(完整版)状态反馈与闭环极点配置极点配置条件

合集下载

状态反馈极点配置基本理论与方法

状态反馈极点配置基本理论与方法

状态反馈极点配置基本理论与方法IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】第2章 状态反馈极点配置设计基本理论引言大多数的控制系统的基本结构是由被控对象和反馈控制器构成的闭环系统。

反馈的基本类型包括状态反馈和输出反馈。

其中状态反馈能够提供更加丰富的状态信息。

状态反馈是将系统的每一个状态变量乘相应的反馈系数,然后反馈到输入端与参考输入相加形成的控制规律,作为被控系统的控制输入。

图是一个多输入多输出线性时不变系统状态反馈的基本结构:图 多输入-多输出系统的状态反馈结构图其中受控系统的状态空间表达式为:x Ax Buy Cx=+=由图可知,加入状态反馈后,受控系统的输入为:u Fx v =+其中v 为参考输入,F 为状态反馈增益阵,因此可以得到状态反馈闭环系统的状态空间表达式:()x A BF x Bv y Cx=++=闭环系统的传递函数矩阵:()()1s W s C sI A BF B -=-+⎡⎤⎣⎦由此可见,引入状态反馈后,通过F 的选择,可以改变闭环系统的特征值,是系统获得所要求的性能。

极点配置方法的选择对于一个线性时不变系统进行状态反馈极点配置,一般有四种方法: (1) 传统方法—将系统转化为一个或多个单输入单输出系统。

(2) 直接法—使用稳定的酉矩阵,将这种系统转化为标准型。

(3)矩阵方程法—对矩阵F ,直接解方程AX X BG -Λ=FX G =(4)特征向量法—先找到特征向量x j (等式中矩阵X 的列向量),然后利用等式求解F 。

方法(1)一般难以应用或者数值不稳定。

方法(3)需要解方程,并且对于系统矩阵A 的特征值不能再分配。

最有效并且数值稳定的方法是方法(2)和方法(4)。

其中方法(4)通过使用一系列的迭代算法找到最优解,所以比较复杂。

对于方法(2),当系统的输入多于一个信号输入时,不能确定系统的鲁棒性。

本文结合以上方法提出了一种新的设计方法:首先通过酉变换将状态方程化为一种控制规范形,然后利用最小二乘法解方程的得到最佳的状态反馈矩阵。

5第五节极点配置

5第五节极点配置

K = [− 9.4 − 79.1 − 170.8]
以上述状态阵K反馈后的状态方程为:
1 0 0 0 ɺ X = ( A + B K ) X + Bv = 0 0 1 X + 0 v − 172.8 − 82.1 − 14.4 1 y 输出方程为: = x1 = [1 0 0]X
Saturday, June 25,1]一个三阶系统的微分方程为:ɺ(t ) + 5 ɺɺ(t ) + 3 y (t ) + 2 y (t ) = u (t ) y 希望该系统有小的超调量,调整时间小于1秒。试确定状态反馈 阵K,以满足上述要求。
选择希望的特征方程为: * (λ ) = (λ2 + 2ζλ + ω n 2 )(λ + ζω n ) = 0 f 因为要求小的超调量,所以可以取ζ = 0.8,那么调整时间为:
Saturday, June 25, 2011
11
Saturday, June 25, 2011
9
u K 状态反馈阵K是: = [k1 k 2 k3 ] 。取控制量为: = K X ɺ 则:X = A X + B K X = ( A + B K ) X 1 0 0 0 1 其中:A + B K = 0 − 2 + k1 − 3 + k 2 − 5 + k3 特征方程为: f (λ ) = det[λI − ( A + B K )] = λ3 + (5 − k3 )λ2 + (3 − k 2 )λ + (2 − k1 )
u
B
图a
ɺ x
+

7.4 状态反馈和极点配置

7.4 状态反馈和极点配置
3
可配置条件_极点配置定理
考虑线性定常系统
x Ax Bu
假设控制输入u的幅值是无约束的。如果选取控制规律为
u r Kx
式中K为线性状态反馈矩阵。
定理 (极点配置定理) 线性定常系统可通过线性状态反馈任意地 配置其全部极点的充要条件是,此被控系统状态完全可控。
该定理对多变量系统也成立。
证明 (对单输入单输出系统) 1、充分性 2、必要性
kn 1 ]
由于 u r Kx r KPx ,此时该系统的状态方程为 x ( Ac Bc K ) x Bcr
相应的特征方程为 sI Ac BcK 0
因为非奇异线性变换不改变系统的特征值,当利用 u=r-Kx作为控制输 入时,相应的特征方程与上式相同,均有如下结果。
s
1
0
0
s
0
sI Ac BcK
◆确定将系统状态方程变换为可控标准形的变换矩阵P。若给定的状态方程已是 可控标准形,则P = I。此时无需再写出系统的可控标准形状态方程。非奇异线 性变换矩阵P=QW。
◆利用给定的期望闭环极点,可写出期望的特征多项式为
(s 1() s 2 ) (s n ) sn an1sn1 a1s a0
从而确定出a1* , a2 *,… an *的值。
◆最后得到状态反馈增益矩阵K为
K [ a0 a0 a1 a1
a n1
an1
]
P 1
10
极点配置 例1
【例】 考虑如下线性定常系统
0
1
0
0
x Ax Bu A 0
0
1 , B 0
1 5 6
1
利用状态反馈控制,希望该系统的闭环极点为s = -2±j4和s = -10。试确定状

反馈控制与极点配置

反馈控制与极点配置
则相应的反馈矩阵K为 K=[a3*-a3 a2*-a2 a1*-a1]
2021/1/23
h
15
因此,在反馈律u=-Kx+v下,闭环系统状态方程为
0 1 0 0
x
0
0
10 0 0 ]x
在例6-3中,由给定的传递函数通过状态反馈进行极点配置时 需先求系统实现,即需选择状态变量和建立状态空间模型。 ➢ 这里就存在一个所选择的状态变量是否可以直接测量、 可以直接作反馈量的问题。
2021/1/23
h
10
解 1: 判断系统的能控性。
➢ 开环系统的能控性矩阵为
[B
AB]12
-4 1
则开环系统为状态能控,可以进行任意极点配置。
2. 求能控规范II形:
T1 [0 1][B AB]1 1/6 1/3
Tc21
T1 T1A
1 6
1 1
2 8
A~
Tc21ATc2
0 5
1 2
B~
Tc21B
2021/1/23
h
4
• 下面分别讨论:
– 状态反馈极点配置定理 – SISO系统状态反馈极点配置方法 – 输出反馈极点配置
2021/1/23
h
5
6.2.1 状态反馈极点配置定理
在进行极点配置时,存在如下问题: ➢ 被控系统和所选择的期望极点满足哪些条件,则是可以进 行极点配置的。 ➢ 下面的定理就回答了该问题。
2 8
-7/3 26/3
则在反馈律u=-Kx+v下的闭环系统的状态方程为
2021/1/23
h
12
x13141 1578x12u
通过验算可知,该闭环系统的极点为-1±j2,达到设计要求。

反馈控制与极点配置

反馈控制与极点配置
下面,先通过一输出反馈闭环系统的极点变化,考察输出反馈 能否像状态反馈那样对能控系统进行极点配置,然后给出相关 结论。
例 考察下述能控能观的系统
它在输出反馈下u=-hy下的闭环系统为 其闭环特征多项式为s2+h。
上例说明,输出反馈对能控能观系统可以改变极点位置,但不能 进行任意的极点配置。
2. 系统的开环特征多项式f(s)和由期望的闭环极点所确定的闭 环特征多项式f*(s)分别为
f(s)=s3+3s2+2s f*(s)=s3+4s2+6s+4 则相应的反馈矩阵K为 K=[a3*-a3 a2*-a2 a1*-a1]
因此,在反馈律u=-Kx+v下,闭环系统状态方程为
在例3中,由给定的传递函数通过状态反馈进行极点配置时需 先求系统实现,即需选择状态变量和建立状态空间模型。 ➢ 这里就存在一个所选择的状态变量是否可以直接测量、 可以直接作反馈量的问题。
证明过程的思路为:
•对状态不 完全能控开 环系统进行 能控分解
•对能控分 解后的系 统进行状 态反馈
•其完全不 能控子系统 不能进行极
点配置
•与假设 矛盾,必
要性得 证
➢ 被控系统(A,B,C)状态不完全能控,则一定存在线性变换 x=Pc ,对其可进行能控分解,得到如下状态空间模型:
其中状态变量 是完全能控的;状态变量 是完全不能控
➢ 由于状态反馈闭环系统保持其开环系统的状态完全能控 特性,故该闭环系统只能是状态不完全能观的。
➢ 这说明了状态反馈可能改变系统的状态能观性。
➢ 从以上说明亦可得知,若SISO系统没有零点,则状态反馈不 改变系统的状置方法
极点配置算法1(维数较大) 1. 对于SISO线性定常连续系统的极点配置问题,若其状态 空间模型为能控规范I形,则相应反馈矩阵为 K=[k1 … kn]=[an*-an … a1*-a1] 其中ai和ai*(i=1,2,…,n)分别为开环系统特征多项式和所期 望的闭环系统特征多项式的系数。

状态反馈极点配置基本理论与方法

状态反馈极点配置基本理论与方法

第2章 状态反馈极点配置设计基本理论2.1引言大多数的控制系统的基本结构是由被控对象和反馈控制器构成的闭环系统。

反馈的基本类型包括状态反馈和输出反馈。

其中状态反馈能够提供更加丰富的状态信息。

状态反馈是将系统的每一个状态变量乘相应的反馈系数,然后反馈到输入端与参考输入相加形成的控制规律,作为被控系统的控制输入。

图2.1是一个多输入多输出线性时不变系统状态反馈的基本结构:图2.1 多输入-多输出系统的状态反馈结构图其中受控系统的状态空间表达式为:x Ax Buy Cx=+= (2.1)由图2.1可知,加入状态反馈后,受控系统的输入为:u Fx v =+ (2.2)其中v 为参考输入,F 为状态反馈增益阵,因此可以得到状态反馈闭环系统的状态空间表达式:()x A BF x Bv y Cx=++= (2.3)闭环系统的传递函数矩阵:()()1s W s C sI A BF B -=-+⎡⎤⎣⎦ (2.4)由此可见,引入状态反馈后,通过F 的选择,可以改变闭环系统的特征值,是系统获得所要求的性能。

2.2极点配置方法的选择对于一个线性时不变系统进行状态反馈极点配置,一般有四种方法: (1) 传统方法—将系统转化为一个或多个单输入单输出系统。

(2) 直接法—使用稳定的酉矩阵,将这种系统转化为标准型。

(3) 矩阵方程法—对矩阵F ,直接解方程AX X BG -Λ= (2.5a)FX G = (2.5b)(4) 特征向量法—先找到特征向量x j (等式(2.5)中矩阵X 的列向量),然后利用等式(2.5b)求解F 。

方法(1)一般难以应用或者数值不稳定。

方法(3)需要解(2.5a)方程,并且对于系统矩阵A 的特征值不能再分配。

最有效并且数值稳定的方法是方法(2)和方法(4)。

其中方法(4)通过使用一系列的迭代算法找到最优解,所以比较复杂。

对于方法(2),当系统的输入多于一个信号输入时,不能确定系统的鲁棒性。

自动控制原理学生实验:线性系统的状态反馈及极点配置

自动控制原理学生实验:线性系统的状态反馈及极点配置

实验报告线性系统的状态反馈及极点配置一.实验要求了解和掌握状态反馈的原理,观察和分析极点配置后系统的阶跃响应曲线。

二.实验内容及步骤1.观察极点配置前系统极点配置前系统的模拟电路见图3-3-64所示。

图3-3-64 极点配置前系统的模拟电路实验步骤:注:‘S ST’不能用“短路套”短接!(1)将信号发生器(B1)中的阶跃输出0/+5V作为系统的信号输入r(t)。

(2)构造模拟电路:按图3-3-64安置短路套及测孔联线,表如下。

(3)虚拟示波器(B3)的联接:示波器输入端CH1接到A3单元输出端OUT(Uo)。

注:CH1选‘X1’档。

(4)运行、观察、记录:将信号发生器(B1)Y输出,施加于被测系统的输入端rt,按下信号发生器(B1)阶跃信号按钮时(0→+5V阶跃),观察Y从0V阶跃+5V时被测系统的时域特性。

等待一个完整的波形出来后,点击停止,然后移动游标测量其调节时间ts。

实验图像:由图得ts=3.880s 2.观察极点配置后系统 极点的计算:受控系统如图所示,若受控系统完全可控,则通过状态反馈可以任意配置极点。

受控系统设期望性能指标为:超调量M P ≤5%;峰值时间t P ≤0.5秒。

由1095.01t 707.0%5eM n n 2n p 1/p 2=≥⇒≤-==⇒≤=--ωωζωπζζζπ取因此,根据性能指标确定系统希望极点为:⎪⎩⎪⎨⎧--=+-=07.707.707.707.7*2*1j j λλ受控系统的状态方程和输出方程为:⎪⎩⎪⎨⎧=+=-----⋅-xC y b x A x μ式中][01,10,020120,21=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=----C b A x x x系统的传递函数为:202020a S a S βS β)(2012010++=+++=S S S G受控制系统的可控规范形为:[][]020T C C b T b a a T A T A X T X X C Y U b X A X K K i o K K KK k K K K ===⎥⎦⎤⎢⎣⎡==⎥⎦⎤-⎢⎣⎡-=⎥⎦⎤-⎢⎣⎡-===⎩⎨⎧=+=---10111,1020120010T ββ为变换阵),(式中当引入状态反馈阵K K =[K 0K 1]后,闭环系统()K K K K K C b K b A ,,-的传递函数为:()()()01201120120)20(20)(K S K S K a S K a S S S G o ++++=+++++=ββ而希望的闭环系统特征多项为:1001.14))(()(2*2*1**12*++=--=++=S S S S a S a S S f oλλ 令G K (S)的分母等于F #(S),则得到K K 为:[][]9.58010-==K K K k最后确定原受控系统的状态反馈阵K :由于 1-=T K K k求得和===---111,T C b T b T A T A K k K求得 ⎥⎥⎦⎤⎢⎢⎣⎡-=-1102011T所以状态反馈阵为: [][]9.59.91102019.580-=⎥⎥⎦⎤⎢⎢⎣⎡--=K极点配置系统如图所示:极点配置后系统根据极点配置后系统设计的模拟电路见下图所示。

状态反馈与闭环极点配置

状态反馈与闭环极点配置

16
§3.2-2 单输入系统的极点配置 确定反馈增益阵 K 为
1 ⎤ ⎡0 0 ˆ −1 = [ −4 66 14] ⎢0 1 −12 ⎥ K = KT ⎢ ⎥ ⎢ ⎣1 −18 144 ⎥ ⎦ = [14 −186 1220]
− 1 ± j.
则 A + BK 的特征值为 −2,
17
§3.2-3 多输入系统的极点配置 分两种情形进行讨论。 (1) A 为循环矩阵 A 为循环矩阵,则必有向量 引理3.1 若 ( A, B ) 能控, α ∈ \ p×1 , 使得 ( A, Bα ) 单输入能控。 证明:因为 A 为循环矩阵,故 A 的互异特征根各自对应 一个若当块,设 λ1 , λ 2 , " λσ 为 A 的互异特征值,对( A, B ) 进行非奇异线性变换,令
的系数。
使得
9
§3.2-2 单输入系统的极点配置 令 则由
ˆ = KT = [k K 0
k1 " kn −1 ]
(3.2.7)
ˆ ˆ = T −1 AT + T −1bKT = T −1 ( A + bK )T ˆ + bK A ˆK ˆ +b ˆ 与 A + bK 有相同的特征值。 知 A
由(3.2.5), (3.2.7)得
24
§3.2-3 多输入系统的极点配置 证明:必要性:即定理3.4。 充分性:用反证法。设 ( A, B ) 不完全能控,则对其进行 能控性分解
⎡ A11 A12 ⎤ ⎡ B1 ⎤ −1 −1 ˆ ˆ A = T AT = ⎢ , B = T B = ⎢ ⎥ (3.2.18) ⎥ ⎣0⎦ ⎣ 0 A22 ⎦ ( A11 , B1 ) 为完全能控。则对任一状态反馈矩阵 K , 令 ˆ = KT = [ K K ], 则有 K
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

状态反馈只改变极点, 不改变零点
11
状态反馈系统的仿真结构图
取 D=0, C=I
x( t )
程序:ac8no1
12
仿真结果:零状态响应
x3 r( t ) 1( t )
x2 x1
13
仿真结果:零输入响应
x3
x2
x1
10
初始状态
x(
0
)


0.5

1
14
例: 系统的状态方程同前例
而系统希望的特征多项式为
f * ( s ) ( s 1 )( s 2 )( s 3 ) s3 5s2 17 s 13
令 f * ( s ) f ( s ) 得 k1 8, k2 35 , k3 136
所以状态反馈阵为 K 8 35 136
一.状态反馈与输出反馈 二.状态反馈与闭环极点配置 三.线性二次型最优控制(自学) 四.状态观测器及状态反馈 五.鲁棒控制系统(自学)
3
一、状态反馈与输出反馈
1. 状态反馈
x Ax Bu y Cx
u r Kx
ru
B
x
x
y

C
A
K 加入状态反馈后的系统结构图
闭环传函? 状态方程?
x 1
1
0

x

0u
0 1 3 0
试通过状态反馈,将系统的闭环极点配置为 1 1, 2,3 2 j3
1 1 2
解: Qc B AB A2B 0 1 0
0 0 1
显然满秩,所以系统可控。
9
状态反馈系统的特征多项式为
4
状态反馈系统的状态方程为 x ( A BK )x Br yCx
状态反馈系统的传递函数为 G( s ) C( sI A BK )1 B
综合的手段:改变 K 阵的参数 综合的目的:改变系统矩阵,从而改变系统的特性
注:状态反馈通常只用系数阵即可满足要求, 一般不需要采用动态环节

1

( s 3 )( s 1.414 )( s 1.414 )
有反馈时 x ( A BK )x Br , X( s ) G f ( s )U( s ),
Gf
(
s
)

(
sI

A
BK
)1 B

1

(
s

1 )( s
s3 1
3
)
5
2. 输出反馈
x Ax Bu
u r Hy
y Cx
反馈系统的状态方程和传递函数分别为
x ( A BHC )x Br
比较:状态反馈为 K
y Cx
对于任意的 H,一定有
G( s ) C( sI A BHC )1 B K HC ,但反之不成立
ru
B -
自动控制原理
控制系统分析与设计的
状态空间方法2 ——综合与设计
(第八章)
1
状态空间法综合的基本概念
综合问题的三大要素:
受控系统、性能指标、反馈控制律
综合与设计的主要特点:
以采用状态反馈为主 具有较系统的综合理论
➢基于非优化型指标的极点配置方法 ➢基于优化类性能指标的目标函数极值法
2
主要内容
f ( s ) det[sI A BK ]
s 0 0 1 1 0 1

det0
s
0


1
1
0


0
k1
k2
k3
0 0 s 0 1 3 0

s3 ( k1 3 )s2 ( k2 Байду номын сангаас2k1 2 )s ( k3 3k2 3k1 6 )
y Cx
通过状态反馈 u r Kx
全部闭环极点的充要条件为:
系统状态完全可控
可任意配置
即状态可控的前提下,反馈系统特征方程
det[sI A BK ] ( s 1 )( s 2 ) ( s n )
的根可以任意设置。
8
例: 设系统的状态方程为
1 1 0 1
( s 1 )3
状态反馈同样只改变极点,不改变零点
17
仿真结果:零状态响应
1

( s 3 )( s 1.414 )( s 1.414 )
有反馈时 x ( A BK )x Br , X( s ) G f ( s )U( s ),
Gf
(
s
)

(
sI

A
BK
)1 B

1

(
s

1 )( s
s3 1
3
)
( s 1 )( s2 4s 13 )
1 1 0 1
x 1
1
0

x

0u
0 1 3 0
通过状态反馈,将系统的闭环极点配置为
1 2 3 1
15
解: 状态反馈系统的特征多项式为
f ( s ) det[sI A BK ] s3 ( k1 3 )s2 ( k2 2k1 2 )s ( k3 3k2 3k1 6 ) 而系统希望的特征多项式为 f * ( s ) ( s 1 )3 s3 3s2 3s 1
10
比较反馈前后的状态传递函数
1 1 0 1 无反馈时 x 1 1 0 x 0u
0 1 3 0

X ( s ) G( s )U( s ),
G( s ) ( sI

A )1 B
1
( s 1 )( s 3 ) s3

x
x
y

C
A
H 6
3. 状态反馈与输出反馈比较
反馈功能: ➢状态反馈——完全反馈 ➢输出反馈——不完全反馈
反馈作用: ➢两种反馈均可改变系统的特征方程和特征值; ➢输出反馈可视为状态反馈的一种特例。
物理实现: ➢输出反馈——易 ➢状态反馈——难
7
二、状态反馈与闭环极点配置
极点配置条件:
对于 x Ax Bu
令 f * ( s ) f ( s ) 得 k1 6 , k2 17 , k3 64
所以状态反馈阵为 K 6 17 64
16
比较反馈前后的状态传递函数
无反馈时 X ( s ) G( s )U( s ),
G( s ) ( sI

A )1 B

1
( s 1 )( s 3 ) s3
相关文档
最新文档