鲢鳙在东湖生态系统的氮,磷循环中的作用
天然水体中氮磷的循环特征及其在水生态系统中的重要意义

水化学周立平水产1801班2018308210108题目:分析天然水体中氮磷的循环特征及其在水生态系统中的重要意义。
分析结果:第一部分:天然水体中氮的循环特征及其在水生态系统中的重要意义。
1、天然水体中氮的来源2、天然水体中氮的存在形式3、天然水体中无机氮的分布变化4、天然水中氮的循环5、天然水体中氮的消耗6、天然水体中氮在生态系统中的意义第二部分:天然水体中磷的循环特征及其在水生态系统中的重要意义。
1、天然水体中磷的来源2、天然水体中磷的存在形式3、天然水体中无机磷的分布变化4、天然水中磷的循环5、天然水体中磷的消耗6、天然水体中磷在生态系统中的意义第一部分:天然水体中氮的循环特征及其在水生态系统中的重要意义。
1、天然水体中氮的来源天然水体中化合态氮的来源很广,包括大气降水下落过程中从大气中的淋溶、地下径流从岩石土壤的溶解、水体中水生生物的代谢、水中生物的固氮作用、以及沉积物中氮元素的释放等。
另外,近年来随着工农业生产的发展、人口的增加、工业和生活污水的排放、农业的退水造成对环境的污染日益严重,污染成了天然水化合态氮的重要来源。
根据文献报道,如我国滇池、东湖等城郊湖泊,由于受生活污水的影响,氨氮含量高达0. 09~2.8 mg/L。
但是对于水产养殖水体,施肥投饵及养殖生物的代谢是水中氮的主要来源。
天然水和沉积物中的一些藻类(蓝.绿藻)及细菌,它们具有特殊的酶系统,能把一般生物不能利用的单质N2,转变为生物能够利用的化合物形态,这一过程称为固氮作用。
湖泊沉积物中存在大量的固氮细菌,如巴氏固氮梭菌,大部分集中于上层2 cm内;海洋中的固氮藻类有束毛藻项圈藻属、念珠蓝藻属等,它们既有营自由生活的,也有与其他初级生产者共生、或与动物(如海胆、船蛆)共生的。
在固氮作用进行时,固氮酶系统需要外界供给Fe、Mg、Mo,有时还需B、Ca、Co等,水中这些微生物的含量对固氮作用有着决定性作用。
2、天然水体中氮的存在形式天然水域中,氮的存在形态可粗略分为5种:溶解游离态氮气、氨(铵)态氮、硝酸态氮、亚硝酸态氮和有机氮化物。
水生植物对氮磷的去除

水生植物对氮磷的去除湖泊富营养化已成为一个世界性的环境问题。
利用水生大型植物富集氮磷是治理、调节和抑制湖泊富营养化的有效途径之一。
湖泊水环境包括水体和底质两部分,水体中的氮磷可由生物残体沉降、底泥吸附、沉积等迁移到底质中。
对过去的营养状况的追踪说明,水生植物可调节温度适中的浅水湖中水体的营养浓度[2]。
而大型沉水植物则通过根部吸收底质中的氮磷,从而具有比浮水植物更强的富集氮磷的能力。
沉水植物有着巨大的生物量,与环境开展着大量的物质和能量的交换,形成了十分庞大的环境容量和强有力的自净能力。
在沉水植物分布区内,COD、BOD,总磷、铁氮的含量都普遍远低于其外无沉水植物的分布区[3]。
而漂浮植物的致密生长使湖水复氧受阻,水中溶解氧大大降低,水体的自净能力并未提高,且造成二次污染,影响航运。
挺水植物则必须在湿地、浅滩,湖岸等处生长,即合适深度的繁衍场所,具有很大的局限性。
不同的沉水植物对水体中的总氮总磷均有显著的去除作用。
在关于常见沉水植物对滇池草海水体(含底泥)总氮去除速率的研究中发现:物种去除能力的大小顺序依次为伊乐藻>苦草>狐尾藻>篦齿眼子菜>金鱼藻>范草>轮藻。
随着时间的延长,水体中总氮浓度呈负指数形式衰退,且在实验的总氮浓度范围内(2.628~16.667mg∕L)每种沉水植物的去除速率随总氮浓度的增加而增加[4]。
此外,黑藻(Hydrillaverticillata(L.f.)Royle)对磷的需求较低,并可利用重碳酸盐作为光用的碳源。
磷吸收是主动过程[6]。
在亚热带湿地中,磷主要是在植物内流动,而氮主要是通过沉积作用和反硝化作用开展流动。
对于夏季浮游植物(主要是外来蓝藻),磷是限制因子。
据推测:磷循环强烈依赖于大型植物的调节;底泥中磷的衰竭影响植物香蒲(Typhadomingensis)的减少,而随后磷的有效性的增加又使其重现[7]。
在对东湖的围隔实验中,结果显示了沉水植物在磷营养滞留物中的关键地位[8]。
鲢鳙在长寿湖水生态系统氮磷循环中的作用

鲢鳙在长寿湖水生态系统氮磷循环中的作用李晓洁;唐敏;李云;叶勤;薛洋;靳涛;祖学勤【摘要】In order to explore the role of silver carp and bighead on nitrogen and phosphorus cycle of aquatic ecosystem in Changshou Lake, the preset study seasonal change of total nitrogen(TN) and total phosphorus(TP) in water, excretion quantities of N and P in silver carp and bighead were determined.Contribution rates of silver carp and bighead N/P excre-tions in water were obtained by comparative analysis.N/P retention of silver carp and bighead were estimated through deter-mined the fish body N/P contents.The result showed that the N and P excretion rates of silver carp and bighead were the highest in summer and lowest in winter, the seasonal temperature influenced on the excretion rates.Under average water temperature 19.88 ℃ in Changshou Lake during 2016—2017, theN/P excretion rates of silver carp were 0.973 1 μg L-1 d-1and 0.242 2 μg L-1d-1, and bighead were 0.642 5 μg L-1d-1and 0.174 9 μg L-1d-1respectively.N and P excre-tions of silver carp and bighead account for 1.19%, 0.79% of N amount, and 9.57%, 6.91% of P amount required by algae primary production in Changshou Lake.The amount of N/P taken out by silver carp and bighead catch to market was up to 60.61 t and 23.31 t in Changshou Lake during 2016—2017.The present investigation suggested that the practice of ecological stocking silver carp and bighead fisheries will have a small contribution to N and P in the water and will not cause eutrophication.%为探究长寿湖鲢、鳙在水体生态系统氮(N)磷(P)循环中的作用,研究测定了季节性水体总氮(TN)、总磷(TP)的变化,进行了原位鲢、鳙排泄率的测定.通过N、P排泄对比分析了鲢、鳙对水体N、P的贡献率.通过长寿湖鲢、鳙鱼体N、P含量测定,估算水体中N、P去除量.结果显示:鲢、鳙N、P排泄率夏季最高,冬季最低,季节性温度变化对其排泄率有一定影响;2016—2017在长寿湖平均水温为19.88 ℃条件下,鲢的N、P排泄率分别为0.9731 μg L-1d-1和0.2422 μg L-1d-1;鳙的N、P排泄率分别为0.6425 μg L -1d-1和0.1749 μg L-1d-1,鲢、鳙N、P排泄量分别占长寿湖藻类初级生产所需N含量的1.19%和0.79%, P含量的9.57%和6.91%; 2016—2017长寿湖通过捕捞鲢、鳙产品带走的N、P含量分别为60.61 t和23.31 t.结果表明,长寿湖开展生态养殖对水体N、P贡献较小,不会引起水体富营养化.【期刊名称】《淡水渔业》【年(卷),期】2018(048)003【总页数】7页(P40-46)【关键词】鲢(Hypophthalmichthysmolitrix);鳙(Aristichthysnobilis);长寿湖;氮磷循环;排泄率【作者】李晓洁;唐敏;李云;叶勤;薛洋;靳涛;祖学勤【作者单位】西南大学动物科技学院,重庆三峡生态渔业产业技术研究院,重庆400715;西南大学动物科技学院,重庆三峡生态渔业产业技术研究院,重庆400715;西南大学动物科技学院,重庆三峡生态渔业产业技术研究院,重庆400715;西南大学化学化工学院,重庆400715;重庆市水产技术推广总站,重庆400200;重庆市长寿区农业委员会,重庆401220;重庆市长寿区农业委员会,重庆401220【正文语种】中文【中图分类】S931.3长寿湖位于重庆市长寿区东部,是西南地区最大的人工湖、重庆市重要的生态渔业基地,也是重庆市重要的淡水水源地。
简论氮-磷循环特征对水体富营养化影响的论文

简论氮\磷循环特征对水体富营养化影响的论文摘要:通过对朱庄水库营养物质监测分析,氮含量比磷含量大几百倍。
氮和磷都是造成水体富营养化的主要因子。
由于受外界环境条件和水体性质的影响,外界污染源调查,氮污染源远远大于磷污染。
水库水体溶解氧较大,ph值呈碱性,硝化作用的结果使水体中硝酸盐氮累计;同样的条件,导致不溶性磷的积累,大部分沉积于库底。
水体富营养化条件是氮磷达到适合的比例,才会导致水华的爆发。
该水库水体磷含量低,是抑制水体富营养化的关键。
因此,该水库属于磷限制性水库。
控制水库上游磷的排入量,可有效控制水体富营养化。
关键词:氮磷营养物质;氮磷循环特征;富营养化形成机理;朱庄水库effect of nitrogen and phosphorus cycling characteristic on eutrophication of water bodywang zhen-qiang1,liu chun-guang1,qiao guang-jian 2(reservoir administrative,xingtai 054000,china; city hydrology & water resources survey bureau,xingtai 054000,china)abstract: analysis on nutrients monitoring of zhuzhuang reservoir shows that nitrogen content is hundreds of times more than and phosphorus are both major causes of water to external environmental conditions and water properties,investigations on pollution sources show that nitrogen caused pollutions is much more than water dissolves lots of oxygen,the ph value reflect on alkalescence,then by the reaction of nitrification,nitrate accumulated in water;in the same conditions,insoluble phosphorus is also accumulated,and most of them deposit at the bottom of nitrogen and phosphorus get to certain ratio in water,may cause the water eutrophication,then will lead to algae bloom the low phosphorus content in reservoir water is crucial to curb ,the reservoir is phosphorus restricted control the phosphorus quantity comes from upper reaches can effectively control the eutrophication.key words: nitrogen and phosphorus nutrients;cycling characteristic of nitrogen and phosphorus;eutrophication mechanism;zhuzhuang reservoir朱庄水库地表水资源是邢台市供水水源。
湖泊生态系统氮循环途径及发生条件分析

湖泊生态系统氮循环途径及发生条件分析【摘要】湖泊生态系统中的氮循环是一个复杂的过程,涉及到氮的来源、转化、去除等多个环节。
本文通过对湖泊生态系统氮循环途径及发生条件的分析,揭示了氮在湖泊中的重要性和影响。
氮来自于氮的固氮、氨氮、硝酸盐等形式,通过藻类的光合作用和微生物的分解作用进行转化,最终被沉积或通过植物的吸收进行去除。
氮的循环过程受多种因素的影响,包括氧气、温度、pH值等。
深入研究湖泊生态系统氮循环的重要性,有助于加强湖泊管理和保护,并为未来的研究提供重要的方向和理论支持。
【关键词】湖泊生态系统、氮循环、来源、转化、去除、发生条件、重要性、研究方向1. 引言1.1 研究背景湖泊是地球上重要的淡水生态系统,拥有丰富的生物多样性,为生态平衡和人类生活提供了重要的服务。
氮是生物体中不可缺少的元素之一,它在湖泊生态系统中扮演着重要的角色。
随着人类活动的不断增加,湖泊生态系统氮循环受到了严重的破坏,导致了水体富营养化、蓝藻水华等问题的出现。
研究表明,湖泊生态系统中氮的循环过程十分复杂,涉及到多种生物和非生物因素的相互作用。
了解湖泊生态系统中氮的来源、转化和去除过程,对于有效保护湖泊生态系统的稳定性具有重要意义。
本文旨在探讨湖泊生态系统中氮循环的途径及发生条件,为进一步研究和保护湖泊生态系统提供理论基础和参考。
通过深入了解湖泊生态系统中氮的循环规律,可以为湖泊生态环境的保护和修复提供科学依据和技术支持。
1.2 研究目的湖泊生态系统氮循环是一个复杂的过程,对于湖泊的生态平衡和水质有着重要的影响。
本文旨在通过对湖泊生态系统氮循环途径及发生条件的分析,深入探讨湖泊氮循环的机制和规律,为湖泊生态环境保护与管理提供科学依据。
1. 分析湖泊生态系统氮循环的整体情况,揭示氮在湖泊系统中的来源、转化和去除过程,探讨氮在湖泊中的循环路径。
2. 探讨湖泊生态系统中氮的来源,包括氮的输入通道和主要来源物质,分析不同来源对湖泊水质的影响。
湖泊富营养化与氮磷循环的相关性研究

湖泊富营养化与氮磷循环的相关性研究湖泊富营养化是指湖泊中营养物质过剩的现象,特别是氮磷元素。
这一现象会导致水体中生物生长的过度,进而破坏湖泊生物多样性和水生态系统的平衡。
为了深入了解湖泊富营养化的原因以及氮磷元素在其循环中的作用,科学家们进行了一系列研究。
湖泊富营养化主要是由人类活动引起的,如农业、工业和城市污水排放。
氮磷元素是植物和微生物生长所需的基本元素,它们在肥料和污水中含量较高。
当这些污染物进入湖泊时,它们会加速湖泊中藻类和植物的生长,形成藻华。
藻华会消耗水体中的氧气,导致水中生物无法存活,最终引发湖泊富营养化。
氮磷循环是湖泊富营养化中一个重要的过程。
氮循环包括氮化、硝化和脱氮过程。
氮化指的是将氨氮转化为氨基酸,而硝化则是将氨氮转化为硝酸盐。
这两个过程可以提供藻类和植物所需的氮源。
然而,氮化和硝化过程也会产生过量的氮,进而造成水体中氮的积累。
脱氮过程则是将水体中的氮还原为气体形式,从而减少氮的含量。
与氮循环不同,磷循环主要涉及到磷的吸附和释放过程。
磷是湖泊中限制生物生长的关键营养物质之一。
它主要通过沉积物进入湖泊,并与悬浮颗粒结合形成不溶性的磷酸盐。
然而,湖泊底部的缺氧环境能够导致这些不溶性磷酸盐释放,进而使水体中的磷含量增加。
此外,沉水植物和藻类的落叶也会导致磷释放,从而加剧湖泊富营养化。
在湖泊富营养化研究中,科学家们发现了一些控制因子,可以在一定程度上预测湖泊富营养化的发展趋势。
其中一个重要的控制因子是氮磷比。
研究表明,当水体中的氮磷比小于16∶1时,湖泊更容易出现富营养化现象。
这是因为氮磷比低于这个阈值时,氮成为限制生物生长的营养物质,从而刺激过度的藻类生长。
此外,湖泊富营养化还会对水质产生一系列影响。
高浓度的藻类和悬浮颗粒会降低水质的透明度,影响浮游植物和浮游动物的生存。
湖泊水体中的富营养化还会导致水生生物的死亡,进而干扰水生态系统的平衡。
因此,控制湖泊富营养化对恢复湖泊生态系统至关重要。
水生生态系统的氮磷循环与研究进展

水生生态系统的氮磷循环与研究进展水生生态系统是地球上最重要的生态系统之一,它生产着人们所需的食物、水源、氧气等资源。
而氮和磷则是水生生态系统中非常重要的营养元素,但是当它们过量积累时,会对生态系统造成很大的破坏。
为了保护水生生态系统,需要深入研究氮磷循环的规律,寻求有效的防治方法。
1. 氮磷循环的基本原理氮是生命活动所需要的元素之一,它可以在自然界中以氨、硝酸盐等形式形成,也可以通过固氮转化而成。
而磷则是细胞核酸和脂肪酸等生命物质的重要组成成分。
在水生生态系统中,氮和磷的循环密切相关。
当有机物和废弃物分解时,会产生氨、尿素等化合物。
氨可被细菌氧化成硝酸盐,同时磷会随着有机物分解而释放。
硝酸盐可以被植物吸收,用于植物生长和菌类的合成。
随着生物体的死亡和自然界的循环,有机物和废弃物中的氮和磷又被释放出来,重新进入氮磷循环之中。
2. 氮磷循环的影响因素氮磷循环受到水生生态系统中多种环境因素的影响,包括水温、光照、风、水流等。
同时,由于人类的活动也会对氮磷循环产生重要的影响。
许多人工活动,如农业、工业和城市化,都有可能对水生生态系统中的氮磷循环造成破坏。
例如,农业过度施用肥料,会导致农田中过量的氮磷进入水体中,引起水质污染和藻类大量繁殖。
此外,城市里的化学废物和废水也会含有大量的氮磷,如果不加处理,就会对水生生态系统产生破坏。
3. 氮磷循环的研究进展氮磷循环是水生生态系统中非常复杂的过程,需要我们不断深入研究。
在近年来的研究中,一些新的研究方法和技术已经应用到氮磷循环的研究中,为我们了解这个复杂过程提供了更为详细和精确的方法。
如今,生化、生物学和物理学等多个学科的交叉研究已经成为研究氮磷循环的重要手段。
在现代生物技术的帮助下,我们可以更好地掌握微生物的生长、生命周期及其参与氮磷转化的过程。
我们可以利用生物标记和手段,对生态系统中的物质转化过程进行定量和定向的研究,帮助我们更好地理解氮磷循环的规律。
4. 防治氮磷污染的措施有效防治氮磷污染,是保护水生生态系统的关键。
水生生态系统的物质循环和能量流动

水生生态系统的物质循环和能量流动水生生态系统是指以水体为主要生境,有着独立的物质循环和能量流动的生物群落。
它包括江河湖泊、湿地、海洋等不同类型的水体和生物。
水生生态系统在自然界中扮演着重要的角色,是地球上最丰富的生物群落之一。
水生生态系统的物质循环和能量流动是支撑生态系统平衡运转的重要机制。
一、水生生态系统的物质循环水生生态系统的物质循环是指各种生物间的相互作用和生态系统中日常生活所带来的物质输入和输出。
水生生态系统的物质循环包括碳、氮、磷等元素的循环和水的循环。
1、碳循环碳是组成生物体的元素之一。
在水生生态系统中,水草、微生物和浮游生物通过吸收二氧化碳进行自养作用,并将剩余的碳储存在体内。
同时,在光合作用中,这些生物能够将二氧化碳转换成为溶解性有机物,以此来提供自身的能量。
当这些生物死亡时,它们体内储存的碳会进入到死亡物质中,然后通过分解作用,释放到水生生态系统中。
这部分碳会被吸收和利用,从而成为下一代生物体的组成部分。
2、氮循环氮是蛋白质和核酸等物质的组成成分之一。
在水生生态系统中,氮的循环是由一系列生物、生物化学和物理化学过程所构成。
在自然条件下,氮的生物循环包括氨、亚硝酸盐和硝酸盐循环过程。
氮循环中最重要的是硝化反应、脱氮反应和氮固定作用。
在水生生态系统中,微生物是氮循环最重要的参与者之一。
硝化细菌、厌氧氨氧化菌、反硝化细菌和氮素固定细菌等微生物在氮循环中发挥着关键作用。
大部分氮素以硝酸盐的形式存在于水体和沉积物中。
氮固定细菌能够将空气中的氮气转化成为氨或亚硝酸盐,从而补充系统中氮素的不足。
反硝化细菌能将硝酸盐降解成为氮气,从而将氮素释放到大气层中。
3、磷循环磷是生物体生长和代谢所必须的元素之一,其在水生生态系统中的循环也很复杂。
在水中,磷主要以溶解的磷酸盐的形式存在。
磷的入口是通过大气沉降和陆地沉积物的输入。
磷的出口有水体流出和沉积物颗粒沉积等。
同时,水草、浮游生物和底栖动物等还可以通过吸收水中的难溶性磷酸盐来满足生长和代谢所需。