通信领域中电力线载波通信的应用及其原理
电源载波通信原理

电源载波通信原理电源载波通信是一种通过电力线传输数据的通信方式,它利用电力线作为传输介质,将信息通过载波信号传输到远程设备。
电源载波通信有着广泛的应用,包括智能家居、工业控制、能源管理等领域。
是基于电力线具有传输信息的能力,通过对电力线载波信号的调制和解调来实现数据的传输。
其基本原理如下:1. 载波信号的生成:电源载波通信系统会在电力线上注入一定频率的信号,这个信号称为载波信号。
载波信号的频率范围通常在几十千赫兹至几百千赫兹之间,可以选择不同频率的载波信号来传输不同的数据。
2. 信息的调制:通过调制技术将需要传输的信息信号与载波信号进行混合,形成载波调制信号。
常用的调制技术包括频率调制、相位调制和幅度调制。
3. 数据的传输:将载波调制信号通过注入到电力线中的载波信号传输到目的设备。
这样,数据就可以通过电力线的传输介质传输到远程设备。
4. 信息的解调:在目的设备接收到载波调制信号后,需要进行解调来恢复原始信息信号。
解调技术和调制技术相对应,可以采用频率解调、相位解调和幅度解调等技术。
电源载波通信的优点在于利用了已经存在的电力线作为传输介质,无需单独建设通信线路,因此成本较低。
同时,电力线通信还具有较强的抗干扰能力,能够适应复杂的工业环境和多种电器设备同时工作的情况。
但是,电源载波通信也存在一些限制,比如受到电力线噪声的影响,通信距离受限等。
另外,由于电力线本身并不是设计用于通信传输的介质,因此传输速度和可靠性会受到限制。
总的来说,电源载波通信是一种方便实用的通信方式,适用于一些特定的场景和需求。
随着技术的不断发展和完善,电源载波通信系统的性能和可靠性也将得到提高,进一步推动其在各个领域的应用。
电力载波方案

电力载波方案1. 背景介绍电力载波通信是一种利用电力线作为传输媒介的通信方式,它可以实现在电力线上进行数据传输和通信。
电力载波通信在电力系统中具有重要的应用价值,可以提供各种功能,如电能计量、状态监测、远程控制等。
本文将介绍电力载波通信的原理、应用领域和相关技术方案。
2. 原理解析在电力系统中,电力线缆既用于传输电能,又可以作为传输信号的媒介。
电力载波通信利用电力线缆的双重功能,通过将发送的信号叠加在电力信号上进行传输。
通信信号被调制到电力信号中后,通过接收端的解调设备将信号从电力信号中分离出来,实现数据传输和通信。
3. 应用领域3.1 电能计量电力载波通信可以用于电能计量系统,通过在电力线上传输电能信息,可以实现对电能消耗情况的实时监测、计量和统计。
这对于电力系统的运维和管理非常重要,可以帮助实现电能资源的合理分配和使用。
3.2 系统状态监测电力载波通信还可以用于电力系统的状态监测。
通过在电力线上传输输入、输出功率、电流、电压等参数信息,可以实时监测电力系统的运行状态。
这对于故障检测、预警和维修非常重要,可以提高电力系统的可靠性和安全性。
3.3 远程控制电力载波通信还可以用于实现对电力设备的远程控制。
通过在电力线上传输控制命令和信号,可以实现对电力设备的远程开关、调节和控制。
这对于电力系统的运行和维护非常方便,可以提高工作效率和降低管理成本。
4. 技术方案4.1 ASK调制方案ASK调制(Amplitude Shift Keying)是一种将数字信号调制到电力信号中的常用方案。
它通过改变电力信号的幅度来表示数字信号的0和1。
ASK调制方案简单、成本低廉,但抗干扰能力相对较弱。
4.2 FSK调制方案FSK调制(Frequency Shift Keying)是一种将数字信号调制到电力信号中的常用方案。
它通过改变电力信号的频率来表示数字信号的0和1。
FSK调制方案的抗干扰能力较强,但传输速率相对较低。
电源线通讯的原理和应用

电源线通讯的原理和应用1. 原理电源线通讯是一种利用电源线传输数据的技术,它基于以下原理:•载波通信:电源线通讯利用电源线作为传输介质,通过在电源线上叠加高频信号来传输数据。
这些高频信号被称为载波信号,可以利用电源线作为传输媒介,覆盖整个电力线路。
•搭载调制解调:在电源线通讯中,数据是通过调制和解调的方式来传输的。
发送端将数字信号调制成高频载波信号,通过电源线传输到接收端后,再进行解调处理,恢复出原始的数字信号。
2. 应用电源线通讯具有广泛的应用前景,以下是一些主要应用领域:2.1 家庭自动化•家庭自动化系统可以通过电源线通讯实现对智能家居设备的控制和管理。
通过将智能设备连接到电源线上,可以实现对室内灯光、温度、安防等系统的远程控制。
这种方式具有方便安装、成本低廉的优势。
2.2 楼宇自动化•在楼宇自动化系统中,电源线通讯可以用于管理和控制楼宇中的各种设备和系统。
比如,可以实现对电梯、照明、空调、供水等系统的远程监控和控制,提高楼宇的能效和管理效率。
2.3 智能电网•电源线通讯在智能电网中起着重要的作用。
通过在电力线路上搭载通信系统,可以实现对电力设备的监控和控制。
这种方式可以提高电网的智能化程度,实时监测电力设备的状态,及时调整配电策略,提高电网的稳定性和可靠性。
2.4 车载通讯•在汽车领域,电源线通讯可以用于车载网络的数据传输。
通过将数据信号嵌入车辆的电力系统中,可以实现车辆内部各个系统的互联互通。
这种通信方式可以大大简化车载网络的架设和维护,并提供高可靠性的数据传输。
2.5 工业自动化•在工业控制系统中,电源线通讯可以用于实现设备之间的数据传输和通信。
通过将设备连接到电源线上,可以实现对设备的远程监控和控制,提高工业自动化系统的效率和安全性。
3. 总结电源线通讯作为一种利用电源线传输数据的技术,具有广泛的应用领域。
无论是家庭自动化、楼宇自动化、智能电网还是车载通讯和工业自动化等领域,电源线通讯都能发挥重要的作用。
电力系统中的电力线载波通信技术

电力系统中的电力线载波通信技术引言电力通信被普遍应用在电力系统中,其主要目的是实现电力信息传输、监测和控制。
而电力线载波通信技术作为其中一种重要的通信手段,具有广泛的应用前景。
本文将探讨电力线载波通信技术在电力系统中的原理、应用和发展趋势,为读者提供更深入的了解。
一、电力线载波通信技术的原理电力线载波通信技术利用电力线作为传输介质,通过将高频信号耦合到输电线路上,实现信息传输的目的。
其原理基于电力线的双重工作特性,即输电和通信,并通过频分复用技术使其同时进行。
首先,信号的耦合。
在电力线输电过程中,由于电力系统的特性,存在着一定的电压和电流波动。
电力线载波通信技术利用这种波动作为信号传输的载体,通过改变电流和电压的幅度和频率来传递信息。
这种耦合不仅能提高信息传输的可靠性,还能减少系统对外部环境的干扰。
其次,频分复用技术。
电力线系统中,除了电力信号外,还有其他频率的干扰信号存在。
为了有效地区分不同信号,电力线载波通信技术引入了频分复用技术。
通过将不同频段的信号分配给不同的用户或功能,实现数据的同时传输和分离。
二、电力线载波通信技术的应用1. 电力数据传输电力线载波通信技术在电力系统中最常见的应用就是实现电力数据的传输。
通过将监测仪器、数据采集设备等连接到电力线上,可以将实时电力数据传输到中央控制中心,实现对电力系统的远程监测和管理。
这种应用不仅提高了电力系统的运行效率,还能预防和处理电力故障。
2. 智能电网随着电力系统的现代化发展,智能电网的建设成为当今的热点。
电力线载波通信技术在智能电网中起到了重要的作用。
通过将智能设备与电力线相连,可以实现对电力负荷、电能质量和安全等参数的实时监测和管理。
并且通过数据的传输和处理,可以实现电力系统的智能化运营和优化调度。
3. 家庭电力信息管理电力线载波通信技术还可以应用于家庭电力信息管理。
通过在家庭电力表中集成通信模块,可以实现对电力用量、功率因数等信息的实时监测和统计。
电力线载波的原理和应用

电力线载波的原理和应用1. 电力线载波概述电力线载波(Power Line Carrier,简称PLC)是一种基于电力线传输的通信技术,通过将高频信号叠加在电力线上,实现数据传输和通信的目的。
电力线载波技术广泛应用于电力系统的监测、控制和通信网络中,具有传输速度快、成本低、扩展性好等优势。
2. 电力线载波原理电力线载波技术的实质是利用电力线路本身具有传输高频信号的特性进行通信。
具体原理如下:•电力线是一种具有较好导电性能的传输介质,可以传输高频信号。
电力线上的两根导线构成了传输信号的载体。
•电力线上的载波信号通过耦合器、滤波器等设备与电力线相连接。
通过调制器对原始数据进行调制,将调制后的信号通过功率放大器放大后,叠加到电力线上。
•在电力线上传输的信号受到电力线传输特性的影响,会出现噪声、衰减等问题。
因此,需要使用解调器和滤波器对接收到的信号进行解调和滤波,还原出原始数据。
3. 电力线载波应用领域3.1 电力系统监测与控制•电力线载波技术可以实现对电网的监测和控制。
通过将监测设备与电力线相连,将监测到的数据通过电力线传输给控制中心。
控制中心可根据数据分析电力系统的运行情况,实现对电力系统的远程监测和控制。
•电力线载波技术可以实现对电力设备的状态监测和故障诊断。
通过在电力设备上布置传感器,获取设备的工作状态信息。
将传感器采集到的数据通过电力线传输,供监测和诊断系统进行分析,及时发现设备故障并采取相应措施。
3.2 室内电力线通信•电力线载波技术可以提供家庭或办公室内的宽带通信服务。
通过将电力线与电力线载波通信模块相连,家庭用户可以通过插座就能够使用宽带网络,无需布线和接入设备。
•室内电力线通信还可以支持电力线智能家居系统的搭建。
通过将智能家居设备与电力线相连,实现智能家居设备之间的通信和互联,实现智能家居系统的远程控制和管理。
3.3 智能电网传输•电力线载波技术在智能电网中有广泛应用。
通过在配电线路、变电站和智能电表中布置载波模块,实现对电力系统的监测、控制和数据传输。
电力线路载波通讯

电力线路载波通讯随着社会的进步和科技的发展,电力供应已经成为人们生活中不可或缺的部分。
为了提高电力系统的安全性和可靠性,电力线路的通讯系统也逐渐发展起来。
其中,电力线路载波通讯技术因其高效、可靠的特点而备受关注。
本文将从电力线路载波通讯的基本原理、应用领域以及未来发展趋势等方面进行探讨。
一、基本原理电力线路载波通讯是一种将电力线路作为传输介质的通信方式,利用电力线路本身的特性进行数据传输。
其基本原理是利用频率高于电力系统运行频率的载波信号,通过调制、解调等技术手段,在电力线路中传输通信信号。
通过在电力线路上布设载波通信设备,可以实现在电力线路上双向传输数据。
在电力线路载波通讯中,主要采用的载波信号频段有低频载波和高频载波两种。
低频载波一般选择在2kHz到150kHz的频段,适用于远程距离传输;高频载波则选择在5MHz到150MHz的频段,适用于局域网和近距离传输。
通过合理的选择载波信号频段,可以满足不同距离、不同应用场景下的通讯需求。
二、应用领域电力线路载波通讯广泛应用于电力系统中的各个环节,为电力系统的运行提供了重要的支持。
1.远程监控和控制电力线路载波通讯可实现对电力设备的远程监控和控制。
通过在电力线路上部署载波通信终端设备,可以对电力系统中的关键设备进行实时监测,并实现对其进行远程控制。
这种方式不仅提高了电力系统的运行效率,还减少了维护人员的工作量。
2.电力信息采集电力线路载波通讯广泛应用于电力信息采集系统中。
通过在电力线路上安装载波通信设备,可以实现对电量、功率因数等关键数据的采集。
这些数据可以帮助电力公司实时监测电力负荷,满足用户不同需求,并进行合理的电网调度。
3.智能电网随着智能电网的发展,电力线路载波通讯也越来越重要。
通过在电力线路上布设载波通信设备,可以实现对电力系统中各个环节的智能化管理。
智能电表、智能变电站等智能设备的使用,大大提高了电力系统的安全性和稳定性。
三、未来发展趋势电力线路载波通讯技术在未来还有很大的发展空间。
电力线载波通信技术在电力系统中的应用现状

电力线载波通信技术在电力系统中的应用现状引言:电力线载波通信技术是一种基于电力线路的通信方式,通过利用电力线路传输数据和信息,为电力系统的监控、控制、通信等提供了一种有效的途径。
电力线载波通信技术不仅可以降低通信成本,提高通信效率,还能够实现对电力系统的远程监控和智能化控制。
本文将探讨电力线载波通信技术在电力系统中的应用现状。
一、电力线载波通信技术的原理电力线载波通信技术是利用电力线路作为传输介质,通过在电力线上叠加或注入高频(20kHz-500kHz)的载波信号来实现通信的一种技术。
其原理是将数据和信息转换为模拟载波信号,通过电力线路传输到目标位置,再解调得到原始数据和信息。
电力线载波通信技术可以在不干扰电力供电的同时,实现电力系统内部各个终端之间的通信。
二、电力线载波通信技术在电力系统监控中的应用1. 数据采集与监测:电力线载波通信技术可以实时采集和传输电力系统中各种数据,如电压、电流、功率、频率等,为电力系统的监测和分析提供有力支持。
通过电力线载波通信技术,可以实现对配电变压器、电能表等设备的远程监控,大大提高了电力系统监测的效率和准确性。
2. 故障检测与定位:电力线载波通信技术能够实时监测电力系统中的故障和异常,如短路、过载等,并通过传输的载波信号进行定位。
利用电力线载波通信技术,可以准确判断故障位置,快速采取必要的措施,提高电力系统的可靠性和安全性。
3. 负荷控制与管理:电力线载波通信技术可以对电力系统中的负荷进行控制和管理。
通过传输载波信号,可以实现分布式电力控制,对负荷进行精确控制,提高电力系统的供电质量和效率。
此外,基于电力线载波通信技术,还可以实现对电力负荷进行智能调度和优化,提高电力系统的能源利用率。
三、电力线载波通信技术在电力系统通信中的应用1. 电力系统间通信:电力线载波通信技术可以实现不同电力系统之间的通信。
例如,通过在输电线路上注入载波信号,可以实现电力系统之间的远程通信。
电力线载波通信原理

电力线载波通信原理电力线载波通信是一种利用电力线作为传输介质进行通信的技术,它可以在不需要额外布线的情况下,实现数据传输和通信功能。
在现代智能电网建设中,电力线载波通信技术被广泛应用,为电力系统的监测、控制和通信提供了便利。
本文将介绍电力线载波通信的原理及其应用。
电力线载波通信利用电力线作为传输介质,通过在电力线上叠加高频载波信号来进行通信。
其原理是利用电力线本身的传输特性,将高频信号叠加在电力线上,通过电力线传输到各个终端,再经过解调器解调出原始信号。
这样就实现了在不需要额外布线的情况下,进行数据传输和通信的功能。
电力线载波通信的原理主要包括三个部分,调制、传输和解调。
首先是调制,即将要传输的信号转换成适合在电力线上传输的高频载波信号。
然后是传输,将调制后的高频载波信号叠加在电力线上进行传输。
最后是解调,即在接收端通过解调器将传输过来的高频载波信号解调出原始信号。
通过这三个步骤,就实现了在电力线上传输数据和进行通信的功能。
电力线载波通信技术在电力系统中有着广泛的应用。
首先,在智能电网建设中,电力线载波通信可以实现电力系统的远程监测和控制,提高了电力系统的自动化水平。
其次,在电力线通信网中,可以实现各种类型的数据传输,包括语音、图像、视频等多媒体数据的传输。
此外,在家庭电力网络中,也可以利用电力线进行局域网的组网,实现家庭网络的覆盖。
总的来说,电力线载波通信技术是一种利用电力线作为传输介质进行通信的技术,它利用电力线本身的传输特性,实现了在不需要额外布线的情况下进行数据传输和通信的功能。
在智能电网建设、电力系统监测控制、多媒体数据传输等方面有着广泛的应用。
随着技术的不断发展,电力线载波通信技术将会在电力系统中发挥越来越重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通信领域中电力线载波通信的应用及其原理
Power Line Carrier
电力线载波Power Line Carrier - PLC通信是利用高压电力线在电力载波领域通常指35kV及以上电压等级中压电力线指10kV电压等级或低压配电线380/220V用户线作为信息传输媒介进行语音或数据传输的一种特殊通信方式。
近年来高压电力线载波技术突破了仅限于单片机应用的限制,已经进入了数字化时代,并且随着电力线载波技术的不断发展和社会的需要中/低压电力载波通信的技术开发及应用亦出现了方兴未艾的局面。
电力线载波通信这座被国外传媒喻为未被挖掘的金山正逐渐成为一门电力通信领域乃至关系到千家万户的热门专业。
在这种形势下,本文旨在通过对电力线载波通信技术的发展及所涉及的一些技术问题的讨论,阐明电力线载波通信的发展历程特点及技术关键。
电力通信网是为了保证电力系统的安全稳定运行而应运而生的,它同电力系统的安全稳定控制系统,调度自动化系统,被人们合称为电力系统安全稳定运行的三大支柱。
目前,它更是电网调度自动化网络运营市场化和管理现代化的基础,是确保电网安全稳定经济运行的重要手段,是电力系统的重要基础设施。
由于电力通信网对通信的可靠性保护控制信息传送的快速性和准确性具有及严格的要求,并且电力部门拥有发展通信的特殊资源优势,因此世界上大多数国家的电力公司都以自建为主的方式建立了电力系统专用通信网[1]。
长期以来,电力线载波通信网一直是电力通信网的基础网络。
目前,在长达670000km的35kV以上电压等级的输电线路上,多数已开通电力线载波通道[1]。
形成了庞大的电力线载波通信网,该网络主要用于地市级或以下供电部门构成面向终端变电站及大用户的调度通信远动及综合自动化通道使用。
近年来,随着光纤通信的发展,电力线载波通信已从主导的电力通信方式改变为辅助通信方式,但是由于我国电力通信发展水平的不平衡,由于电力通信规程要求主要变电站必须具有两条
以上不同通信方式的互为备用的通信信道,由于电力线载波技术革新带来的新的载波功能,以及由于昔日数量庞大的电力线载波机的更新换代都导致了电力线载波机虽然作为电力通信的辅助
通信方式但是在全国仍然存在较大的市场需求。
全国共有约20家企业从事高压电力线载波机的开发和生产。
中低压电力线载波的应用,目前主要在10kV电力线作为配电网自动化系统的数据传输通道和在380/220V用户电网作为集中远方自动抄表系统的数据传输通道。
还有正在开发并取得阶段性成果的电力线上网高速MODEM的应用,在这些方面10kV上的应用已达到了实用化。
成都
一家公司开发的扩频载波数据传输装置(已通过质量检验[2]),在四川罗江县供电局已可靠运行达一年之久。
从事这类产品开发生产的企业全国约有几十家,一旦市场全面形成竞争,将较为激烈。
作为自动集抄系统通道的载波应用,目前已能够形成组网通信完成数据抄收功能。
但是,由于用户电网的某些时变特性和突发噪声对数据传输的影响在技术上并未得到根本解决,因此还存在着抄表盲区的问题。
这一问题目前一直阻碍电力载波通信技术在自动集抄系统应用的主要症结所在。
从事这类产品开发生产的企业全国至少有200家以上,并且大多数都存在技术开发和工程并行
的状况,真正取得良好经济效益的只是少数企业。
在市场还未全面认同这种方式的可靠性的状况下其市场竞争已达到了白热化的程度,这一现象应当引起有关单位的重视。
关于电力线上网的电力载波技术应用,目前以中电飞华公司为代表已在北京开通了5个以上的实验小区,取得了大
量的第一手工程资料。
这是一个非常好的开端,至于何时能够进入商业化生产和运营还需综合考虑技术性能成本核算和符合国家有关环境政策等方面的问题。
电力线载波通信技术的发展在历史上经历了从模拟到数字的发展过程,电力线载波通信技术出现于本世纪二十年代初期[3],它以电力线路为传输通道具有可靠性高,投资少,见效快,
与电网建设同步等得天独厚的优点。
在我国四十年代时已有日本生产的载波机在东北运行做为长距离电力调度的通信手段,五六十年代我国开始研制自己的ZDD-1型电力线载波机,未能实现
产品化,后经过不断改进形成了具有中国特色的ZDD-5型电力线载波机。
该设备为四用户两级调幅具有AGC自动增益控制。
控制电路和音频转接接口呼叫方式,采用脉冲制式。
经改进后的ZDD-5A型机也能够复用远动信号。
在我国六十年代到七十年代时期该机所代表的模拟制式电力线载波机,得到了广泛应用。
七十年代时期我国模拟电力线载波机技术已趋成熟,当时以ZDD-12ZJ-5ZBD-3机型为代表,在技术指标上得到了较大地提高,并成为我国应用时间最长的主流机型。
我们可将在此之前的载波机称为第一代载波机,八十年代中期电力线载波技术开始了单片机和集成化的革命,产生了小型化多功能的载波机,如S-2载波机等在这一阶段主要的技术进步,为单片机自动盘代替了三极管或布线逻辑的自动盘集成电路的调制器压扩器滤波器和AGC 放大器代替了笨重多故障的模拟电路,CMOSVMOS高频大功率管在功放电路中的应用等。
这一阶段的载波机可称之为第二代载波机。
到了九十年代中期,以SNC-5电力线载波机为代表在国内首次采用了DSP数字信号处理技术,将载波机音频至中频部分的信号处理使用DSP器件来完成,实现了软件调制滤波限幅和自动增益控制。
这类载波机可称之为数字化电力线载波机,划为第三代。
由此开始电力线载波业界进入了载波机的数字化革命阶段,许多企业纷纷投入力量着力于数字电力线载波机的技术研究工作。
到了九十年代末期采用新西兰生产的M340数据复接器,目前国内已有自主知识产权的同类产品结合电力线载波机的高频部分为一体的全数字多路复接的载波机问世,这一成果提高了载波机的通信容量,从根本上初步解决了载波机通信容量小的技术瓶颈问题,从而为电力线载波市场带来了空前的机遇。
从市场上来看,数字化和全数字载波机已占据了高压电力线载波机产品的大部分市场,模拟制式的电力线载波机销售量已开始萎缩,除了特殊的应用场合外将趋于淘汰。
电力线载波在10kV线路上的应用国外自50年代开始,主要应用在中压电网的负荷控制领域,大多为单向数据传输速率低有时小于10bit/s甚至更低,并没有形成大规模的电力线载波通信服务产业。
国内在八十年代后期多数是直接使用小型化的集成电路农电载波机,实现点对点通
信也有个别采用窄带调频载波机的使用范围很受限制。
随着10kV线路通信需求的增长,到了九十年代末出现了多种载波通信设备,这些设备可采用不同的线路耦合方式如电容耦合变压器,耦合低压,耦合陶瓷,电真空耦合及天线耦合等调制方式也在原来的FSK调制,PSK调制音频注入,工频调制过零点检测等方式的基础上开发了先进的扩频调制方式,如DSS直接序列扩频F H跳频,TH跳时交叉混合扩频,CHIRP宽带线性调频,OFDM正交频分多路复用等。
目前在国内使用的10kV电力线数据传输设备中使用最多的还是窄带调制设备,主要是多信道PSK及FSK调制,采用扩频方式的设备也已开始崭露头角随着市场的发展和技术的成熟,扩频载波设备必将在电力线载波中压应用方面占有越来越重要的地位。
电力线载波在380/220V用户配电网上的应用,在九十年代后期之前只限于采用调幅或调频制式的载波电话机实现近距离的拨号通话,也有采用专用的芯片实现近距离数据传输的。
我国大规模地开展用户配电网载波应用技术的研究是在2000年左右,目前在自动集抄系统中采用的载波通信方式有,扩频窄带调频或调相,在使用的设备中以窄带调制类型的设备为多数,其主要原因可能是其成本低廉,而电线上网的应用由于要求的速率至少需要达到512kbit/s10Mbit/s所以无一例外地采用扩频通信方式,在各种扩频调制方式中由于采用正交频分多路复用技术(Orth ogonal Frequency Division Multiplexing OFDM)调制具有突发模式的多信道传输较高的传输速率更有效的频谱利用率和较强的抗突发干扰噪声的能力,再加上前向纠错交叉纠错,自动重发和信道编码等技术来保证信息传输的稳定可靠因而成为电力线上网应用的主导通信方式。