾股定理及应用,全等三角形的判定与性质,相似三角形的判定与性质等知识点,解题的关键是作辅助线,构造全等三角形和相似三角形解决问题.27.已知平面直角坐标系中,以原点O 为圆心,5为半径的O 交y 轴的正半轴于点P ,小刚同学用手中的三角板(90308B ACB AB ∠=︒∠=︒=,,)进行了如下的实验操作:(1)如图1,将三角板的斜边放置于x 轴上,边AB 恰好与O 相切于点D ,则切线长AD =;(2)如图2,将三角板的顶点A 在O 上滑动,直角顶点B 恰好落在x 轴的正半轴上,若BC 边与O 相切于点M ,求点B 的坐标;(3)请在备用图上继续操作:将三角板的顶点A 继续在O 上滑动,直角顶点B 恰好落在O 上且在y 轴右侧,BC 边与y 轴的正半轴交于点G ,与O 的另一交点为H ,若1PG =,求GH 的长.【答案】(1)533(2)()41,0B (3)253-或3【解析】【分析】(1)连接OD ,得出30DOA ∠=︒,根据含30度角的直角三角形的性质,勾股定理即可求得AD 的长;(2)连接OM ,设线段AB 交O 于点E ,过点O 作ON AB ⊥于N ,得出四边形ONBM 是矩形,根据垂径定理以及矩形的性质得出5,3OE NE ==,在Rt NEO 中,勾股定理求得ON ,Rt OMB 中,勾股定理求得OB ,即可求得点B 的坐标;(3)分类讨论,①当G 在P 点上方时,过点O 作OF BC ⊥于点F ,连接AH ,根据90度角所对的弦是直径,得出AH 是O 的直径,进而勾股定理求得HB ,垂径定理求得HF ,在Rt HOF 中,得出OF ,在Rt GFO 中求得FG ,继而根据GH FG HF =-即可求解;②当G 点在P 点下方时,过点O 作OX HB ⊥,同一法证明点,G X 重合,进而垂径定理即可求解.【小问1详解】如图,连接OD ,∵边AB 恰好与O 相切于点D ,∴OD AB ⊥,∵9030B ACB ∠=︒∠=︒,,∴∥OD BC ,∴30DOA ∠=︒,。
山东济南高新区2024—2025学年九年级数学第一学期期中考试试题(含答案)

高新区2024-2025学年第一学期九年级数学期中学业水平测试试题(满分150分时间120分钟)一.选择题(本大题共10个小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,一个实木正方体内部有一个圆锥体空洞,它的左视图是( )A. B. C. D.2.若a4=b3,则ab的值是( )A.34B.43C.12D.1123.对于反比例函数y=﹣6x的图象,下列说法正确的是()A.它的图象分布在一、三象限B.它的图象与坐标轴可以相交C.它的图象经过点(-4,-1.5)D.当x<0时,y的值随x的增大而增大4.如图,在Rt△ABC中,∠C=90°,AB=4,AC=3,则sinB=( )A.35B.45C.√74D.34(第4题图)(第5题图)(第7题图)5.如图,DE∥BC,且EC:BD=2:3,AD=6,则AE的长为()A.1B.2C.3D.46.函数与y=kx与y=kx-k(k≠0)在同一平面直角坐标系中的大致图象是( )7."今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?"这是我国古代数学著作《九章算术》中的"井深几何"问题,它的题意可以由如图所示(单位:尺),已知井的截面图为矩形ABCD ,设井深为x 尺,下列所列方程中,正确的是( )A.5x =0.45B.x5+x=50.4C.x5﹣x=0.45D.x5+x=0.45A. B. C. D.9.根据图①所示的程序,得到了y与x的函数图象,如图②.若点M是y轴正半轴上任意一点,过点;②△OPO的面积为定M作PQ平行x轴交图象于点P、Q,连接OP、OQ,则以下结论:①x<0时,y=2x值;③x>0时,y随x的增大而增大;④MQ=2PM;⑤∠POO可以等于90°。
其中正确结论是()A.①②⑤ B.②④⑤ C.③④⑤ D.②③⑤(第9题图)(第10题图)10.如图,正方形ABCD中,点E是CD边上一点,连结BE,以为对角线BE作正方形BGEF,边EF与正方形ABCD的对角线BD相交于点H,连结AF,有以下结论:①∠ABF=∠DBE;②△ABF∽△DBE;③AF ⊥BD;④2BG2=BH·BD,你认为其中正确的有()A.1个B.2个C.3个D.4个二.填空题:(本大题共5个小题,每小题4分,共20分。
江苏省徐州市邳州市2024—2025学年上学期期中考试九年级数学试卷(含答案)

2024~2025学年度第一学期期中检测九年级数学试题注意事项1.本卷共6页,满分140分,考试时间100分钟。
2.答题前,请将姓名、文化考试证号用0.5毫米黑色字迹签字笔填写本卷和答题卡的指定位置。
3.答案全部涂、写在答题卡上,写在本卷上无效。
考试结束后,将答题卡交回。
一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.方程的解是( )A .,B .C .,D .,2.的半径长为4,若点P 到圆心的距离为3,则点P 与的位置关系是( )A .点P 在内B .点P 在上C .点P 在外D .无法确定3.方程的两根为、,则( )A .6B .-6C .3D .-34.下列函数的图象与的图象形状相同的是( )A .B .C .D .5.如图,A 、B 、C 、D 为一个正多边形的顶点,O 为正多边形的中心.若,则这个正多边形的边数为( )A .7B .8C .9D .10(第5题)6.如图,在半径为5的中,弦,点C 是弦AB 上的一动点,若OC 长为整数,则满足条件的点C 有()240x x -=12x =-22x =4x =10x =24x =14x =-24x =O e O e O e O e O e 2261x x -=1x 2x 25y x =22y x=252y x =-+251y x x =++51y x =-20ADB ∠=︒O e 8AB =(第6题)A .3个B .4个C .5个D .6个7.为响应“坚持绿色低碳,建设一个清洁美丽的世界”的号召,已知某市一共有285个社区,第一季度已有60个社区实现垃圾分类,第二、三季度实现垃圾分类的小区个数较前一季度平均增长率为x ,要在第三季度将所有社医都进行垃圾分类,下列方程正确的是( )A .B .C .D .8.当时,函数的最小值为1,则a 的值为( )A .0B .2C .0或2D .0或3二、填空题(本大题共8小题,每小题4分,共32分.不需写出解题过程,请将答案直接填写在答题卡相应位置)9.一元二次方程的根是______.10.请在横线上写一个常数,使得关于x 的方程有两个相等的实数根.11.若是一元二次方程的一个根,则______.12.如图,是的内切圆,若,,则______°.(第12题)13.已知二次函数的图像经过点、,则______(填“>”“<”或“=”).14.如图,将一个圆锥展开后,其侧面是一个圆心角为108°,半径为12cm 的扇形,则该圆锥的底面圆的半径为______cm.()2601285x +=()2601285x -=()()2601601285x x +++=()()260601601285x x ++++=1a x a -≤≤221y x x =-+213x -=26______0x x -+=1x =20x mx n --=2024m n ++=O e ABC △60ABC ∠=︒50ACB ∠=︒BOC ∠=()()210y a x c a =-+<()11,y -()24,y 1y 2y(第14题)15.平面直角坐标系中,若平移二次函数的图象,使其与x 轴交于两点,且此两点的距离为1个单位,则平移方式为______.16.已知如图,二次函数的图像交x 轴于A 、B 两点,交y 轴于C 点,连接BC ,点M 是BC 上一点,射线MN 与以A 为圆心,1为半径的相切于点N ,则线段MN 的最小值是______.(第16题)三、解答题(本大题共9小题,共84分,请在答题卡指定区域内作答,解答时写出相应文字说明、证明过程或演算步骤)17.(本题10分)解下列方程:(1);(2).18.(本题8分)已知关于x 的一元二次方程.求证:不论m 为何值,该方程总有两个实数根.19.(本题8分)如图,AB 是的直径,弦AD 平分,,垂足为E .试判断DE 与的位置关系,并说明理由.(第19题)()()202420254y x x =--+2y =+A e 2420x x --=()()323x x x +=+210x mx m ++-=O e BAC ∠DE AC ⊥O e20.(本题8分)某小区有一块矩形绿地,长为20m ,宽为8m .为美化小区环境,现进行如下改造,将绿地的长减少a m ,宽增加a m ,改造后的面积比原来增加,求a 的值.21.(本题10分)已知y 是x 的函数,下表中给出了几组x 、y 的对应值:x …-2-1.5-101 4.55…y…3m-2-31.3753…(1)建立直角坐标系,以表中各对对应值为坐标描出各点,用平滑曲线顺次连接,由图像可知,它是我们学过的哪类函数?求出函数表达式,并直接写出m 的值;(2)结合图像回答问题:当x 的取值范围是____________时,.(第21题)22.(本题10分)如图,在中,,以AB 为直径作,分别交AC 、BC 于点D 、E .(1)求证:;(2)当时,求的度数;(3)过点E 作的切线,交AB 的延长线于点F ,当时,求图中阴影部分面积.(第22题)23.(本题10分)商场将进货价为40元每件的某商品以50元售出,平均每月能售出700件,调查表明:售价在50元至100元范围内,这种商品的售价每上涨1元,其销售量就将减少10件,设商场决定每件商品的售价为元.(1)该商场平均每月可售出______件商品(用含x 的代数式表示);(2)商品售价定为多少元时,每月销售利润最大?227m 0y ≥ABC △AB AC =O e BE CE =40BAC ∠=︒ADE ∠O e 2AO BE ==()50100x x <<(3)该商场决定每销售一件商品就捐赠a 元利润给希望工程,通过销售记录发现,每件商品销售价格大于85元时,扣除捐款后每天的利润随x 增大而减小,求a 的取值范围.24.(本题10分)(1)如图①,点A 、B 、C 、D 在上,,则______°:(2)如图②,A 、B 两点分别在x 轴和y 轴上,是的外接圆,利用直尺和圆规在第一象限内作出一点P ,使,且;(保留作图痕迹)(3)如图③,已知线段AB 和直线l ,利用直尺和圆规在l 上作出点P ,使;(保留作图痕迹)(4)如图④,在平面直角坐标系的第一象限内有一点B ,坐标为,过点B 作轴,轴,垂足分别为A 、C ,若点P 在线段AB 上滑动(点P 可以与点A 、B 重合),使得的位置有两个,则m 的取值范围为______.(第24题)25.(本题10分)如图,二次函数的图像与x 轴交于点、,与y 轴交于点C .连接AC 、BC .(1)填空:______,______;(2)如图①,若点D 是此二次函数图像的第一象限上一点,设D 点横坐标为m ,当四边形OCDB 的面积最大时,求m 的值;(3)如图②,若点P 在第四象限,点Q 在PA 的延长线上,当时,求点P 的坐标.(第25题)()1a ≥O e 35BAC ∠=︒BOC ∠=C e AOB △OPA OBA ∠=∠OP AP =30APB ∠=︒()2,m AB y ⊥BC x ⊥45OPC ∠=︒212y x bx c =-++()1,0A -()4,0B b =c =45CAQ CBA ∠=∠+︒2024~2025学年度第一学期期中检测九年级数学参考答案一、选择题(本大题共8小题,每小题3分,共24分)题号12345678答案CACBCCDD二、填空题(本大题共8小题,每小题4分,共32分)9.,10.911.202512.12513.>14.3.615.向下平移4个单位长度16三、解答题(本大题共9小题,共84分)17.(本题10分)解:(1)移项,得配方,得即直接开平方,得∴(2)移项,得因式分解,得∴或∴,18.(本题8分)解:∵,,∴∵不论m 为何值∴不论m 为何值,该方程总有两个实数根.19.(本题8分)解:DE 与相切理由是:连接OD∵∴∵AD 平分∴∴∴∵∴∴DE 与相切.12x =22x =-242x x -=24424x x -+=+()226x -=2x -=12x =+22x =()()3230x x x +-+=()()230x x -+=20x -=30x +=12x =23x =-1a =b m =1c m =-()2²4411b ac m m -=-⨯⨯-²44m m =-+()22m =-()220m -≥O e OD OA =ODA OAD∠=∠BAC ∠OAD CAD ∠=∠ODA CAD ∠=∠AC OD ∥DE AC ⊥OD DE ⊥O e(第19题)20.(本题8分)解:根据题意得:即:解得:,答:a 的值为3或9.21.(本题10分)(1)描点、连线如图是二次函数,设函数的表达式为:把点,,代入得解得:∴函数得表达式为(2)或.22.(本题10分)(1)证明:连接AE∵AB 是直径∴∴∵∴()()20820827a a -+-⨯=212270a a -+=13a =29a =()20y ax bx c a =++≠()1,0-()0,2-()1,3-023a b c c a b c -+=⎧⎪=-⎨⎪++=-⎩12322a b c ⎧=⎪⎪⎪=-⎨⎪=-⎪⎪⎩213222y x x =--1.375m =1x ≤-4x ≥O e 90AEB ∠=︒AE BC ⊥AB AC =BE CE=(第22题)(2)解:∵,∴∵四边形ABED 是的内接四边形∴∴.(3)解:连接OE 则∵∴∴是等边三角形∴∵EF 是切线∴∴∴∴∴阴影部分的面积.23.(本题10分)(1)(2)设每月销售利润为y 元则∵,∴当时,y 有最大值16000答:商品售价定为80元时,每月销售利润最大;(3)设每月销售利润为y 元则∴对称轴为直线∵∴当时,y 随x 得增大而减小∵每件商品销售价格大于85元时,扣除捐款后每天的利润随x 增大而减小∴解得:∵∴a 的取值范围是.24.(本题10分)(1)35,702分AB AC =40BAC ∠=︒180180407022BAC ABC ︒-∠︒-︒∠===︒O e 180ADE ABC ∠+∠=︒180********ADE ABC ∠=︒-∠=︒-︒=︒OE OA OB==2OA BE ==OA OB BE ==OBE △60BOE ∠=︒O e OE EF ⊥30F ∠=︒24OF OE ==EF ===2160π222π23603OEF BOE S S ⨯=-=⨯⨯=-扇形△101200x -+()()()224010120010160048000108016000y x x x x x =--+=-+-=--+100-<50100x <<80x =()()()24010120010160010480001200y x a x x a x a=---+=-++--()160010802102a a x +=-=+⨯-100-<802ax >+80852a+≤10a ≤1a ≥110a ≤≤(2)如图(3)如图(4)25.(本题10分)(1),2(2)∵点D 横坐标为m ,且点D 在二次函数的图像上∴点D 坐标为对于二次函数,当时,∴设BC :则解得:∴BC :21m ≤<32213222y x x =-++213,222m m m ⎛⎫-++ ⎪⎝⎭213222y x x =-++0x =2y =()0,2C y kx b =+402k b b +=⎧⎨=⎩122k b ⎧=-⎪⎨⎪=⎩122y x =-+过点D 作轴,交BC 于点E 则∴∴到DE 的距离到DE 的距离(C 到DE 的距离到DE 的距离)∵,∴当时,有最大值8∴.(3)∵,,∴,,∴∴设,则∵∴∴DE y ∥1,22E m m ⎛⎫-+ ⎪⎝⎭2213112222222DE m m m m m ⎛⎫=-++--+=-+ ⎪⎝⎭OBC BCD OCDB S S S =+四边形△△OBC CDE BDES S S =++△△△1122OC OB DE C =⨯⨯+⨯⨯12DE B +⨯⨯112422DE =⨯⨯+⨯⨯B +1442DE =+⨯⨯214222m m ⎛⎫=+-+ ⎪⎝⎭244m m =-++()()22804m m =--+<<10a =-<04m <<2m =OCDB S 四边形2m =()1,0A -()4,0B ()0,2C 25AC =220BC =225AB =222AC BC AB +=90ACB ∠=︒ABC x ∠=90CAB x∠=︒-45CAQ CBA ∠=∠+︒45CAQ x ∠=+︒()()180459045PAB x x ∠=︒-+︒-︒-=︒设直线AP 交y 轴于F则∴设AP :则解得:∴AP :设∵点P 在二次函数的图象上∴解得:,(舍去)当时,∴点P 的坐标为.1OF OA ==()0,1F -y kx b =+01k b b -+=⎧⎨=-⎩11k b =-⎧⎨=-⎩1y x =--()(),10P n n n -->213222y x x =-++2132122n n n -++=--16n =21n =-6n =17n --=-()6,7-。
山西省吕梁市临县多校2024-2025学年上学期期中测试九年级数学试卷(含答案)

2024-2025学年九年级上期中评估试卷数学试卷说明:共三大题,23小题,满分120分,考试时间120分钟.一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请把正确答案的代号填在下表中)1.把一元二次方程化成一般形式,则二次项系数、一次项系数、常数项分别为( )A .3,,1B .3,1,4C .3,D .3,4,12.2024年6月25日,嫦娥六号返回器准确着陆于预定区域,工作正常,标志着探月工程嫦娥六号任务取得圆满成功,实现世界首次月球背面采样返回.下列航天领域的图标中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.我们解一元二次方程时,可以运用因式分解法,将此方程化为,得到两个一元一次方程:,从而得到原方程的解为.这种解法体现的数学思想是( )A .公理化思想B .模型思想C .函数思想D .转化思想4.二次函数的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限5.如图,在中,A 是的中点,点D 在上.若,则 ( )AB . C.D .6.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,,将绕点C 旋转得到,则点A 与点之间的距离为( )2314x x +=4-4,1--210x -=()()110x x -+=10,10x x -=+=121,1x x ==-25y x x =+O BCO AOB α∠=AD C ∠=α2α12α90α︒-4,16AC BD ==BOC △180︒B O C '''△B 'A .6B .8C .10D .127.下列方程没有实数根的是( )A .B .C .D .8.如图,学校课外生物小组的试验田的形状是长为、宽为的矩形,为了方便管理,要在中间开辟两横一纵共三条等宽的小路,小路与试验田的各边垂直或平行,要使种植面积为,则小路的宽为多少米若设小路的宽为x m ,根据题意可列方程( )A .B .C .D .9.石拱桥是中国传统的桥梁四大基本形式之一,是用天然石料作为主要建筑材料的拱桥,以历史悠久,形式优美,结构坚固等特点闻名于世,它的主桥是圆弧形.如图,某石拱桥的跨度AB (AB 所对的弦的长)约为,拱高CD (AB 的中点到弦AB 的距离)约为,则AB 所在圆的半径OA 为( )A .B .C .D .10.已知二次函数的图象如图所示,该抛物线的对称轴为直线,则下列结论不正确的是()()235x x -=2210x x -+=280x x --=()()230x x -+=36m 22m 2700m ()()3622700x x --=()()36222700x x --=()()36222700x x ++=()()36222700x x --=36m 6m 30m 27m 25m2y ax bx c =++1x =A .B .关于x 的方程的两根是C .当时,y 随x 的增大而减小D .二、填空题(本大题共5个小题,每小题3分,共15分)11.方程的解是___________.12.如图,四边形ABCD 内接于,若,则的度数为___________.13.若二次函数的图象经过点,利用抛物线可知不等式的解集是____________.14.铅球是利用人体全身的力量,将一定重量的铅球从肩上用手臂推出的田径运动项目之一,是集力量和技术于一体的运动,绝对力量和完美技术都是取得好成绩的因素,铅球行进高度和铅球行进曲线都影响着铅球投掷的成绩.如图,一位运动员推铅球,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是,此运动员投掷时,铅球的最大行进高度是_________m .15.如图,在矩形ABCD 中,E 是边CD 上一点,对角线AC ,BD 相交于点O ,于点F ,连接OF .若,则OF 的长为______.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(本题共2个小题,每小题5分,共10分)(1)解方程:.0a c <20ax bx c ++=121,3x x =-=0x >20a b +=()()430x x -+=O 125A ∠=︒C ∠22y x x m =-+()2,3-22y x x m =-+220x x m -+≤21251233y x x =-++EF AB ⊥15,5,12AB DE AD ===243x x +=(2)以下是小夏同学解方程的过程,请解决问题:解:原方程可变形为, 第一步方程两边同时除以得, 第二步∴原方程的解是.第三步上述解方程的过程从第_______步开始出错,错误的原因是____________②请直接写出方程的解:_________________________17.(本题9分)已知二次函数的图象与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为D .(1)求点A ,B ,C ,D 的坐标,并在如图所示的平面直角坐标系中画出该二次函数的大致图象(每个小方格的边长都是1个单位长度).(2)描述抛物线是由抛物线如何平移得到的.(3)求四边形AOCD 的面积.18.(本题8分)如图,已知的直径AB 垂直弦CD 于点E ,连接CO 并延长交AD 于点F ,且F 为AD 的中点.(1)求证:.(2)若,求弦CD 的长.19.(本题7分)大豆,通称黄豆,属一年生草本,是我国重要粮食作物之一,已有五千年栽培历史,古称“菽”.某校综合实践小组以“探究大豆种植密度优化方案”为主题展开项目学习.在六块不同的试验田中种植株数不同的大豆,()()323x x x -=-()()323x x x -=--()3x -2x =-2x =-223y x x =+-223y x x =+-2y x =O AD CD=8AB =严格控制影响大豆生长的其他变量,在大豆成熟期,对每株大豆的产量进行统计,并记录如下:试验田编号123456单位面积试验田种植株数/株304050607080单位面积试验田单株的平均产量/粒514641363126(1)根据记录表中的数据分析单位面积试验田的单株平均产量与种植株数的变化规律,若设单位面积试验田种植x 株(),则单位面积试验田单株的平均产量为_________粒.(2)如果要想获得单位面积大豆的总产量达到2160粒,又相对减少田间管理,那么单位面积大豆应种植多少株?20.(本题8分〉某批发市场批发甲、乙两种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲种水果的销售利润(单位:万元)与进货量x (单位:吨)近似满足函数关系;乙种水果的销售利润(单位:万元)与进货量x (单位:吨)近似满足函数关系 (其中a ,b 为常数,),且当进货量为1吨时,销售利润为1.4万元,当进货量为2吨时,销售利润为2.6万元.如果该批发市场准备进甲、乙两种水果共10吨,问这两种水果各进多少吨时获得的销售利润之和最大?最大利润是多少?21.(本题8分)阅读与思考观察下列方程系数的特征及其根的特征,解决问题:方程及其根方程及其根方程及其关联方程方程的根方程及其关联方程方程的根①①②②…………(1)请描述一元二次方程和关联方程的系数特征及它们根的关系特征.(2)方程和是不是关联方程?求解两个方程并判断两个方程的根是否符合根的关系特征.(3)请以一元二次方程为例证明关联方程根的关系特征.22.(本题12分)综合与实践如图1,这是某广场中的喷水池,那随着音乐声此起彼伏的水线,一会儿高高跃起,一会儿盘旋而下,令人心旷神怡!边上各个方向向外喷出的水线可以看做一圈形状相同的抛物线,从这些抛物线中抽象出一条分析研究,若水线达到最大高度 (点P 距地面的距离)时,水线的跨度.3080x ≤≤y 甲0.3y x =甲y 乙2y ax bx =+乙0a ≠22310x x -+=121,12x x ==2230x x +-=123,1x x =-=22310x x ++=121,12x x =-=-2230x x --=123,1x x ==-2240x x --=2240x x +-=()2200,40axbx c a b ac ++=≠-≥3.2m 8m AB =请你结合所学知识解决下列问题:(1)在图2中建立以为单位长度,点A 为坐标原点,AB 所在直线为x 轴,过点A 与AB 垂直的直线为y 轴,构建平面直角坐标系,并求出抛物线的解析式.(2)若喷水池中心C 到A 的距离约为,则该喷水池的半径至少为多少米,才能使喷出的水流都落在水池内?(3)在(2)的条件下,身高为的清洁工王师傅在水池中清理漂浮物,为了不被淋湿,王师傅站立时必须在离水池中心点C 多少米范围内?(结果保留1位小数,参考数据:,)23.(本题13分)综合与探究问题情境:数学课上,老师提出一个问题:如图1,在中,,把绕点C 逆时针旋转到的位置,点A ,B 的对应点分别是与AB 相交于点D .在旋转过程中,线段之间存在一些特殊的位置关系和数量关系.如图2,在旋转过程中,当经过AB 的中点D 时,试判断四边形与AC 的位置关系,并加以证明.问题解决:(1)请你解答老师提出的问题.数学思考:(2)小明同学发现:在图形旋转过程中,有线段垂直关系的存在.如图3,在旋转过程中,当时,求点A 与点之间的距离.数学探究:(3)小敏同学发现:在旋转过程中,有特殊三角形的存在.在旋转过程中,当是等腰三角形时,请直接写出线段AD的长.1m 2.3m 1.8m 2.24≈≈≈2.45, 3.32≈≈≈Rt ABC △90,4,3ACB AC BC ∠=︒==ABC △()090αα︒≤≤︒ABC ''△,,A B AC'''A C 'A B ''A C A B '⊥A 'BCD △数学参考答案1.A2.B 3.D4.D5.C6.C7.A8.B 9.A10.C 提示:由抛物线开口方向可知,由抛物线与y 轴交点位置可知,∴,A 选项正确;根据抛物线的轴对称性可知抛物线与x 轴分别交于和,∴方程的两根是,B 选项正确;抛物线的对称轴是直线,变形可得,D 选项正确;抛物线的对称轴是直线,故时,y 随x 的增大而增大,时,y 随x 的增大而减小,C 选项不正确.故选C .11.12.13. 14.315.6.5 提示:如图,延长FO 交DC 于点G ,构造中心对称.在矩形ABCD 中,.在矩形AFED 中,,所以.根据矩形的中心对称性和线段的中心对称性可知,,有,∴.在中,根据勾股定理得,∴.16.(1)(解法不唯一)解:配方,得,3分直接开平方,得, 4分∴5分(2)解:①二;没有考虑为0而错误地运用等式的基本性质2进行变形.3分0a <0c >0a c <()3,0()1,0-20ax bx c ++=121,3x x =-=12bx a=-=20a b +=1x =01x <<1x >124,3x x ==-55︒13x -≤≤15AB C D ==5,12AF DE AD EF ====10C E B F ==AFO CGO △≌△15,2CG AF OF FG ===1055EG =-=Rt FEG △13FG ==16.52OF FG ==()227x +=2x +=1222x x =-=-()3x -②. 5分17.解:(1)当时,,解得.∵点A 在点B 的左侧,∴点,点.当时,,∴点.由可得点.2分二次函数的大致图象如下图所示.4分(2)(方法不唯一)抛物线可由抛物线先向左平移1个单位长度,再向下平移4个单位长度得到.6分(3)如图,直线DE 为该抛物线的对称轴,其中E 为对称轴与x 轴的交点,∴.由可得是直角三角形,四边形EOCD 是直角梯形,, 8分∴9分18.解:(1)证明:如图,连接AC .∵直径AB 垂直弦CD 于点E ,∴,∴,∴.2分又∵F 为AD 的中点,CF 经过圆心O ,∴,∴,∴,∴. 4分(2)由(1)可知,∴是等边三角形,∴.如图,连接BD ,可得. 6分122,3x x =-=0y =2230x x +-=123,1x x =-=()3,0A -()1,0B 0x =3y =-()0,3C -()222314y xx x =+-=+-()1,4D --223y x x =+-223y x x =+-2y x =()1,0E -()()()3,0,0,3,1,4A C D ----A D E △2,1,4AE OE DE ===()4312415222AED AOCD EOCDS S S =+⨯⨯+=+=△四边形梯形CE DE =AC AD = AC AD =C F A D ⊥CD AC = CD AC = AC CD=AC AD CD ==ACD △30D AB ∠=︒90AD B ∠=︒在中,,∴,∴,∴.8分19.解:(1).2分(2)根据题意可列方程:. 4分整理,得,解得.6分∵种植60株比种植72株的田间管理少一些,故应舍去,∴.答:单位面积大豆应种植60株.7分20.解:由题意可知,解得 2分∴.3分设乙种水果进货m 吨,则甲种水果进货吨,10吨水果销售利润之和为W 万元,根据题意,,5分配方,得.∵,∴当时,W 的最大值为6.6.∴.7分答:甲、乙两种水果分别进货4吨,6吨时获得的销售利润之和最大,最大利润是6.6万元. 8分21.解:(1)一元二次方程和关联方程的系数特征是二次项系数、常数项相同,一次项系数互为相反数;一元二次方程和关联方程的根的关系特征是对应根互为相反数.2分(2)方程和的二次项系数、常数项相同,一次项系数互为相反数,符合(1)中描述的特征,故它们是关联方程.3分Rt ABD △8AB =142BD AB ==AD ===CD AD ==()660.5x -()660.52160x x -=213243200x x -+=1272,60x x ==1x 60x =1.442 2.6a b a b +=⎧⎨+=⎩0.11.5a b =-⎧⎨=⎩20.1 1.5y x x =-+乙()10m -()220.1 1.50.3100.1 1.23W m m m m m =-++-=-++()20.16 6.6Wm =--+0.10-<6m =104m -=2240x x --=2240x x +-=方程的根是的根是它们的两个根对应互为相反数,符合根的关系特征.5分(3)一元二次方程的根是,它的关联方程的根是,它们的两个根对应互为相反数.8分22.解:(1)根据题意,构造平面直角坐标系如图所示. 2分由题意可知,抛物线的顶点,可设抛物线的函数解析式为,2分将点B 代入,得,解得,∴抛物线的解析式为.4分(2)由题可知,∴.6分答:喷水池的半径至少为,才能使喷出的水流都落在水池内. 7分(3)当时,,解得9分.答:王师傅站立时必须在离水池中心点C 约至的范围内. 12分23.解:(1). 1分证明:由旋转的性质可知.∵D 是的中点,∴,∴,2分∴,∴ 4分(2)如图,连接2240x x --=21211240x x x x =+=-+-=1211x x =--=-+()200ax bx c a ++=≠≥x =20ax bx c -+=x =()()00,0,8,0B ()4,3.2P ()24 3.2y a x =-+()284 3.20a-+=0.2a =-()220.24 3.20.2 1.6y x x x =--+=-+2.3,8CA AB ==10.3CB CA AB =+=10.3m 1.8y =20.2 1.6 1.8x x -+=1244x x ==+()()122.3 6.3 6.3 2.65 3.7m , 2.3 6.3 6.3 2.658.9m x x +=≈-≈+=≈+≈3.7m 8.9m A B AC ''∥A A ∠=∠'Rt ABC △12AD BD CD AB ===AC A A ∠'=∠ACA A ∠'=∠'A B AC ''∥AA '在中,根据勾股定理可得.根据三角形面积公式可得由旋转可知.∴6分在中,根据勾股定理可得,在中根据勾股定理可得∴点A 与点10分(3)AD 的长为2或或. 13分提示:①当时,;②当时,;③当时,Rt ABC △5AB ==341255CD ⨯==4A C A C '==128455A D A C CD '='-=-=Rt AD C △165AD ==Rt AD A '△AA '==A '7552BC BD =532AD AB BD =-=-=BC CD =9725255AD AB BD =-=-⨯=BC CD =1522AD AB ==。
2024-2025学年九年级数学上学期期中测试卷(陕西专用,北师大版九上全部)(考试版A4)

2024-2025学年九年级数学上学期期中模拟卷(陕西专用)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:北师大版九年级(九上全册)。
5.难度系数:0.69。
一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.下列函数不是反比例函数的是( )A.y=3x﹣1B.y=―x3C.xy=5D.y=12x2.如图是某个几何体的三视图,则该几何体是( )A.圆锥B.长方体C.三棱柱D.圆柱3.若双曲线y=k―1x的图象经过第二、四象限,则k的取值范围是( )A.k>1B.k<1C.k=1D.不存在4.在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.7左右,则布袋中白球可能有( )A.15个B.20个C.30个D.35个5.如图,AD∥BE∥CF,若AB=2,AC=5,EF=4,则DE的长度是( )A .6B .23C .53D .836.在长为30m ,宽为20m 的长方形田地中开辟三条入口宽度相等的道路,已知剩余田地的面积为468m 2,求道路的宽度设道路的宽度为x (m ),则可列方程( )A .(30﹣2x )(20﹣x )=468B .(20﹣2x )(30﹣x )=468C .30×20﹣2×30x ﹣20x =468D .(30﹣x )(20﹣x )=4687.如图,正方形四个顶点分别位于两个反比例函数y =3x和y =n x 的图象的四个分支上,则实数n 的值为( )A .﹣3B .―13C .13D .38.如图,在菱形ABCD 中,DE ⊥AB ,垂足为E ,DE AE =34,BE =1,F 是BC 的中点.现有下列四个结论:①DE =3;②四边形DEBC 的面积等于9;③(AC +BD )(AC ﹣BD )=80;④DF =DE .其中正确结论的个数为( )A .1个B .2个C .3个D .4个二、填空题(共5小题,每小题3分,计15分)9.广场上,一个大型字母宣传牌垂直于地面放置,其投影如图所示,则该投影属于__________.(填“平行投影”或“中心投影”)10.反比例函数y =k x的图象经过点(1,6)和(m ,﹣3),则m =__________.11.已知等腰三角形的两边长是方程x 2﹣9x +18=0的两个根,则该等腰三角形的周长为__________.12.如图,在菱形ABCD 中,AC =24,BD =10.E 是CD 边上一动点,过点E 分别作EF ⊥OC 于点F ,EG⊥OD 于点G ,连接FG ,则FG 的最小值为__________.13.如图,在Rt △ABC 中,∠C =90°,AC =10cm ,BC =8cm .点P 从点C 出发,以2cm /s 的速度沿着CA向点A 匀速运动,同时点Q 从点B 出发,以1cm /s 的速度沿BC 向点C 匀速运动,当一个点到终点时,另一个点随之停止.经过__________秒后,△PCQ 与△ABC 相似.三、解答题(共13小题,计81分.解答应写出过程)14.(5分)解方程:x 2﹣4x +1=0.15.(5分)已知:a 2=b 3=c 4≠0,且2a ﹣b +c =10.求a 、b 、c 的值.16.(5分)一个几何体由一些大小相同的小正方块儿搭建,如图是从上面看到的这个几何体的形状如图,小正方形的数字表示在该位置的小正方块儿的个数,请在网格中画出从正面和左面看到的几何体的形状图..17.(5分)如图所示,BE,CF是△ABC的高,D是BC边的中点,求证:DE=DF.18.(5分)已知矩形ABCD中,AB=2,在BC中取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点,若四边形EFDC与矩形ABCD相似,求AD的长.19.(5分)如图,小明用自制的直角三角形纸板DEF测量水平地面上树AB的高度,已知两直角边EF:DE=2:3,他调整自己的姿势和三角形纸板的位置,使斜边DF保持水平,并且边DE与点B在同一直线上,DM垂直于地面,测得AM=21m,边DF离地面的距离为1.6m,求树高AB.20.(5分)如图所示某地铁站有三个闸口.(1)一名乘客随机选择此地铁闸口通过时,选择A闸口通过的概率为 .(2)当两名乘客随机选择此地铁闸口通过时,请用树状图或列表法求两名乘客选择不同闸口通过的概率.21.(6分)如图,小亮利用所学的数学知识测量某旗杆AB的高度.(1)请你根据小亮在阳光下的投影,画出旗杆AB在阳光下的投影.(2)已知小亮的身高为1.72m,在同一时刻测得小亮和旗杆AB的投影长分别为0.86m和6m,求旗杆AB的高.22.(7分)如图,在平面直角坐标系中,每个小正方形的边长都是1个单位长度,△ABC的顶点都在格点上.(1)以原点O 为位似中心,在第三象限内画出将△ABC 放大为原来的2倍后的位似图形△A 1B 1C 1;(2)已知△ABC 的面积为72,则△A 1B 1C 1的面积是__________.23.(7分)实验数据显示,一般成人喝50毫升某品牌白酒后,血液中酒精含量y (毫克/百毫升)与时间x(时)变化的图象如图(图象由线段OA 与部分双曲线AB 组成)所示.国家规定,车辆驾驶人员血液中的酒精含量大于或等于20(毫克/百毫升)时属于“酒后驾驶”,不能驾车上路.(1)求部分双曲线AB的函数表达式;(2)参照上述数学模型,假设某驾驶员晚上22:00在家喝完50毫升该品牌白酒,第二天早上6:30能否驾车去上班?请说明理由.24.(8分)如图所示,A、B、C、D是矩形的四个顶点,AB=16cm,AD=6cm,动点P,Q分别从点A,C 同时出发,点P以3cm/s的速度向点B移动,一直到达点B为止,点Q以2cm/s的速度向点D移动(1)P,Q两点从出发开始到几秒时,四边形PBCQ的面积为33cm2?(2)P,Q P和点Q的距离第一次是10cm?25.(8分)如图,已知四边形ABCD为正方形,AB=E为对角线AC上一动点,连接DE,过点E 作EF⊥DE,交BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG 是正方形;(2)探究:CE +CG 的值是否为定值?若是,请求出这个定值;若不是,请说明理由.26.(10分)如图,12y kx =+的图象与反比例函数2y mx =图象相交于A 、B 两点,已知点B 坐标为(3,﹣1).(1)求一次函数和反比例函数的表达式;(2)求得另一个交点A(﹣1,3),观察图象,请直接写出不等式kx+2≤mx的解集;(3)P为y轴上的点,Q为反比例函数图象上的点,若以ABPQ为顶点的四边形是平行四边形,求出满足条件的点P的坐标.。
湖北省武汉市武昌区武珞路中学2023-2024学年九年级上学期期中数学试题(含答案)

2023—2024学年度九年级上学期期中测试数学试卷(考试时间为120分钟,满分为120分)一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑1.将化成一般式后,,,的值分别是()A .1,2,B .1,,C .1,,5D .1,2,52.数学世界奇妙无穷,其中曲线是微分几何的研究对象之一,下列数学曲线是中心对称图形的是()A .B .C .D .3.把抛物线向右平移2个单位,再向下平移3`个单位,得到抛物线为()A .B .C .D .4.将二次函数化成的形式应为()A .B .C .D .5.已知一元二次方程的两根分别为,,则的值是()A .B .C .3D .56.如图,在中,,,在同一平面内,将绕点顺时针旋转到的位置,连接,若,则的度数是()A .B .C .D .7.如图,有一张长12cm ,宽9cm的矩形纸片,在它的四个角各剪去一个同样大小的小正方形,然后折叠成()25x x +=20ax bx c ++=a b c 5-2-5-2-2y x =-()223y x =-++()223y x =--+()223y x =-+-()223y x =---262y x x =+-()2y x h k =-+()237y x =++()2311y x =-+()2311y x =+-()237y x =+-2410x x +-=m n m n mn ++5-3-ABC △AB AC =100BAC ∠=︒ABC △A 11AB C △1BB 11BB AC ∥1CAC ∠10︒20︒30︒40︒一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是,求剪去的小正方形的边长.设剪去的小正方形的边长是,根据题意,可列方程为()A .B .C .D .8.如图,圆内接四边形中,,连接,,,,.则的度数是()A .B .C .D .9.如图,在中,顶点,,.将与正方形组成的图形绕点逆时针旋转,每次旋转,则第2023次旋转结束时,点的坐标为()A .B .C .D .10.如图,平行四边形中,,,,是边上一点,且,是边上的一个动点,将线段绕点顺时针旋转,得到,连接、,则的最小值是()270cm cm x 1294970x ⨯-⨯=2129470x ⨯-=()()12970x x --=()()1229270x x --=ABCD 105BCD ∠=︒OB OC OD BD 2BOC COD ∠=∠CBD ∠20︒25︒30︒35︒OBC △()0,0O ()2,2B -()2,2C OBC △ABCD O 90︒A ()6,2()2,6-()6,2-()6,2--ABCD 12AB =10AD =60A ∠=︒E AD 6AE =F AB EF E 60︒EN BN CN BN CN +A .B .D .14C .二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填在答题卡指定的位置。
江苏省常州市溧阳市2024-2025学年九年级上学期11月期中数学试题(含答案)

溧阳市2024~2025学年度第一学期期中质量调研测试九年级数学试题 2024.11一、选择题(本题共8小题,每小题2分,共16分每小题给出的四个选项中只有一个选项正确)1.以下方程中,一定是关于x 的一元二次方程的是A. x +1=0B.x 2-x =1C. x 3-x -1=0D. x 2-+1=02.方程x 2-6x =0的解是A. x 1=x 2=6B. x 1=x 2=60C. x 1=6,x 2 =0D.x 1=-6,x 2 =03.一元二次方程x 2+x -3=0的根的情况是A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根4.在△ABC 中,∠A=50°,若点O 为ABC 的外心,则∠BOC 等于A. 40°B.50°C.100°D.110°5.下列说法中,正确的是A.三点确定一个圆B.三角形有且只有一个外接圆C.四边形都有一个外接圆D.圆有且只有一个内接三角形6.如图,已知 PA 切⊙O 于点 A ,⊙O 的半径为3,OP=5,则切线长 PA 为A.B.8C. 4D.2 第6题图7.若关于x 的一元二次方程ax 2-bx =c (ac ≠0)的一个实数根为 2024,则关于x 的一元二次方程cx 2+bx =a (ac ≠0)一定有实数根A.-2024B.2024C.D.8.如图,正方形 ABCD 和CEFG 的边长分别是a 、b (b >2a ),将正方形ABCD 绕点C 旋转,在旋转过程中,△AEG 的面积S 的取值范围是A. B. C.D. 第8题图二、填空题(本大题共10小题。
每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.将一元二次方程2x 2=5x -化成一般形式为___________________________________。
21x13420241-2024122bS a ≤≤222121b S a ≤≤ab b S ab b +≤≤-222121ab b S ab b +≤≤-2210.若关于x 的一元二次方程x 2+nx -1=0的一个根为-1,则另一个根为___________________。
人教版2022--2023学年度第一学期九年级数学上册期中测试卷及答案

∴不等式mx+n>ax2+bx+c的解集是:x<-1或x>4.
故答案为:x<-1或x>4.
【点睛】本题主要考查二次函数、一次函数与不等式的关系,数形结合思想的运用是解题关键.
16.24或25##25或24
【解析】
A.2B.3C.-2D.-1
7.a是方程 的一个根,则代数式 的值是()
A. B. C. D.
8.已知抛物线 的对称轴是直线 ,则实数 的值是()
A.2B. C.4D.
9.把二次函数 的图象先向右平移3个单位,再向上平移1个单位后得到一个新图象,则新图象所表示的二次函数的解析式是()
A. B.
C D.
(1)设花圃的一边AD长为x米,请你用含x的代数式表示另一边CD的长为米;
(2)当矩形场地面积为160平方米时,求AD的长.
22.某商品交易会上,某商场销售一批纪念品,进价时每件为38元,按照每件78元销售,平均每天可售出20件,为了扩大销售,增加盈利,商场决定采取适当的降价措施,经调查发现,若每个纪念品降价2元,则平均每天多销售4件.
∴方程ax2+bx+c﹣m=0没有实数根时,
∴抛物线 -m顶点在x轴下方
,
故④正确,
⑤∵对称轴x=﹣1=﹣ ,
∴b=2a,
∵a+b+c<0,
∴3a+c<0,
故⑤正确,
所以正确的选项有②③④⑤,
故选:C.
【点睛】本题考查二次函数图象与系数的关系,一元二次方程根的判别式、抛物线与x轴的交点等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
转 得到四边形EFGH时的旋转中心用有序数对表示是 .
14、若 3a2 a 2 0 ,则 5 2a 6a2
.
15、点A的坐标为( 2 ,0),把点A绕着坐标原点顺时针旋转
. 16、实数a,b在数轴上的对应点的位置如图,请化简式子:
25、如图,在直角坐标系中,Rt△AOB的两条直角边 OA,OB分别在x轴的负半轴,y轴的负半轴
上,且OA=2,OB=1.将Rt△AOB绕点O按顺时针方向旋转90º,再把所得的图像沿x轴正方向平
移1个单位,得△CDO.
(1)写出点A,C的坐标; (2)求点A和点C之间的距离.
yC
平面直角坐标系中, 其中点 O 为坐标原点,点 A 的坐标为 (3,0) , ABO 60o.
在 AB 上, BD AB ,点 B 是垂足, OD∥ AC , 连接 CD .(1)求证: CD 是⊙O 的切线. (2)若⊙O 的半径为10cm,∠A=600,求CD的长
D C
A
B
O
23、如图所示,直角梯形 ABCD 中, AB ∥ DC , AB 7 cm , BC CD 4 cm ,以 AB 所在
(2)求(1)中方程有两个相同实数解的概率.
21、在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形, △ ABC 的三个顶点都在
格点上(每个小方格的顶点叫格点).
(1) 画出 △ ABC 绕点O逆时针旋转90°后的 △ ABC . (2) 求 △ ABC 的面积.
A CO
B
22、如图,⊙O 是 Rt△ ABC 的外接圆,点 O
A.70° B.60° C.50° D.40°
7、方程 x2 9x 18 0 的两个根是等腰三角形的底和腰,则这个三角形的周长为( )
A.12
B.12或15
C.15或12
D.不能确定
8、从3名男生和2名女生中随机抽取2020年南京青奥会志愿者.下列事件的概率:抽取2名,恰 好是1名男生和1名女生( )。
D。 k 1 且 k 0
3、直线
y
4 3
x
4
与
x
轴、
y
轴分别交于
A
、
B
两点,把△
AOB
绕点
A
顺时针
旋转90°后得到△ AOB ,则点 B 的坐标是(
)
A. (3,4) B.(4,5) C.(7,4) D.(7,3)
4、 △ ABC 为⊙O 的内接三角形, AB 1,° C 30 则⊙O
的内接正方形的面积为( )
A.不亏不盈 B.盈6.12元 C.亏6.02元 D.亏5.92元
二、填空题 11、随即掷一枚均匀的硬币三次次,三次正面朝上的概率是______________。
12、已知⊙ O1 和⊙ O2 的半径分别是12和2,圆心 O1 的坐标是(0,8),圆心 O2 的坐标是(-
6,0),则两圆的位置关系是( ) 13、如图,四边形EFGH是由四边形 ABCD 经过旋转得到的.如果用有序数对(2,1)表示方格纸
a b b2 (a b)2
_________
135º到点B,那么点B的坐标是
17、已知⊙O的半径是5cm,弦AB∥CD,AB=6cm,CD=8cm则AB与CD的距是 18、如图所示,圆锥的母线长是3,底面半径是1,A是底面圆周上一点,• 从点A出发绕侧面一
周,再回到点A的最短的路线长是( )
20、(6分)1/2、1/18
A.1/5 B.2/5 C.3/5 D.4/5 9、如图,圆弧形桥拱的跨度AB=12米,拱高CD=4米,
则拱桥的半径为( ) A.6.5米 B.9米 C.13米 D.15米
第9题
10.某商场根据市场销售变化,将A商品连续两次提价20%,同时将B商品连续两次降价20%,结果 都以每件23.04元出售,此时商场若同时售出A、B两商品各一件的盈亏情况为( ).
一、选择题、
九年级上学期期中测试题 数学
1 1、使 x 1 有意义的x的取值范围是( )
A.x>1 B.x≥1 C.x≠1 D.x≥0且x≠1
2、若关于 x 的一元二次方程 kx2 2x 1 0 有两个不相等的实数根,则 k 的取值范围是(
)
A. k 1
B。 k 1且 k 0
C.。 k 1
A.2
B.4 C.8 D.16
5、下列事件是随机事件的是( )
A.在一个标准大气压下,加热到100℃,水沸腾
B.购买一张福利彩票,中奖
C.有一名运动员奔跑的速度是30米/秒
D.在一个仅装着白球和黑球的袋中摸球,摸出红球
6、AB是⊙O 的直径,点C、D在⊙O 上, BOC 110° ,
AD∥ OC ,则 AOD ( )
直线为轴旋转一周,得到一个几何体,求它的全面积.
A
O
D
B
C
24、某商场销售一批衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加利润,尽 量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每 天可多售出2件,若商场每天要获利润1200元,请计算出每件衬衫应降价多少元?
二、填空题(每小题3分,共24分)
11、 1/8
12、 内切
13、( 5、2 )
14、 1
15、 (-1,-1) 16、2a+b 17、1或7
18、A 三、解答题(共66分) 19、(6分)(1)3根号3 (2)解:
x 2x 5 22x 5 x 22x- 5 0
5 x1 2, x2 2
(1)求作 △ AOB 的外接圆圆心P,并求出P点的坐
标;
(2)若⊙P与 y 轴交于点 D ,求 D 点的坐标;
(3)若CD是⊙P的切线,求直线CD的函数解析式.
y D CO
B Ax
参考答案
一、选择题(每小题3分,共30分)
1、A 2、B 3、D 4、A 5、 B 6、D 7、C 8、C 9、A 10、D
33 A.6 3 B. 2 C.3 3 D.3
三、解答题
19、计算、解方程:
41
31
(1)计算:( 48 - 8 )-( 3 - 2 0.5 );;
(2)x(2x-5)=4x-10.
20、:甲、乙两同学投掷一枚骰子,用字母p、q分别表示两人各投掷一次的点数.(1)求满足关
于x的方程 x2 px q 0 有实数解的概率.