火力发电厂水汽监督事故树分析方法探讨

合集下载

火电厂化学水汽监督的探讨

火电厂化学水汽监督的探讨
一、我国火电厂化学水汽监督工作存在的问题
(一)缺乏对水汽监督的正确认识
火电厂不能有效正确地展开化学水汽监督工作的原因之一便是高层缺乏对水汽监督的充分认识,不重视监督工作。因为主设备的检查和维修工作量大、内容繁多,往往忽视了化学水汽监督工作,但因为水汽在设备运转过程中存在变化多的特点,一旦不重视便会出现化学故障,往往产生积盐、结垢、腐蚀等状况。长此以往,设备中的污垢会影响热力机器的正常运转,减少其使用寿命,并且还存在安全隐患,甚至引发锅炉爆炸等安全事故[1]。化学水汽故障看似危险性小,但往往会危害到整个机器设备,一旦出现爆炸现象,将造成巨大的经济损失和人员伤亡,因此,火电厂高层管理者应重视化学水汽监督工作的展开,积极进行监督工作,保证设备的正常运行和工作人员的人身安全。
(二)缺乏专业且足够的水汽监督设备
化学水汽监督工作需要专业的水汽监督设备进行辅助,才能确保监督工作不失误。首先,机组本身就处理凝结水的系统,并设置了降低积盐结构和提高水汽质量的设备,但不少火电厂因资金原因尚未采购能够百分之百处理凝结水的机组,导致出现机组处理凝结水效果差,混凝床失效等状况,不能够完全处理凝结水。另外,除了机组选购质量的层次不齐,化学仪表的投入少也是水汽监督工作不规范的一大表现,普通的在线仪表往往测量值误差大、易受周围环境影响、并且效率低下,倘若不及时检查在线仪表的偏差值并进行调整,测量的结果与实际情况往往不尽相同。而化学仪表的投入便能解决这一问题,其提高了水汽监督的准确性,保障了监督工作的连续性,还满足了实时性等要求,能够进行正确且有效的实时监督。
(四)提高工作人员技术水平和整体素质
火电厂不但需要重视机组设备的采购,还应规范工作人员的工作态度,优化厂内人员的整体工作素养。首先,火电厂应对工作人员展开专业的培训工作,不但需要传授其操作设备、处理设备的技术,还要加强其业务素质和工作素养。另外,火电厂还能设置鼓励机制,对于表现良好、工作态度端正的员工予以褒奖,促进员工间的友好竞争,提高整体员工的工作积极性,安排专业知识有奖竞赛,让员工在竞争中学习知识,收获快乐。除此之外,火电厂还需针对厂内的现阶段发展需求,培训其先进的操作技术,在具备专业技能和知识的员工与高科技技术的双效配合下,提高工作效率,完善化学水汽监督工作。

火电厂水汽化学技术监督工作探讨

火电厂水汽化学技术监督工作探讨

火电厂水汽化学技术监督工作探讨摘要:在火电厂运行的过程中,难免会因为热力系统的水汽品质的变化,导致产生腐蚀、积垢等问题,这些会影响热力系统的高效运作。

所以,火电厂需要通过水汽化学技术监督的方式,既需要通过三级处理法、垢样分析法解决腐蚀问题,又需要提高仪表检测的准确率,改善火电厂生产的水汽品质,从而有利于推动火电厂更好地发展。

关键词:火电厂;水汽;化学技术监督引言:火电厂的水汽化学技术监督工作,旨在保证生产合格品质的水汽,保证火电厂的机组运行正常。

但是,当前在监督工作中会遇到诸多问题,这些问题不利于生产高品质的水汽。

所以,这就需要从多个方面思考,有利于逐步改善腐蚀问题,慢慢地提升水汽品质,达到监督工作的目的。

1.火电厂水汽化学监督工作中存在的问题1.1“双高”问题严重在对火电厂的水汽化学检查后,发现其中的水汽品质的合格率、腐蚀率同样高,这就说明存在问题。

在经过仔细分析后发现,存在“双高”问题的关键因素,在于有些工作人员没有控制好决定水汽品质的数据,因为监督工作的数据多数来源于在线仪器和人工方式,其中人工方式占据较多部分,如果有些工作人员的专业度不够、专注力不足,容易忽略某些数据,这就会对监督结果产生重大影响。

并且,有些火电厂中的钠表等设施表示的数据不准确,导致工作人员收集的数据不切实际,根据该数据调整某些化学设施后,这就会造成热力系统产生腐蚀问题,从而会出现双高问题。

1.2化学在线仪表的准确率不高在火电厂中使用的化学在线仪表,包括pH、钠表、硅表等,其中静电荷会对pH、钠表等仪表产生影响,树脂裂纹会对电导率表产生较大的影响,导致最终产生错误的检测结果。

不过,在多数仪表中,光学式仪表不会受到过多因素影响,可以较为准确地检测出正确结果,如硅表等。

而且,在火电厂中,通常有热工专业管理化学在线仪表,如果有些工作人员在火电厂的水汽流程中出现操作失误,这就会直接影响化学在线仪表的正确数值,并且很难确定问题出现的原因。

火力发电厂水汽分析方法

火力发电厂水汽分析方法

火力发电厂水、汽试验方法1 总则本标准适用于锅炉用水和冷却水分析。

1.1 试验标准本规程主要依据于《锅炉用水和冷却水分析方法》国家标准(以下称《标准》),对于试验方法中计量单位,全部采用法定计量单位。

具体如下:(1)当量及其单位改成物质的量及其单位。

(2)方法中使用的物质的量浓度,凡其后未用括号注明基本单元的,即表示以该物质的分子作为基本单元。

如:0.1mol/L硫酸溶液——基本单元为硫酸分子(H2SO4),相当于从前的0.2N的当量硫酸。

(3)凡是在括号中注明基本单元的,则物质的量浓度的基本单元即括号中所示,如:c(1/2H2SO4)=0.05mol/L——基本单元为硫酸分子(H2SO4)的1/2,相当于从前的0.05N的当量浓度。

(4)硬度的基本单元为Ca2+、Mg2+,即YD=[ Ca2++Mg2+]。

(5)浊度的基本单位采用福马肼浊度。

1.2 试剂水1.2.1 试剂水是指配制溶液、洗涤仪器、稀释水样以及做空白试验所使用的水。

1.2.2 根据试剂水的质量和制备方法不同,试剂水分为三类,如表11所示。

表221.2.3 Ⅰ级试剂水供微量成分(μg/L)测定使用,Ⅱ、Ⅲ级试剂水供一般分析测定使用。

标准中有特殊要求者不在此限。

2 火力发电厂水、汽试验方法(标准规程汇编)本汇编主要依据于《锅炉用水和冷却水分析方法》国家标准,并参考部分分析仪器的说明书。

水、汽试验方法具体如下:1 方法摘要本方法以玻璃电极作为指示电极,以饱和甘汞电极作为参比电极,以PH4.00、PH6.86或PH9.18标准缓冲溶液定位,测定水样的PH值。

2 测试仪器及装置条件2.1 酸度计:测量范围0~14 PH,读数精度≤0.02 PH。

2.2 PH玻璃电极新玻璃电极或久置不用的玻璃电极,应预先置于PH4.00标准缓冲液浸泡一昼夜。

使用完毕,亦应放在上述缓冲液中浸泡,不要放在试剂中长期浸泡。

使用中若发现有油渍污染,最好放在0.1mol/L盐酸,0.1mol/L氢氧化钠,0.1mol/L盐酸循环浸泡各5min。

事故树分析法

事故树分析法
•事故树分析法
2.选好顶上事件:建造事故树首先要选定一个顶 上事件,即系统不希望发生的故障事件。选好顶上 事件有利于使整个系统故障分析相互联系起来。
一般考虑的事件有: 对安全构成威胁的事件—造成人身伤亡、或导致设 备财产重大损失(火灾、爆炸、中毒、严重后果); 妨碍完成任务的事件—系统停工或丧失大部分功能; 严重影响经济效益的事件—通讯线路中断、交通停 顿等妨碍提高直接受益的因素。
A BAB
•事故树分析法
❖ 四、逻辑代数运算的重要规则 ❖ 1.代入规则:任何一个含有变量A的等式,如果将所有出
现A的位置都代之以一个逻辑函数F,则等式仍然成立。 ❖ A(B+C)=AB+BC 将C=C+D代入 ❖ 原式=AB+AC+AD ❖ 2.对偶规则 设F是一个逻辑函数,若将F中所有的“+”换为“·”, “·”
因尚不明确的事件:二表示二次事件,即不是本系统的事 故原因事件,而是来自系统之外的原因事件。
矩形符号
园形符•事号故树分析法 菱形符号
房形符号
2.逻辑门符号
A
A
A
A
A
·
B1 B2 与门符号
+
B1 B2 或门符号
·a
B1 B2 条件与门符号
+a B1 B2 条件或门符号
a
B 限制门符号
事故树的逻辑门符号
➢ 熟悉系统。它是事故树分析的基础和依据。 ➢ 调查系统发生的事故。
2.事故树的编制
确定事故树的顶上事件:顶上事件是不希望发生的事件、易 于发生且后果严重的事件。
调查与顶上事件有关的所有原因事件。
编制事故树。
•事故树分析法
3.事故树定性分析:

火电厂水处理及水汽理化系统故障及对策分析

火电厂水处理及水汽理化系统故障及对策分析

火电厂水处理及水汽理化系统故障及对策分析1. 引言1.1 研究背景火电厂是我国主要的能源供应方式之一,其水处理及水汽理化系统的正常运行直接影响着火电厂的高效运转和节能环保。

然而,在实际生产中,火电厂水处理及水汽理化系统常常会发生各种故障,严重影响了生产效率和设备寿命。

火电厂水处理系统故障可能包括水质问题、管道堵塞、设备损坏等,这些故障会导致水处理效果不佳,甚至影响到锅炉和发电机组的正常运行。

水汽理化系统故障则可能包括水汽不足、水汽质量不佳等问题,影响了锅炉的燃烧效果和发电效率。

为了解决这些问题,需要制定有效的应对策略。

针对水处理系统故障,可以加强水质监测、定期清洗管道设备、提高设备维护保养等方式来预防故障的发生。

而对于水汽理化系统故障,可以加强水汽监控、疏通管道、提高水汽净化设备效率等措施来提高系统的稳定性。

通过对火电厂水处理及水汽理化系统故障及对策的研究,可以为火电厂的运行管理提供有效的参考,提高系统的运行效率和可靠性。

同时,未来还可以进一步深入研究新的监测和预警技术,提高系统的智能化和自动化水平,为火电厂的可持续发展提供有力支持。

1.2 研究目的火电厂水处理及水汽理化系统是火电厂正常运行的重要组成部分,其稳定运行对于保障火电厂生产的连续性和稳定性至关重要。

由于系统复杂性和运行环境的特殊性,系统故障的发生是不可避免的。

本研究旨在对火电厂水处理及水汽理化系统的故障原因进行深入分析,探讨可能导致故障的因素,并提出相应的对策,以保障火电厂系统的正常运行。

通过该研究,也可以为相关领域的技术人员提供参考和借鉴,提高系统维护和故障处理的能力,进一步提升火电厂的生产效率和安全性。

通过对系统故障的分析和解决,可以有效减少系统性能下降和停工时间,提高系统可靠性和持续性,为火电厂的长期稳定运行提供有力支持。

2. 正文2.1 火电厂水处理系统故障分析火电厂水处理系统是保障火电厂正常运行的重要组成部分,其失效将直接影响火电厂的生产效率和运行安全。

火电厂水处理及水汽理化系统故障及对策分析

火电厂水处理及水汽理化系统故障及对策分析

火电厂水处理及水汽理化系统故障及对策分析本文看点火电厂水处理技术已经相当成熟,除了生物污染控制之外,基本上不存在技术难点。

但水汽理化及监督具有涉及面广、系统性强、隐蔽性大、技术要求高、需协调分工等特点,一旦发生故障,可能涉及到化学水处理以及锅炉、汽轮机、发电机、凝汽器等各系统的水汽取样点、加药点、排污点等各种环节和因素,需要对水汽系统流程图、前后因果关系、相关性相当熟悉并积累丰富的处理经验,才能有效应对。

如何在火电厂生产实践中遇到水质净化和水汽理化故障的情况下,准确分析原因、及时排除故障,保障热力系统良好的水汽品质,仍然是有效防止热力设备结垢、积盐和腐蚀,确保发电机组安全经济运行的重要课题。

本文简述了水处理及水汽理化系统故障案例,通过具体分析故障原因,得出加强次氯酸钠重要指标的验收、控制出水余氯,可有效防止加药管堵塞;机组停运前应先停运高速混床;汽包锅炉在少量树脂漏入水汽系统后,可在采取措施保证给水、炉水pH正常的情况下,不停机处理;机组启动阶段采用全挥发性处理,即通过加氨、联氨控制炉水pH,有效减少汽机高压缸的积盐,提高汽机效率。

01火电厂水处理及水汽理化系统以某电厂2台330 MW机组为例,其为亚临界压力中间一次再热机组,锅炉型号SG1036/175-M872;最大连续蒸发量1 036 t/h,主蒸汽温度541 ℃,主蒸汽压17.24 MPa;再热器出口蒸汽温度541 ℃,再热器出口蒸汽压3.53 MPa;锅炉给水温度281 ℃。

汽轮机型号C330-16.67/1.0/538/538;额定功率330 MW;主蒸汽压16.67 MPa,主蒸汽温度538 ℃;再热蒸汽温度538 ℃。

1水处理系统水处理系统为预处理+三级除盐系统(反渗透+一级复床+混床)。

水处理任务是供给数量充足、质量合格的工业水、除盐水,供应火电厂生产运行。

其中预处理包括:机械搅拌澄清器(600 t/h)4套+空气擦洗重力式滤池(320 t/h)3套。

浅谈火电厂化学水汽监督实验

浅谈火电厂化学水汽监督实验

浅谈火电厂化学水汽监督实验水汽监督是化学监督的重要内容,对于水汽的品质和减缓设备腐蚀具有重要的影响。

本文结合火电厂的实际水汽操作,对厂区内的水汽监督内容进行了相关叙述,对目前火电厂化学水汽监督中存在的不足进行了分析,并针对这些不足给出改进意见,对火电厂水汽监督具有实际参考意义。

标签:水汽监督;火电厂;化学监督1 引言通常情况下,火电厂的化学监督是针对火电厂运行的不同阶段(基建、调试、启停等状态),利用精密的化学分析检测仪器对火电厂内设备和系统的内外部环境、火电厂内的各种介质相互作用产生的中间产物以及各种介质本身进行直接或者间接的监督,从而保障电厂内部可以安全平稳的运行。

经济的发展对于能源的需求也日益增加,为了满足广大用户的用电需求,我国需要加大力度投资建设高参数大容量的机组,高参数系统对于水汽品质有很高的要求。

超滤、反渗透等一些先进化学水处理技术的应用加快了我国水汽监督检测仪器的发展。

先进的在线监测仪器和管理机制都使得水汽品质优良变化得到了及时、准确的反映。

2 火电厂化学水汽监督的意义传统观念认为,化学问题对于机组安全运行影响不大,尤其是在多种问题共同出现时,化学问题往往被忽略,不能得到有效的重视。

其实,随着机组容量的增加及参数的提高,化学监督应该得到更多的重视,因为由化学问题造成的机组故障逐渐呈现出突发性、快速性等特点。

同时化学腐蚀对机组的破坏很大,因为这种破坏不是只针对机组的某个部分而是对整个设备都造成破坏。

这种腐蚀慢慢积累,一旦积累到一定程度就会爆发,腐蚀的面积增大,腐蚀程度加深,最终对整个机组带来无法挽回的损失。

因此,应该加大对化学监督的重视,加强水汽监督,确保电厂设备系统的安全运行。

3 火电厂化学水汽监督内容按照机组的运行状态,化学水汽监督可以分为三个部分:启动状态、运行状态、停用状态水汽监测。

水汽监督主要是对凝结水、给水、炉水、蒸汽、疏水、返回水进行化验监督,以保证机组的水汽质量合格,防止和减缓设备的腐蚀、结垢、积盐,从而延长设备的使用寿命。

火力发电厂风险分析

火力发电厂风险分析

火力发电厂风险分析一、引言火力发电厂是一种常见的发电设施,通过燃烧煤炭、天然气或石油等燃料产生蒸汽,驱动涡轮发电机发电。

然而,火力发电厂的运营过程中存在一定的风险,可能对环境和人员安全造成影响。

因此,进行火力发电厂风险分析是十分必要的。

二、风险分析方法1. 事件树分析事件树分析是一种定性和定量风险分析方法,用于评估系统中的事件发生概率和后果。

通过构建事件树,可以分析火力发电厂运营过程中可能发生的事件及其概率,从而识别关键风险。

2. 故障模式和影响分析故障模式和影响分析(FMEA)是一种定性风险分析方法,用于识别和评估系统中的潜在故障模式及其对系统性能的影响。

在火力发电厂风险分析中,可以使用FMEA方法分析各个关键设备的故障模式及其对发电厂运营的影响。

3. 事故树分析事故树分析是一种定性和定量风险分析方法,用于评估系统中事故发生的概率和后果。

通过构建事故树,可以分析火力发电厂运营过程中可能导致事故的事件序列及其概率,从而识别关键风险。

三、火力发电厂风险分析内容1. 火灾风险分析火力发电厂中存在着火灾的风险,可能由于燃料泄漏、电气设备故障等原因引发火灾。

在火灾风险分析中,可以通过事件树分析和事故树分析等方法,评估火灾发生的概率和后果,并提出相应的风险控制措施,如增加火灾报警系统、加强火灾应急预案等。

2. 燃料供应风险分析火力发电厂的燃料供应是其正常运营的关键环节,如果燃料供应中断或不稳定,将对发电厂的运行产生重大影响。

在燃料供应风险分析中,可以使用FMEA方法,分析燃料供应链中可能存在的故障模式及其对发电厂运营的影响,并提出相应的风险控制措施,如建立备用燃料供应渠道、加强燃料质量监测等。

3. 环境污染风险分析火力发电厂的运营会产生大量的废气和废水,可能对周围环境造成污染。

在环境污染风险分析中,可以通过事件树分析和事故树分析等方法,评估环境污染事件发生的概率和后果,并提出相应的风险控制措施,如加强废气和废水处理设施的监测和维护、采用更环保的燃料等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

火力发电厂水汽监督事故树分析方法探讨
发表时间:2018-11-28T14:25:07.943Z 来源:《基层建设》2018年第29期作者:李瑞波
[导读] 摘要:根据火力发电厂热力系统的特点,采用安全系统工程中的事故树分析方法,简洁形象的表示出水质异常状态和各种原因之间因果关系及逻辑关系,对水质异常隐患进行定性分析,找出了影响水、汽品质的主要因素,并提出了处理水质异常的措施流程,重点探讨了炉水氢氧化钠处理的运行控制,从而提前预防设备和水汽系统结垢、积盐、腐蚀,保证机组安全、经济运行,同时对节能减排起到促进作用。

兴泰发电有限责任公司河北邢台 054001
摘要:根据火力发电厂热力系统的特点,采用安全系统工程中的事故树分析方法,简洁形象的表示出水质异常状态和各种原因之间因果关系及逻辑关系,对水质异常隐患进行定性分析,找出了影响水、汽品质的主要因素,并提出了处理水质异常的措施流程,重点探讨了炉水氢氧化钠处理的运行控制,从而提前预防设备和水汽系统结垢、积盐、腐蚀,保证机组安全、经济运行,同时对节能减排起到促进作用。

关键词:事故树分析;水质异常;热力系统
火力发电厂热力系统是一个连续运行的庞杂的系统,各种水、汽间相互交联,由于生产过程中设备故障、新设备投运、安全监管及安全措施未实施到位导致出现水一汽间、水一水间的相互污染,从而影响汽、水的品质。

目前,火力发电厂中给水侧主要出现问题有:PH值异常、循环水系统出现结垢和腐蚀、产生水锤现象、空气压缩机等设备工作异常等。

针对这些问题,采用更换设备,定期清理等作用可以减轻事故发生的概率,但未能起到良好的预防效果。

水汽监督的任务就是通过对热力系统进行定期或不定期的水汽质量化验、测定及调整处理工作,及时反映炉内水处理的情况,掌握运行规律,确保水汽质量合格,防止热力设备和水汽系统结垢、积盐、腐蚀,确保机组安全、经济运行。

化验站岗位是化学分厂重要的生产岗位,负责热力系统中的各种水、汽质量监测,水、汽品质如有异常需尽快查明污染原因通过调整或向有关部门提出调整意见,使热力系统中各种水汽品质控制在规定范围内,从而保证机组安全经济运行。

但是水、汽品质异常原因的判断分析是基于火力发电厂水、汽系统的基础上,它是一项非常复杂的系统工作,需要对水汽系统非常了解,综合考虑各方面的因素,才能准确及时地判定水汽品质劣化的原因,进而采取有针对性的措施加以消除,使水、汽品质恢复正常,并使其造成的危害程度降至最低。

所以如何在这复杂的系统工程中找到方便、快捷的分析方法就成了化验站非常重要的工作。

在以往的工作中,化验站只是为了监督而监督,当出现水、汽品质异常时,岗位人员常常感到无从下手,不能及时、准确地做出判断,延误了处理时机,使热力设备造成了一系列不良影响,并对机组产生了许多次生危害。

采用安全系统工程中事故树方法(FTA)可以提前预测事故的发生,使我们及早预防,使现场的事故从“问题出发型”向“问题发现型”转变。

l事故树分析方法
事故树分析(AccidentTreeAnalysis,简称ATA)法起源于故障树分析法(简称FTA),是安全系统工程的重要分析方法之一,是一种演绎的安全系统分析方法。

它能对各种系统的危险性进行辨识和评价,不仅能分析出事故的直接原因,而且能深入地揭示出事故的潜在原因。

用它描述事故的因果关系直观、明了,思路清晰,逻辑性强,既可定性分析,又可定量分析。

1.1建树准备
根据火力发电厂热力系统的特点,简洁形象的表示出水一汽间、水一水间的相互关系,对水质异常隐患进行定性分析,找出了影响水、汽品质的主要因素,以过热蒸汽为顶上事件进行分析,绘制出水汽质量异常判断事故树图。

1.2建树符号
矩形符号代表故障事件,是一种逻辑门的输入项;菱形符号代表省略事件,一般表示可能发生但概率极小的时间,或对比次系统到此为止不需要再进一步分析的故障事件;圆形符号代表基本事件,是构成事故的基本元,在一定条件和要求下,基本事件是不能再进一步分析的事件,可以使人的差错,物的缺陷或环境因素等;房型符号是一种开关,当房型中给定的事件满足时,房型所在门的其他输入保留,否则除去;转移符号代表条件完全相同时,或同一个故障事件在不同位置上出现,可以用此符号加上相应的符号表示从某处转到某处。

1.3建树基本原则
以热力系统系统功能为主线来分析所有事故,按照逻辑推理从始至终分析。

确立好边界条件,划分最基本的事件找出确定的原因。

2水质异常分析
当某水或汽的化验数据出现异常时,首先检查仪器或试剂是否选取正确合格,排出仪器及试剂因素后,即可根据水汽质量异常判断事故树图进行排查。

具体事故树分析见图2。

圈2水汽品质异常事故树分析图
3炉水氢氧化钠处理的运行控制
(1)机组启动时应开启锅炉底部定期排污门,排去炉内腐蚀产物。

(2)机组正常运行时,化学运行人员应根据炉水氢电导率情况,及时通知集控运行人员增加或减少锅炉连续排污量。

若炉水氢电导率突然升高较快,说明精处理高速混床接近失效,已经开始释放氯离子,此时应加大锅炉排污,同时投运氢型运行混床或精处理全流处理。

(3)当炉水电导率和pH值突然升高较快,即使停止炉水加药,其pH值和电导率指标仍然升高,这种情况是因为精处理漏钠量超过漏氯量,此时应停炉水加药泵,加大锅炉排污,切换精处理高速混床。

(4)机组正常运行且凝汽器无泄漏时,精处理混床根据炉水电导率和pH值情况,确定氢型或铵型方式运行。

凝汽器泄漏以及机组检修启动时,精处理混床必须以氢型方式运行。

(5)根据炉水pH值、电导率的变化情况对磷酸盐加药泵(氢氧化钠)进行检查和调整。

(6)炉水氢氧化钠和磷酸盐+氢氧化钠2种处理方式下,游离氢氧化钠的质量浓度上限为1mg/L,对应的钠离子的质量浓度为575μg/L,所以当精处理无漏钠时炉水钠含量一般应该小于此值,炉水钠离子应该定期使用取样用钠表测定一次。

(7)炉水的氯离子、硫酸根离子等阴离子应该每半年使用取样用离子色谱法测定一次,氯离子和硫酸根离子的质量浓度应小于250μg /L。

(8)机组计划停机,提前24h停止向炉水加氢氧化钠或磷酸盐,同时提高精处理出口加氨量使给水的pH值在9.4~9.6(直接电导率6~12μS/cm);机组非计划停机,立即停止向炉水加氢氧化钠或磷酸盐,同时提高精处理出口加氨量尽量使给水的pH值在9.4~9.6(直接电导率6~12μS/cm)。

4结论
经过多年的工作,作者将各种水质异常状况通过纵向分析、横向分类整合后总结出了一套快速、精准的水、汽品质劣化的系统的科学的分析判断方法一水质异常处理事件树法,并落实到化验站的生产实际工作中,发生异常状况时,化验站成员在排除项上有据可依,取得了明显的良好的效果,可以减少不必要的分析,缩短事故分析和处理时间,降低水、汽质量不良引起的危害。

参考文献:
[1]曹杰玉。

陈新超.发电厂纯水pH值测量应注意的几个问题[J].热力发电.2004(5):62—65.
[2]印胜伟.电厂化学水处理设备设施腐蚀问题及处理方法[J]。

全面腐蚀控制.2012(7):17—21.
[3]石雪松,李爱民,王国伟.电子一化学协合处理技术在电厂循环水处理中的应用[J].内蒙古电力技术.2011(1):46—49.。

相关文档
最新文档