初中有理数的单元测试题
人教版七年级上册数学 第一章 有理数 单元测试题 含答案 答题卡

第一章 有理数 单元测试题(一)一 选择题 (每小题3分 共30分)1.下列四个数中,在-2到 0之间的数是: ( ) A -1 B 1 C -3 D 32.下列说法正确的是: ( ) A 0表示什么也没有B 一场比赛赢4个球得+4分, -3分表示输了3个球 C 7没有符号D 0既不是正数,也不是负数3.既是分数又是正数的是( )A +2B -31C 0D 2.34.下列结论正确的有( )个: ① 规定了原点,正方向和单位长度的直线叫数轴 ② 最小的整数是0 ③ 正数,负数和零统称有理数 ④ 数轴上的点都表示有理数A 0B 1C 2D 3 5.在数轴上,A 点和B 点所表示的数分别为-2和1,若使A 点表示的数是B 点表示的数的3倍,应把A 点 ( ) A 向左移动5个单位 B 向右移动5个单位C 向右移动4个单位D 向左移动1个单位或向右移动5个单位 6.如图,在数轴上点M 表示的数可能是( )A .1.5B .-1.5C .-2.4D .2.47.在0.75,-1,-0.75,3,0,+5,-3这几个数中,互为相反数的有( ) A .0对 B .1对 C .2对 D .3对8.数a 在数轴上的对应点在原点左边,且|a|=4,则a 的值为( ) A .4或-4 B .4 C .-4 D .以上都不对 9.一个数的绝对值等于它的相反数,则这个数是( ) A .正数或0 B .负数或0 C .所有正数 D .所有负数10.清晨蜗牛从树根沿着树干往上爬,树高10m ,白天爬4m ,夜间下滑3m ,它从树根爬上树顶,需( ) A 、10天 B 、9天 C 、8天 D 、7天 二 填空题(每小题3分 共18分)1.如果向南走5米,记作+5米,那么向北走8米应记作____米. 2.已知下列各数:-4,3.5,0,-2,10,+21,其中非负数有_______ 3.在数轴上,距原点6个单位长度的点表示的数为____. 4.若a=-2020,则—a=____.5.某天早晨的气温是18℃,中午上升6℃,半夜又下降5℃,则半夜的气温是_____℃.6.如果x <0,y >0,且|x|=2,|y|=3,那么x+y=________. 三 解答题(本大题共72分) 1(30分) 计算(1)1+(-21 )+31 +(-61) (2)(-109)+(-267)+(+109)+268(3)(-23)-(+12)-(-56)-(-13) (4)(-813)-(+12)-(-70)-(-813);(5)(-3)-(-17)-(-33)-81 (6)(-12)+ 14 -(-21)+ 3 -(-2)2(8分)简答题:(1)-1和0之间还有负数吗?如有,请列举。
七年级有理数练习题集及答案(10套)

有理数单元检测001有理数及其运算(综合)(测试5)一、境空题(每空2分,共28分) 1、31-的倒数是____;321的相反数是____. 2、比–3小9的数是____;最小的正整数是____. 3、计算:._____59____;2123=--=+-4、在数轴上,点A 所表示的数为2,那么到点A 的距离等于3个单位长度的点所表示的数是5、两个有理数的和为5,其中一个加数是–7,那么另一个加数是____.6、某旅游景点11月5日的最低气温为 2-,最高气温为8℃,那么该景点这天的温差是____. C7、计算:.______)1()1(101100=-+-8、平方得412的数是____;立方得–64的数是____. 9、用计算器计算:._________95=10、观察下面一列数的规律并填空:0,3,8,15,24,_______. 二、选择题(每小题3分,共24分)11、–5的绝对值是………………………………………………………( ) A 、5 B 、–5 C 、51 D 、51- 12、在–2,+3.5,0,32-,–0.7,11中.负分数有……………………( ) A 、l 个 B 、2个 C 、3个 D 、4个13、下列算式中,积为负数的是………………………………………………( ) A 、)5(0-⨯ B 、)10()5.0(4-⨯⨯ C 、)2()5.1(-⨯ D 、)32()51()2(-⨯-⨯-14、下列各组数中,相等的是…………………………………………………( ) A 、–1与(–4)+(–3) B 、3-与–(–3)C 、432与169 D 、2)4(-与–1615、小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二 次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是…………( ) A 、90分 B 、75分 C 、91分 D 、81分16、l 米长的小棒,第1次截止一半,第2次截去剩下的一半,如此下去,第6次后剩下的小棒长为…………………………………………………………………( ) A 、121 B 、321 C 、641 D 、128117、不超过3)23(-的最大整数是………………………………………( )A 、–4B –3C 、3D 、418、一家商店一月份把某种商品按进货价提高60%出售,到三月份再声称以8折(80%)大拍卖,那么该商品三月份的价格比进货价………………………………………( ) A 、高12.8% B 、低12.8% C 、高40% D 、高28% 三、解答题(共48分) 19、(4分)把下面的直线补充成一条数轴,然后在数轴上标出下列各数: –3,+l ,212,-l.5,6.20、(4分)七年级一班某次数学测验的平均成绩为80分,数学老师以平均成绩为基准,记作0,把小龙、小聪、小梅、小莉、小刚这五位同学的成绩简记为+10,–15,0,+20,–2.问这五位同学的实际成绩分别是多少分? 21、(8分)比较下列各对数的大小. (1)54-与43- (2)54+-与54+- (3)25与52 (4)232⨯与2)32(⨯ 22、(8分)计算.(1)15783--+- (2))6141(21-- (3))4(2)3(623-⨯+-⨯- (4)61)3161(1⨯-÷23、(12分)计算.(l )51)2(423⨯-÷- (2)75.04.34353.075.053.1⨯-⨯+⨯- (3)[]2)4(231)5.01(-+⨯÷-- (4))411()2(32)53()5(23-⨯-÷+-⨯-24、(4分)已知水结成冰的温度是0C ,酒精冻结的温度是–117℃。
人教新版七年级上册《第1章-有理数》单元测试卷(5)

人教新版七年级上册《第1章有理数》单元测试卷(5)一、选择题1.超市出售的某种品牌的面粉袋上,标有质量为(25±0.2)kg的字样,从中任意拿出两袋,它们的质量最多相差()A.0.2kg B.0.3kg C.0.4kg D.50.4kg2.如果|x|﹣2=2,那么x是()A.4 B.﹣4 C.±2 D.±43.下列各式结果为负数的是()A.﹣(﹣1)B.(﹣1)4C.﹣|﹣1| D.|1﹣2|4.下列判断正确的是()A.若|a|=|b|,则a=b B.若|a|=|b|,则a=﹣bC.若a=b,则|a|=|b| D.若a=﹣b,则|a|=﹣|b|5.下列各式中,大小关系正确的是()A.﹣1>B.>C.>D.=6.由四舍五入得到的近似数57.75万,精确到了()A.十分位B.百分位C.百位D.千位7.如果两个有理数的积是负数,和也是负数,那么这两个有理数是()A.同号,且均为负数B.异号,且正数的绝对值比负数的绝对值大C.同号,且均为正数D.异号,且负数的绝对值比正数的绝对值大8.苏州是全国重点旅游城市,2020年实现旅游总收入约为2600万元,用科学记数法表示为()元.A.2.6×106B.2.6×107C.26×106D.0.26×1089.大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m3分裂后,其中有一个奇数是45,则m的值是()A.6 B.7 C.8 D.910.法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算7×8和8×9的两个示例.若用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是()A.2,3 B.3,3 C.2,4 D.3,4二、填空题11.如果水位升高2m时水位变化记作+2m,那么水位下降3m时水位变化记作m.12.绝对值小于2019的所有整数之和为.13.数轴上到原点的距离是3的点表示的数是.14.已知一个数与4的和为2,则这个数是.15.已知a、b互为相反数,c、d互为倒数,x的绝对值是2,求3x﹣(a+b+cd)x=.16.如图,在研究用火柴摆正方形的问题时,小明认为摆n个正方形需(3n+1)根火柴棒;小凡认为摆1个正方形需[n+n+(n+1)]根火柴棒;小亮认为摆n个正方形需(4n﹣n)根火柴棒;小刚认为摆1个正方形需(n+n+n)根火柴棒.你认为他们说得对的是.17.已知﹣1<x<0,则x、x2、x3的大小关系是.(用“<”连接)18.“转化”是一种解决问题的常用策略,有时画图可以帮助我们找到转化的方法,例如借助图(1),可以把算式1+3+5+7+9+11转化为62=36.请你观察图(2),可以把算式转化为=.三、解答题19.用四舍五入法按括号里的要求对下列各数取近似值.(1)0.00149(精确到0.001);(2)204500(精确到千位);(3)0.08904(精确到千分位).20.计算:﹣22×+8÷(﹣2)2.21.列式计算:(1)﹣4、﹣5、+7三个数的和比这三个数绝对值的和小多少?(2)从﹣1中减去的和,所得的差是多少?22.如果a,b互为倒数,c,d互为相反数,且m的绝对值是2,求代数式2ab﹣(c+d)﹣m的值.23.已知A、B在数轴上分别表示a、b(1)对照数轴填写下表:a 6 ﹣6 ﹣6 2 ﹣1.5b 4 0 ﹣4 ﹣10 ﹣1.5A、B两点的距离 2 0(2)若A、B两点间的距离记为d,试问d和a、b(a<b)有何数量关系;(3)写出数轴上到7和﹣7的距离之和为14的所有整数,并求这些整数的和;(4)若点C表示的数为x,当点C在什么位置时,|x+1|+|x﹣2|取得的值最小.24.对于正数x,规定f(x)=,例如:f(2)==,f(3)==,f ()==,f()==,…,利用上述规律计算:f()+f()+f()+…+f()+f()+f(1)+f(2)+…+f(2019)的值.。
第一章-有理数单元测试题及答案

第一章有理数测试题一、选择题(每题3分,共30分)1、1999年国家财政收入达到11377亿元,用四舍五入法近似值为()亿元(A)(B)(C)(D)2、大于–3.5,小于2.5的整数共有( )个。
(A)6 (B)5 (C)4 (D)33、已知数在数轴上对应的点在原点两侧,并且到原点的位置相等;数是互为倒数,那么的值等于( )(A)2 (B)–2 (C)1 (D)–14、如果两个有理数的积是正数,和也是正数,那么这两个有理数()(A)同号,且均为负数(B)异号,且正数的绝对值比负数的绝对值大(C)同号,且均为正数(D)异号,且负数的绝对值比正数的绝对值大5、在下列说法中,正确的个数是()⑴任何一个有理数都可以用数轴上的一个点来表示⑵数轴上的每一个点都表示一个有理数⑶任何有理数的绝对值都不可能是负数⑷每个有理数都有相反数A、1B、2C、3D、46、下列代数式中,值一定是正数的是()A.x2 B.|-x+1| C.(-x)2+2 D。
-x2+17、下列说法正确的是( )A、几个有理数相乘,当因数有奇数个时,积为负;B、几个有理数相乘,当正因数有奇数个时,积为负;C、几个有理数相乘,当负因数有奇数个时,积为负;D、几个有理数相乘,当积为负数时,负因数有奇数个;8、将150000000千米用科学记数法表示为()A.0.15×千米B.1。
5×千米C.15×千米D.1。
5×千米9、下列计算正确的是()A.-22=-4 B。
-(-2)2=4 C。
(-3)2=6 D。
(-1)3=110、如果a〈0,那么a和它的相反数的差的绝对值等于()A。
a B.0 C。
-a D。
-2a二、填空题:(每题2分,共42分)1、.2、小明与小刚规定了一种新运算*:若a、b是有理数,则a*b = .小明计算出2*5=—4,请你帮小刚计算2*(-5)=。
3、若,则= ;4、大于-2而小于3的整数分别是_________________、5、(-3.2)3中底数是______,乘方的结果符号为______。
《有理数》单元测试卷

《有理数》单元测试卷基础部分一、选择题(本大题共10小题,共40分):1、在–1,–2,1,2四个数中,最大的一个数是( ) (A )–1 (B )–2 (C )1 (D )22、有理数31的相反数是( )(A )31 (B )31- (C )3 (D ) –33、有理数–3的倒数是( ) (A )–3 (B )31-(C )3 (D )31 4、计算:(+1)+(–2)等于( )(A )–l (B ) 1 (C )–3 (D )35、我国拟设计建造的长江三峡电站,估计总装机容量将达16780000千瓦,用科学记数法表示总装机容量是( )(A )4101678⨯千瓦(B )61078.16⨯千瓦(C )710678.1⨯千瓦(D )8101678.0⨯千瓦6、下列说法中,正确的是( )(A)相反数等于它本身的有理数只有0; (B)倒数等于它本身的有理数只有1 (C)绝对值等于它本身的有理数只有0; (D)平方结果等于它本身的有理数只有17、大于–3.5,小于2.5的整数共有( )个。
(A )6 (B )5 (C )4 (D )38、已知数b a ,在数轴上对应的点在原点两侧,并且到原点的位置相等;数y x ,是互为倒数,那么xy b a 2||2-+的值等于( ) (A )2 (B )–2 (C )1 (D )–1 9、如果a a =||,那么a 是( )(A )0 (B )0和1 (C )正数 (D )非负数10、如果两个有理数的积是正数,和也是正数,那么这两个有理数( ) (A )同号,且均为负数 (B )异号,且正数的绝对值比负数的绝对值大 (C )同号,且均为正数 (D )异号,且负数的绝对值比正数的绝对值大 二、填空题:(本大题共4小题,共20分)11、如果向银行存入人民币20元记作+20元,那么从银行取出人民币32.2元记作________。
12、比较大小:–π________–3.14(填=,>,<号=。
有理数单元测试及答案

有理数单元测试及答案有理数单元检测试题一、填空题(本题共有9个小题,每小题2分,共18分)1、一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,记为0,规定向上为正,那么惯上将2楼记为1;地下第一层记作-1;数-2的实际意义为地下第三层,数+9的实际意义为地面上的第十层。
2、如果数轴上的点A对应有理数为-2,那么与A点相距3个单位长度的点所对应的有理数为-5.3、某数的绝对值是5,那么这个数是-5或5.(保留四个有效数字)4、(4/3)²=16/9,(-4/3)²=16/9.5、数轴上和原点的距离等于3的点表示的有理数是-3或3.6、计算:(-1)+(-1)=-2.7、如果a、b互为倒数,c、d互为相反数,且m=-1,则代数式2ab-(c+d)+m=-1.8、(+5.7)的相反数与(-7.1)的绝对值的和是12.8.9、已知每辆汽车要装4个轮胎,则51只轮胎至多能装配12辆汽车。
二、选择题(本题共有10个小题,每小题都有A、B、C、D四个选项,请你把你认为适当的选项前的代号填入题后的括号中,每题2分,共20分)10、下列说法正确的是(C)。
A。
整数就是正整数和负整数B。
负整数的相反数就是非负整数C。
有理数中不是负数就是正数D。
零是自然数,但不是正整数11、下列各对数中,数值相等的是(A)。
A。
-2与(-2)B。
-3与(-3)C。
-3×2与-3×2D。
-( -3)与-( -2)12、在-5,-9,-3.5,-0.01,-2,-212各数中,最大的数是(D)。
A。
-12B。
-9C。
-0.01D。
-213、如果一个数的平方与这个数的差等于1,那么这个数只能是(B)。
A。
-1B。
1C。
0D。
或114、绝对值大于或等于1,而小于4的所有的正整数的和是(C)。
A。
8B。
7C。
6D。
515、计算:(-2)+(-2)的是(D)。
A。
2B。
-1C。
-2D。
初一有理数单元测试卷

1.下列哪个数是有理数?
A.π(圆周率)
B.√2 (平方根2)
C.-3/4 (负四分之三)(答案)
D. e (自然对数的底数)
2.有理数包括哪些数?
A.整数和分数(答案)
B.只有整数
C.只有正数
D.只有负数
3.下列哪个数是有理数中的负数?
A. 3
B.-5 (答案)
C.0
D.2/3
4.下列哪个数是有理数中的正分数?
A.-1/2
B.3/4 (答案)
C.-3
D.0
5.有理数a的相反数是什么?
A.a+1
B.-a (答案)
C.a-1
D.a/2
6.下列哪个数不是有理数?
A.0.5
B.-7
C.√3 (平方根3)(答案)
D.1/3
7.有理数加减法的结果是什么数?
A.有理数(答案)
B.无理数
C.整数
D.分数
8.下列哪个选项表示的是有理数的绝对值?
A.|-3| = -3
B.|3| = -3
C.|-3| = 3 (答案)
D.|3| = 3 且 |-3| = -3
9.有理数乘法中,两数相乘,同号得什么?异号得什么?
A.同号得正,异号得负(答案)
B.同号得负,异号得正
C.同号得零,异号也得零
D.同号得正,异号得零
10.有理数除法中,两数相除,同号得什么?异号得什么?
A.同号得正,异号得负(答案)
B.同号得负,异号得正
C.同号得零,异号也得零
D.同号、异号都得负。
七年级上册数学第一章《有理数》测试题(含答案)

七年级数学(上) 第一章 有理数单元测试题(120分)一、选择题(3分×10=30分)1、2008的绝对值是( )A 、2008B 、-2008C 、±2008D 、20081 2、下列计算正确的是( )A 、-2+1=-3B 、-5-2=-3C 、-112-=D 、1)1(2-=-3、下列各对数互为相反数的是( )A 、-(-8)与+(+8)B 、-(+8)与+︱-8︱C 、-2222)与(-D 、-︱-8︱与+(-8)4、计算(-1)÷(-5)×51的结果是( ) A 、-1 B 、1 C 、251 D 、-25 5、两个互为相反数的有理数的乘积为( )A 、正数B 、负数C 、0D 、负数或0 6、下列说法中,正确的是( )A 、有最小的有理数B 、有最小的负数C 、有绝对值最小的数D 、有最小的正数7、小明同学在一条南北走向的公路上晨练,跑步情况记录如下:(向北为正,单位:m ):500,-400,-700,800 小明同学跑步的总路程为( )A 、800 mB 、200 mC 、2400 mD 、-200 m8、已知︱x ︱=2,y 2=9,且x ·y<0,则x +y=( )A 、5B 、-1C 、-5或-1D 、±19、已知数轴上的A 点到原点的距离为2个单位长度,那么在数轴上到A 点的距离是3个单位长度的点所表示的数有( )A 、1个B 、2个C 、3个D 、4个10、有一张厚度是0.1mm 的纸,将它对折20次后,其厚度可表示为( )A 、(0.1×20)mmB 、(0.1×40)mmC 、(0.1×220)mmD 、(0.1×202)mm二、填空题(5分×3=15)11、妈妈给小颖10元钱,小颖记作“+10元”,那么“-5元”可能表示什么 _____12、一个正整数,加上-10,其和小于0,则这个正整数可能是 (写出两个即可)13、绝对值小于2008的所有整数的和是( )14、观察下列各数,按规律在横线上填上适当的数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中有理数的单元测试题
一、选择题每题3分,共45分
1.下列命题中:1零是正数;2零是整数;3零是最小的有理数;4零是非负数;5零是偶数,正确命题的个数是
A.2个
B.3个
C.4个
D.5个
2.若|a|=|b|,则a与b的关系为
A.a=b
B.a=-b
C.a=±b
D.以上答案都不对
3.据联合国近期公布的数字,我国内地吸引外来直接投资已居世界第四,1980~2002年期间,吸引外资累计为4880亿美元,用科学记数法表示正确的是亿美元。
A.B.C.D.
4.下列比较大小结果正确的是
A.-3<-4
B.--2<|-2|
C.
D.
5.下列关系式一定成立的是
A.若|a|=|b|,则a=b
B.若|a|=b,则a=b
C.若|a|=-b,则a=b
D.若a=-b,则|a|=|b|
6.若b<0,则a,a-b,a+b,最大的是
A.a
B.a-b
C.a+b
D.还要看a的符号,才能判定
7.对于-24与-24,下列说法正确的是
A.它们的意义相同
B.它的结果相等
C.它的意义不同,结果相等
D.它的意义不同,结果不等
8.下面说法中正确的是
A.两数之和为正,则两数均为正
B.两数之和为负,则两数均为负
C.两数之和为0,则这两数互为相反数
D.两数之和一定大于每一个加数
9.若a为负数,下列各式不正确的是
A.a2=-a2
B.a2=|a2|
C.a3=-a3
D.-a3=-a3
10.已知a×b×c×d×e,其中有三个负数,则a×b×c×d×e
A.大于0
B.小于0
C.大于或等于0
D.小于或等于0
11.若x是有理数,则x2+1一定是
A.等于1
B.大于1
C.不小于1
D.非负数
12.对任意实数a,下列各式中一定成立的’是
A.a>|a|
B.a>|-a|
C.a≥-|-a|
D.a<|a|
13.下列各对数中,互为相反数的是
A.-|-7|和+-7
B.+-10和-+10
C.-43和-43
D.-54和-54
14.若x为有理数,则丨x丨-x表示的数是
A.正数
B.非正数
C.负数
D.非负数
15.某城市按以下规定收取每月煤气费,用煤气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费。
已知甲用户某月份用煤气80每立方米,那么这个月甲用户应交煤气费
A.64元
B.66元
C.72元
D.96元
二、填空题每空2分,共24分
1.如果收入10.5元表示为+10.5元,那么支出6元可表示为________元.
2.某人身份证号是320216************,则这人出生于哪年哪月哪日。
3.观察排列规律,填入适当的数:3,-7,11,-15,19,-23,.
4.用16m长的篱笆围成长方形的生物园来饲养动物,则最大面积
5.下表是北京与国外几个城市的时差,其中带正号的数表示同一时刻比北京时间早的时数,试分别求出:东京与巴黎的时差:
城市巴黎纽约东京芝加哥
时差/时-7-13+1-14
6.月球直径约为3520千米,月球的表面积是平方千米。
球表面积公式S=4πR2,用科学计数法表示时,小数点后只取两位小数
7.把下列各数填在相应的大括号里:
正整数集合:整数集合:
负整数集合:正分数集合:
8.若a与b互为相反数,c与d互为倒数,则代数式=。
9.四个有理数:2,3,-4,-9,将这四个数用每个数只能用一次进行“+、-、×、÷”四则运算,使其结果为24,
三、计算题每题5分,共40分
① |-45|+-71+|-5|+-9② -53++21--69-+37
③ -14+÷[3--22] ④
⑤ ⑥ -23×8-8×3+8÷
⑦ [-32×-2-0.8]÷-5⑧
四.解答下列各题41分
1.把下列各数及它们的相反数在数轴上表示出来,并用“>”号把它们连接起来。
-3,--4,0,|-2.5|,-16分
2.写出符合下列条件的数。
1大于-3且小于2的所有整数。
2绝对值大于2且小于5
的所有负整数。
3在数轴上,与表示-1的点的距离为2的所有数。
4不超过-3的最大整数。
8分
3.已知:|a|=3,|b|=2,且a
4.若|a-1|+b+22=0,求a+b2002+a2001的值。
6分
5.一只蚂蚁从原点0出发来回爬行,爬行的各段路程依次为:+5,-3,+10,-8,-9,+12,-10,请在数轴上画出爬行过程。
回答下列问题:1蚂蚁最后是否回到出发点0?2在爬行过程中,如果每爬一个单位长
度奖励2粒芝麻,则蚂蚁一共得到多少粒芝麻?8分
6.某商场举行“十一”优惠销售活动,采取“满一百送二十元,并且连环赠送”的酬
宾方式,即顾客每花满100元100元既可是以是现金,也可以是奖励券,或二者合计应送20元奖励券;满200元,就送40元奖励者,依此类推.有一天,一位顾客一次就花了
14000元钱,那么他还可以购回多少钱的物品?相当于几折销售?7分
感谢您的阅读,祝您生活愉快。