二元一次方程应用题题型分类归纳

合集下载

二元一次方程,应用题类型

二元一次方程,应用题类型

二元一次方程,应用题类型在我们日常生活中,数学的应用无处不在,而二元一次方程作为数学中的基础知识,更是广泛应用于各种实际问题中。

本文将为大家介绍二元一次方程的应用题类型,以及解这类方程组的常用方法。

首先,我们来了解一下二元一次方程。

二元一次方程是由两个含有两个未知数的一次方程组成的,通常形式为:ax + by = c其中,a、b、c为已知数且a、b不同时为0。

接下来,我们来看看二元一次方程的应用题类型。

主要包括以下几类:1.线性方程组:这类题目中,两个方程都是线性的,且未知数的次数都为一。

例如,常见的线性方程组题目如“一个长方形的长和宽分别为3x和2x,求面积为12时的长和宽”。

2.几何问题:这类题目涉及到几何图形的性质和计算,如求解两个直线交点、圆与直线相交的弦长等问题。

3.物理问题:涉及到物理定律和公式的问题,如两个力的合成、速度、加速度与时间的关系等。

4.经济问题:与货币、成本、收益等有关的问题,如“某商品售价为x 元,成本为y元,若售出z件商品,求利润是多少”。

5.生物问题:与生长、繁殖、遗传等有关的问题,如“一个植物的生长速度为每天长高x厘米,已知植物初始高度为y厘米,求10天后植物的高度”。

解二元一次方程组的常用方法有:1.加减消元法:将两个方程相加或相减,消去一个未知数,然后求解另一个未知数。

2.乘法消元法:将两个方程的某一项乘以一个非零常数,然后相加或相减,消去一个未知数,再求解另一个未知数。

3.代入法:从一个方程中解出一个未知数,然后将其代入另一个方程,转化为一个一元一次方程,解出未知数。

4.列式法:利用线性方程组的性质,将方程组化为一个矩阵,然后求解矩阵的逆矩阵,得到未知数的解。

下面我们通过一个实际案例进行分析:某商场举行促销活动,一件商品的售价为150元,成本为80元,若售出10件商品,求商家的利润是多少?设售出x件商品,商家的利润为P元。

根据题意,我们可以得到以下二元一次方程组:x + 150 = 150 * (1 + p) (1)80x = 150 * 10 - P (2)通过加减消元法求解方程组:(1)-(2)得:70x = 150p - 700解得:p = 140/15 = 2.8将p代入(1)式,得:x + 150 = 150 * (1 + 2.8)解得:x = 12所以,商家售出12件商品时的利润为:P = 12 * (150 - 80) = 360元。

二元一次方程应用题8种类型

二元一次方程应用题8种类型

二元一次方程应用题8种类型一、行程问题1. 题目- 甲、乙两人相距30千米,甲速度为x千米/小时,乙速度为y千米/小时,若两人同时出发相向而行,3小时后相遇;若两人同时同向而行,甲在乙后面,5小时后甲追上乙。

求甲、乙两人的速度。

2. 解析- 根据相向而行时,路程 = 速度和×时间,可得到方程3(x + y)=30,化简为x + y = 10。

- 根据同向而行时,路程差=速度差×时间,可得到方程5(x - y)=30,化简为x - y=6。

- 联立方程组x + y = 10 x - y = 6,将两式相加,2x=16,解得x = 8。

- 把x = 8代入x + y = 10,得y = 2。

二、工程问题1. 题目- 一项工程,甲队单独做需要x天完成,乙队单独做需要y天完成,两队合作需要6天完成;甲队单独做比乙队单独做少用5天。

求甲、乙两队单独完成这项工程各需要多少天?2. 解析- 把工作总量看作单位“1”,根据工作效率 = 工作总量÷工作时间,两队合作的工作效率为(1)/(6),甲队工作效率为(1)/(x),乙队工作效率为(1)/(y),则(1)/(x)+(1)/(y)=(1)/(6)。

- 又因为甲队单独做比乙队单独做少用5天,所以y - x=5,即y=x + 5。

- 将y=x + 5代入(1)/(x)+(1)/(y)=(1)/(6)中,得到(1)/(x)+(1)/(x + 5)=(1)/(6)。

- 去分母得6(x+5)+ 6x=x(x + 5),展开6x+30+6x=x^2+5x,移项化为一元二次方程x^2-7x - 30 = 0,因式分解(x - 10)(x+3)=0,解得x = 10或x=-3(天数不能为负舍去)。

- 当x = 10时,y=10 + 5=15。

三、利润问题1. 题目- 某商店购进甲、乙两种商品,甲商品进价为x元/件,乙商品进价为y元/件。

已知购进5件甲商品和4件乙商品共花费300元;甲商品每件售价20元,乙商品每件售价30元,全部售出后利润为100元。

二元一次方程组应用题经典题型

二元一次方程组应用题经典题型

二元一次方程组应用题经典题型1. 行程问题比如,甲、乙两人相距30千米,若两人同时相向而行,3小时后相遇;若两人同时同向而行,甲6小时可追上乙。

求甲、乙两人的速度。

设甲的速度是x千米/小时,乙的速度是y千米/小时。

相向而行时,根据路程 = 速度和×时间,可得到方程3(x + y)=30;同向而行时,根据路程差 = 速度差×时间,可得到方程6(x - y)=30。

这两个方程组成二元一次方程组,解这个方程组就能求出甲、乙的速度啦。

2. 工程问题有一项工程,甲队单独做需要x天完成,乙队单独做需要y天完成,两队合作需要6天完成,并且甲队做2天的工作量和乙队做3天的工作量相等。

求x和y的值。

把这项工程的工作量看成单位“1”,根据工作效率 = 工作量÷工作时间,甲队的工作效率就是1/x,乙队的工作效率就是1/y。

两队合作的工作效率就是1/6,可得到方程1/x+1/y = 1/6。

又因为甲队做2天的工作量和乙队做3天的工作量相等,即2/x = 3/y。

这样就组成了二元一次方程组,通过解方程组就能得到x和y的值啦。

3. 销售问题某商场购进甲、乙两种商品共50件,甲种商品进价每件35元,利润率是20%,乙种商品进价每件20元,利润率是15%,共获利278元。

求甲、乙两种商品各购进多少件?设购进甲种商品x件,购进乙种商品y件。

因为总共购进50件商品,所以x + y = 50。

甲种商品每件获利35×20% = 7元,乙种商品每件获利20×15% = 3元,总共获利278元,可得到方程7x+3y = 278。

这两个方程组成二元一次方程组,解方程组就可以求出x和y的值啦。

4. 调配问题有两个仓库,甲仓库有粮食x吨,乙仓库有粮食y吨。

如果从甲仓库调出10吨到乙仓库,那么乙仓库的粮食就是甲仓库的2倍;如果从乙仓库调出5吨到甲仓库,那么两仓库的粮食就相等。

求x和y的值。

根据题意可得到方程组:y + 10 = 2(x - 10)和x + 5 = y - 5。

二元一次方程组题型归纳

二元一次方程组题型归纳

二元一次方程组题型总结题型一:二元一次方程的概念及求解例1.已知(a -2)x -by |a |-1=5是关于x 、y 的二元一次方程,则a =______,b =_____.2.二元一次方程3x +2y =15的正整数解为_______________.3.若|2a +3b -7|与(2a +5b -1)2互为相反数,则a =______,b =______.4.2x -3y =4x -y =5的解为_______________.题型二:方程组有解的情况。

(方程组有唯一解、无解或无数解的情况)方程组⎩⎨⎧=+=+222111c y b x a c y b x a 满足 条件时,有唯一解;满足 条件时,有无数解;满足 条件时,无解。

例1.关于x 、y 的二元一次方程组⎩⎨⎧=+=-2312y mx y x 没有解时,m2二元一次方程组23x y mx ny -=⎧⎨+=-⎩ 有无数解,则m= ,n= 。

类型三:方程组的解与待定系数例1.已知⎩⎨⎧==12y x -是方程组⎩⎨⎧=++=-274123ny x y mx 的解,则m 2-n 2的值为_________.2.若满足方程组⎩⎨⎧=-+=-6)12(423y k kx y x 的x 、y 的值相等,则k =_______. 3:若方程组⎩⎨⎧=++=-10)1(232y k kx y x 的解互为相反数,则k 的值为 。

4 若方程组⎪⎩⎪⎨⎧=+=+52243y bax y x 与⎪⎩⎪⎨⎧=-=-5243y x by x a 有相同的解,则a = ,b= 。

5.若⎩⎨⎧-==20y x ,⎪⎩⎪⎨⎧==311y x 都是关于x 、y 的方程|a |x +by =6的解,则a +b 的值为6.关于x ,y 的二元一次方程ax +b =y 的两个解是⎩⎨⎧-==11y x ,⎩⎨⎧==12y x ,则这个二元一次方程是7:如果⎩⎨⎧=-=21y x 是方程组⎩⎨⎧=-=+10cy bx by ax 的解,下列各式中成立的是 ( )A 、a +4c =2B 、4a +c =2C 、a +4c +2=0D 、4a +c +2=0题型四:涉及三个未知数的方程,求出相关量。

二元一次方程组解应用题专题分类常见十三类

二元一次方程组解应用题专题分类常见十三类

逆水(风)速度=静水(风)速度-水流(风)速度顺速–逆速 = 2水速;顺速 + 逆速 = 2船速顺水的路程 = 逆水的路程相遇问题:两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题。

它的特点是两个运动物体共同走完整个路程。

A车路程+B车路程=相距路程总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)另一个速度=甲乙速度和-已知的一个速度甲、乙两人在相距18千米的两地同时出发,相向而行,1小时48分相遇,如果甲比乙早出发40分钟,那么在乙出发1小时30分时两人相遇,求甲、乙两人的速度.练习:学校距活动站670米,小明从学校前往活动站每分钟行80米,2分钟后,小丽从活动站往学校走,每分钟行90米,小明出发多少分钟后和小丽相遇?相遇时二人各行了多少米?A甲、乙二人相距2. 甲以5km/h的速度进行有氧体育锻炼,2h后,乙骑自行车从同地出发沿同一条路追赶甲。

根据他们两人的约定,乙最快不早于1h追上甲,最慢不晚于1h15min追上甲,则乙骑车的速度应当控制在什么范围?3. 从甲地到乙地的路有一段上坡、一段平路与一段3千米长的下坡,如果保持上坡每小时走3千米,平路每小时走4千米,下坡每小时走5千米,那么从甲到乙地需90分,从乙地到甲地需102分。

甲地到乙地全程是多少?4. 甲,乙两人分别从甲,乙两地同时相向出发,在甲超过中点50米处甲,乙两人第一次相遇,甲,乙到达乙,甲两地后立即返身往回走,结果甲,乙两人在距甲地100米处第二次相遇,求甲,乙两地的路程.5. 两列火车同时从相距910千米的两地相向出发,10小时后相遇,如果第一列车比第1二列车早出发4小时20分,那么在第二列火车出发8小时后相遇,求两列火车的速度.6. 某班同学去18千米的北山郊游.只有一辆汽车,需分两组,甲组先乘车,乙组步行.车行至A处,甲组下车步行,汽车返回接乙组,最后两组同时达到北山站.已知汽车速度是60千米/时,步行速度是4千米/时,求A点距北山站的距离.7. 通讯员要在规定时间内到达某地,他每小时走15千米,则可提前24分钟到达某地;如果每小时走12千米,总结升华:根据题意画出示意图,再根据路程、时间和速度的关系找出等量关系,是行程问题的常用的解决策略。

二元一次方程应用题几种常见的题型

二元一次方程应用题几种常见的题型

5.甲乙二人都以不变的速度在环形跑道上跑步,如果同时同地出发相向而行,每隔2分相遇一次,如果同向而行,每隔6分相遇一次,已知甲比乙跑的快,求二人每分各跑几圈?6.一辆长150米的载客火车和一辆长250米的载货火车在两平行的铁轨上行驶,若两车相向而行从车头相遇到车尾离开共需10秒;若载客车追载货车,从车头追上载货车尾到完全超过载货火车共需100秒,求两车速度(二)行船问题V 顺=V船+V水V顺=V船+V水S顺=V顺t顺S逆=V逆t逆1.AB两码头相距140千米,船顺流行驶用了7小时,逆流行驶用了10小时,求船在静水中的速度和数的速度。

2.甲乙两市航线长1200千米,一飞机从甲市到乙市顺风行驶需2小时30分;从乙市到甲逆风行驶需3小时20分,求飞机无风时的速度和风速。

(三)其他问题1.从甲地到乙地有一段上坡路与一段平路,如果保持上坡速度为每小时3千米,下坡速度为每小时4千米,平路速度为每小时5千米,则从甲到乙需54分,从乙到甲需42分,求甲到乙的全程长。

2.某人从A出发到B,先以每小时12千米的速度下坡,再以每小时9千米的速度在平路上行驶到B,共用了55分;回来时他以每小时8千米的速度通过平路后,再以每小时4千米的速度上坡至A,共用1.5小时,求AB两地间的路程。

3.甲到乙36千米,有一部分上坡路,一部分下坡路,保持上坡速度为每小时12千米,下坡速度为每小时18千米,某人从甲地到乙地用的时间,比他从乙地到甲地用的时间少0.5小时,他从甲到乙用了多长时间?年龄问题大年龄-小年龄=年龄差任何时候年龄差不变1.今年A的年龄是B的3倍,6年后A的年龄是B年龄的2倍,求AB现在的年龄各是多少?2.A对B说:“我是你现在的年龄时你才4岁;你是我现在的年龄时我已经61岁”求A和B现在的年龄各多少?3.5年前甲的年龄是乙的15倍,15年后甲的年龄比乙年龄的2倍大6,问甲乙现在的年龄各是多少?4.A对B说:“我像你这样大时你才1岁;你到我这样大时我已经37岁了”求A和B现在的年龄各多少?。

二元一次方程组应用题分类

二元一次方程组应用题分类

二元一次方程组应用题分类精析一、倍分问题例1.甲乙二人, 若乙给甲10元, 则甲所有的钱为乙的3倍, 若甲给乙10元, 则甲所有的钱为乙的2倍多10元, 求甲乙各拥有多少钱?1.一块矩形草坪的长比宽的2倍多10米, 它的周长是132米, 则宽和长分别是多少?2、一批书分给组学生, 每人6本则少6本, 每人5本则多5本, 该组共有多少名学生, 这批书共有多少本?3.某班学生准备分成小组开展活动, 若每个组7人, 则余3人;若每个组8人, 则差5人.求全班的人数和所分组数。

4.三年级有学生246人, 其中男生比女生人数的2倍少3人, 求男、女生各有多少人?5.甲乙两条绳共长17米, 如果甲绳子减去五分之一, 乙绳增加1米, 两条绳子相等, 求甲、乙两条绳各长多少米?7、甲乙两个商店各进洗衣机若干台, 若甲店拨给乙店12台, 则两店的洗衣机一样多, 若乙店拨给甲店12台, 则甲店的洗衣机比乙店洗衣机数的5倍还多6台, 求甲、乙两店各进洗衣机多少台?8、小红和小华各自购买新书若干本, 已知小红买的比小华的2倍多6本, 如果小红给小华9本, 则小华是小红的2倍, 小红和小华各买新书多少本?12、某化妆晚会上, 男生脸上涂蓝色油彩, 女生脸上涂红色油彩, 游戏时, 每个男生都看见涂红色油彩的人数比涂蓝色油彩的人数的2倍少1人, 而每个女生都看见涂蓝色的人数是涂红色人数的3/5, 则晚会上男、女生各有几人?二、年龄问题例1.父子的年龄差30岁, 五年后父亲的年龄正好是儿子的3倍, 问今年父亲和儿子各是多少岁?学生问老师: “您今年多少岁了?”老师风趣的说: “我像你这样大的时候, 你才出生, 你到我这么大时, 我已经37岁了”试求老师和学生的年龄各是多少?2、甲乙两人在聊天, 甲对乙说: "当我的岁数是你现在岁数时, 你才4岁。

”乙对甲说: “当我的岁数是你现在的岁数时, 你将61岁。

”你能算出他们两人各几岁吗?3、现在父亲的年龄是儿子年龄的3倍, 7年前父亲的年龄是儿子年龄的5倍, 问父亲、儿子现在的年龄分别是多少岁?三、数字问题例1: 两个两位数的和是68, 在较大的两位数的右边接着写较小的两位数, 得到一个四位数;在较大的两位数的左边写上较小的两位数, 也得到一个四位数。

二元一次方程组的应用题,总结了十个题型,学透很容易!

二元一次方程组的应用题,总结了十个题型,学透很容易!

初学二元一次方程组的应用,好多同学会遇到会解不会列的尴尬局面。

为此,特把二元一次方程组应用中常见的题型整理出来,希望能对同学们有所帮助。

类型一:行程问题例:甲、乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇.问甲、乙两人每小时各走多少千米?【分析】设甲,乙速度分别为x,y千米/时,根据甲乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么在乙出发后2.5小时相遇;如果乙比甲先走2小时,那么在甲出发后3小时相遇可列方程求解。

类型二:工程问题例:小明家准备装修一套新住房,若甲、乙两个装饰公司,合做需6周完成,需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,需工钱4.8万元,若只选一个公司单独完成,从节约开支角度考虑,小明家是选甲公司、还是乙公司请你说明理由.分析:需先算出甲乙两公司独做完成的周数.等量关系为:甲6周的工作量+乙6周的工作量=1;甲4周的工作量+乙9周的工作量=1;还需算出甲乙两公司独做需付的费用.等量关系为:甲做6周所需钱数+乙做6周所需钱数=5.2;甲做4周所需钱数+乙做9周所需钱数=4.8类型三:商品销售利润问题例:李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?分析:由题意得出两个相等关系为:甲、乙两种蔬菜共10亩和共获利18000元,依次列方程组求解类型四:银行储蓄问题例:小明的爸爸为了给他筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期存取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期存取,这种存款银行利率为年息2.70%.三年后同时取出共得利息303.75元.问小明的爸爸两种存款各存入了多少元?分析:利用两种方式共计存了4000元钱以及两笔存款三年内共得利息303.75元得出等式求出即可类型五:生产配套问题例:现用190张铁皮做盒,一张可以做8个盒身或22个盒底,1个盒身与2个盒底配一个盒子,问用多少张铁皮制盒身、多少张铁皮制盒底,可制成一批完整的盒子?分析:本题的等量关系是:制盒身的铁皮+制盒底的铁皮=190张;盒底的数量=盒身数量的2倍.据此可列方程组求解类型六:增长率问题例:某城市现有人口42万人.计划一年后城镇人口增加0.8%,农村人中增加1.1%,这样全市人口得增加1%,求这个城市现有城镇人口和农村人口分别是多少人?分析:根据题意可得出的等量关系为:现有的城镇人口+现有的农村人口=42万,计划一年后城镇人口增加的数量+农村人口的增加的数量=全市人口增加的数量,然后列出方程组求解类型七:数字问题例:一个两位数的十位数字与个位数字和为6,十位数字比个位数字大4,求这个两位数字.分析:设这个两位数十位上的数字为x,个位上的数字为y,根据十位数字与个位数字和为6,十位数字比个位数字大4,列方程组求解类型八:几何问题用长48厘米的铁丝弯成一个矩形,若将此矩形的长边分别折3厘米,补较短边上去,则得到一个正方形,求正方形的面积比矩形面积大多少?分析:设矩形的长为x,宽为y,则可得x-3=y+3,再由矩形的周长为48,可得出2(x+y)=48,联立方程组求解即可类型九:年龄问题例:今年,小李的年龄是他爷爷的1/5,小李发现,12年后,他的年龄变成爷爷的1/3,求今年小李的年龄.分析:通过理解题意可知本题的等量关系,12年之后他爷爷的年龄x1/3=12年之后小李的年龄.根据这两个等量关系,可列出方程,再求解类型十:方案优化问题例:某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同类型的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场用9万元同时购进甲、乙两种不同型号的电视机共50台,求应购进甲、乙两种电视机各多少台?(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.试问:同时购进两种不同型号电视机的方案可以有几种(每种方案必须刚好用完9万元)?为使销售时获利最多,应选择哪种进货方案?并说明理由.分析:(1)本题的等量关系是:甲乙两种电视的台数和=50台,买甲乙两种电视花去的费用=9万元.依此列出方程求出正确的方案;(2)根据(1)得出的方案,分别计算出各方案的利润,然后判断出获利最多的方。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二元一次方程应用题
题型一 选择题
1.某校初三(2
表格中捐款2元和3元的人数不小心被墨水污染已经看不清楚.
若设捐款2元的有名同学,捐款3元的有名同学,根据题意,可得方程组( ).
(A )(B )(C )(D )
2.有一个两位数,减去它各位数字之和的3倍,值为23,除以它各位数字之和,商是5,余数是1,则这样的两位数( )
A .不存在
B .有惟一解
C .有两个
D .有无数解
3、如图,8块相同的小长方形地砖拼成一个长方形,其中每一个小长方形的面积为( )
A. 400 cm 2
B. 500 cm 2
C. 600 cm 2
D. 675 cm 2

↓60cm
4、为保护生态环境,陕西省某县响应国家“退耕还林”号召,将某一部分耕地改为林地,改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,为求改变后林地面积和耕地面积各多少平方千米。

设改变后耕地面积x 平方千米,林地地面积y 平方千米,根据题意,列出如下四个方程组,其中正确的是( )
A.⎩⎨⎧⋅==+%25180x y y x
B.⎩⎨⎧⋅==+%25180y x y x
C.⎩⎨⎧=-=+%25180y x y x
D.⎩⎨⎧=-=+%
25180x y y x
5、设A 、B 两镇相距x 千米,甲从A 镇、乙从B 镇同时出发,相向而行,甲、乙行驶的速度分别为u 千米/小时、v 千米/小时,①出发后30分钟相遇;②甲到B 镇后立即返回,追上乙时又经过了30分钟;③当甲追上乙时他俩离A 镇还有4千米。

求x 、u 、v 。

根据题意,由条件③,有四位同学各得到第3个方程如下,其中错误的一个是( )
A 、4+=u x
B 、4+=v x
C 、42=-u x
D 、4=-v x
题型二 大题分类归纳
1、数字问题
例1 一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.
2、利润问题
例2一件商品如果按定价打九折出售可以盈利20%;如果打八折出售可以盈利10元,问此商品的定价是多少?
3、配套问题
例3某厂共有120名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套?
4、行程问题
例4在某条高速公路上依次排列着A、B、C三个加油站,A到B的距离为120千米,B到C的距离也是120千米.分别在A、C两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A、C两个加油站驶去,结果往B站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车和犯罪团伙的车的速度各是多少?
5、工程问题
例6 某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能
完成订货的4
5
;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,
这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天?
练习
1某旅游商品经销店欲购进A、B两种纪念品,若用380元购进A种纪念品7件,B种纪念品8件;也可以用380元购进A种纪念品10件,B种纪念品6件。

求A、B两种纪念品的进价分别为多少?
若该商店每销售1件A种纪念品可获利5元,每销售1件B种纪念品可获利7元,该商店准备用不超过900元购进A、B两种纪念品40件,且这两种纪念品全部售出候总获利不低于216元,问应该怎样进货,才能使总获利最大,最大为多少?
2 奖励在演讲比赛中获奖的同学,班主任派学习委员小明为获奖同学买奖品,要求每人一件.小明到文具店看了商品后,决定奖品在钢笔和笔记本中选择.如果买4个笔记本和2支钢
笔,则需86元;如果买3个笔记本和1支钢笔,则需57元.
(1)求购买每个笔记本和钢笔分别为多少元?
(2)售货员提示,买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受8折优惠,若买支钢笔需要花元,请你求出与的函数关系式;
(3)在(2)的条件下,小明决定买同一种奖品,数量超过10个,请帮小明判断买哪种奖品省钱.。

相关文档
最新文档