关于高层建筑结构设计的分析
高层建筑结构设计难点分析

高层建筑结构设计难点分析高层建筑是一种极具挑战性的建筑形态,其结构设计难点主要包括以下几个方面:一、抗风能力设计高层建筑极易受到风的影响,因此在结构设计中必须考虑到其抗风能力。
抗风能力的设计需要兼顾建筑体系的整体稳定性和构件的单独承载能力,以及楼层之间的相互作用。
这个难度主要集中在采取什么样的结构形式来提高抗风能力和如何承载强风作用时不出现局部破坏等问题。
二、地震设计地震是一种难以预测的自然灾害,对建筑物的结构稳定性造成极大的冲击。
因此,在高层建筑的结构设计中,必须考虑到其抗震能力。
高层建筑本身重量大、高度高、自振周期长,为了更好的抵御地震力,必须采用适当的结构形式,并考虑悬挂系统等方式。
此外,在设计中还需要考虑地震力从地基传递到建筑物的过程。
三、减震措施随着建筑物高度增加,其减震措施也变得越来越重要。
减震措施的设计需要考虑到建筑物所处场地的地质条件、建筑物结构的复杂性以及地震等自然因素。
高层建筑的减震措施主要包括框架剪力墙、外束结构、桁架系统、钢筋混凝土框架模号设计等,其设计难点主要集中在孔隙率、机械参数、设计储层等方面。
四、强度、稳定性设计高层建筑的结构设计中必须保证建筑体系的强度和稳定性,避免在长期使用过程中出现破坏。
强度和稳定性设计主要是通过研究材料的物理力学性质,进一步提高设计准确性。
此外,还需要考虑材料的接口和连接方式,提高建筑物的可靠性和耐久性。
综上所述,高层建筑结构设计难点主要集中在抗风能力、地震设计、减震措施、强度和稳定性设计等方面。
需要结合建筑物自身特点和场地条件,采取合适的结构形式和设计方案,实现高质量、安全稳定的建筑目标。
建筑中的高层结构设计和分析方法

建筑中的高层结构设计和分析方法随着城市化进程的加速,高层建筑的数量不断增加,高层建筑的结构设计和分析成为了建筑领域中的重要课题。
高层建筑由于其建筑高度大、结构复杂,一旦发生事故后果严重,因此在高层建筑的结构设计和分析过程中应该非常谨慎,采用科学的方法。
本文将介绍建筑中的高层结构设计和分析方法。
1、高层建筑的结构特点高层建筑的结构设计和分析的前提是了解高层建筑的结构特点。
高层建筑的结构可分为两个部分:主体结构和外围结构。
主体结构为承受水平和竖直荷载的主要力学结构,外围结构承受风压和同心力的主要结构。
首先是高层建筑的主体结构。
高层建筑主体结构的最大特点是其高度大,楼体承受复杂多变的自重和外界荷载。
高层建筑主体结构索要承受水平和垂直荷载,如地震、风荷载等。
因此高层建筑主体结构设计应特别注意抗震抗风等问题。
其次,是高层建筑的外围结构。
高层建筑的外围结构主要是承受风压和同心力的主要结构,同时具有良好的隔热保温、防水、防火等能力。
通常,高层建筑外围结构的形式比较丰富,如幕墙、空气层、标准节、剪力墙等。
因此,高层建筑的外围结构设计应该结合建筑的整体风格、使用功能等要素进行综合考虑。
2、高层建筑的结构设计方法高层建筑的结构设计方法有多种,包括传统经验法、试验模拟法、强度设计法和有限元分析法等。
先说传统经验法。
传统经验法是传统建筑价值传承的重要方式之一。
在传统建筑的设计中,主要以工匠传统经验和流传下来的规范方法为主要参考,如普通钢筋混凝土、框架吊顶结构等。
传统经验法方便快捷,但不足之处是不能满足复杂高层建筑设计的需求。
试验模拟法通常使用电子计算机在综合考虑一些设计因素的条件下,通过模拟实验得出模型的力学行为和应力分布。
因此试验模拟法不依赖于任何具体结构,并且实现了全球优化设计,从而使得设计更加优化,更加科学。
强度设计法是一种经典的设计方法,是建筑领域的主流设计方法之一。
强度设计法适用于结构计算较为简单的建筑,强调结构的强度和刚度,是保证结构安全的必要手段。
高层建筑结构优化设计案例分析(全文)

高层建筑结构优化设计案例分析(全文)范本一:正文:一:引言高层建筑结构优化设计是现代建筑设计中的重要环节,对于提高建筑的结构安全性、经济性和可持续性具有重要意义。
本文以某高层建筑项目为例,进行了结构优化设计案例分析,旨在探讨高层建筑结构在设计过程中的优化方法和技术。
二:背景该高层建筑项目位于城市中心地带,总高度达到200米,层数共计60层,包含商业、办公和住宅等功能。
项目地处地质条件复杂的地区,同时还需要考虑抗震、防风等因素,在设计过程中面临着诸多挑战。
三:结构设计3.1 结构形式本项目采用框架结构形式,通过立柱和梁的组合形成结构框架,然后再使用混凝土填充实现整体刚度的提升。
这种结构形式具有良好的承载能力和稳定性,能够满足高层建筑的要求。
3.2 结构材料主体结构材料采用高强度混凝土和钢材,其中混凝土强度等级为C50,钢材采用Q345B。
这种结构材料能够有效提高建筑的抗震性能和承载能力。
3.3 结构优化技术在设计过程中,采用了多种结构优化技术,包括有限元分析、参数化设计和多目标优化等。
通过有限元分析,对结构进行了力学计算和模拟,确定了合理的结构形态和尺寸。
参数化设计则通过调整参数来优化结构,使其在满足要求的前提下减少材料使用。
多目标优化则通过考虑多个指标因素来寻找最佳的结构设计方案。
四:设计成果经过优化设计,最终确定了高层建筑的结构方案。
该方案不仅满足了建筑的功能要求,还能够在地震和风载等自然力的作用下保证建筑的稳定性和安全性。
同时,该方案还有效降低了建筑的材料使用量,提高了经济性和可持续性。
五:结论通过本案例分析,我们可以得出结论:在高层建筑结构的优化设计过程中,采用框架结构形式,结合高强度混凝土和钢材等材料,运用有限元分析、参数化设计和多目标优化等技术,能够有效提高建筑的结构安全性、经济性和可持续性。
附件:1. 结构设计图纸2. 有限元分析报告3. 结构参数化设计数据法律名词及注释:1. 结构形式:指高层建筑的整体结构组成形式,如框架结构、剪力墙结构等。
高层建筑钢筋混凝土的结构设计分析

高层建筑钢筋混凝土的结构设计分析随着城市化进程的不断加快,高层建筑已经成为城市发展的重要标志和特色之一。
高层建筑的结构设计不仅影响建筑的稳定性和安全性,还直接关系到建筑的经济性和实用性。
在高层建筑的结构设计中,钢筋混凝土结构因其优良的性能和适应性,已经成为了主流选择。
本文将就高层建筑钢筋混凝土的结构设计进行分析,并探讨其设计要点和特点。
一、高层建筑的结构特点1.1. 高层建筑的承载力要求高高层建筑一般具有较大的自重和风荷载,同时还需要承受地震和动荷载等多种外部力的作用。
高层建筑的结构设计要求具有较高的承载能力和抗震性能。
1.2. 高层建筑的结构形式多样为了满足不同的使用需求和设计要求,高层建筑的结构形式多样,包括框架结构、筒体结构、框筒结构、悬挑结构等。
不同的结构形式对于结构设计和构件设计都有不同的要求。
1.3. 高层建筑的变形和挠度要求严格高层建筑的变形和挠度控制直接关系到建筑的使用性能和外观效果。
结构设计需要根据建筑的使用功能和外观要求合理控制建筑的变形和挠度。
1.4. 高层建筑的材料和施工要求高高层建筑的结构设计对材料和施工质量有较高的要求,需要选择具有高强度和耐久性的材料,并严格控制施工工艺和质量。
二、钢筋混凝土结构设计要点2.1. 结构稳定性钢筋混凝土结构的稳定性是结构设计的首要考虑因素。
在高层建筑的结构设计中,需要采用适当的结构形式和构件布局,合理分配荷载,确保结构的稳定性和可靠性。
2.2. 抗震性能高层建筑通常处于地震频繁的地区,因此抗震性能是结构设计的重要考虑因素。
钢筋混凝土结构在设计中需要采用合理的抗震措施,包括设置剪力墙、增加节点刚度和采用横向抗力系统等,提高建筑的抗震性能。
3.1. 结构形式选择在高层建筑的结构设计中,需要根据建筑的使用功能和周边环境选择合适的结构形式。
一般情况下,高层建筑常采用框架结构或筒体结构,以满足较高的承载能力和抗震性能要求。
3.2. 支撑系统设计高层建筑的支撑系统设计是结构设计中的关键环节。
高层结构设计中存在的问题及设计方法

高层结构设计中存在的问题及设计方法高层结构设计在建筑工程中起着至关重要的作用,它不仅承载着建筑物的重量,还要考虑到风荷载、地震作用等外部力的影响。
在高层结构设计过程中,常常会出现一些问题,例如结构稳定性、梁柱连接、横纵向约束等方面的设计不足,导致结构安全隐患的存在。
本文将就高层结构设计中存在的问题及设计方法进行探讨。
1. 结构稳定性不足高层建筑结构的稳定性是设计的重中之重,但是很多设计中存在着不足之处。
一些设计在结构稳定性方面未考虑周全,导致在自重、风荷载或地震等外部力作用下,结构容易发生倾斜、位移等问题,从而造成安全隐患。
2. 梁柱连接设计不合理梁柱连接设计不合理会导致整体结构的稳定性受到影响,甚至可能发生结构破坏。
在高层结构设计中,梁柱连接的设计需要考虑到承载能力、适应性等因素,因此设计不合理将会对结构的安全性产生负面影响。
3. 横纵向约束设计不足高层建筑结构的横纵向约束是确保结构整体稳定的重要因素,但在设计中常常存在疏漏。
横纵向约束设计不足将导致结构承受外部力作用时产生严重的变形和位移,进而威胁到结构的安全性。
二、高层结构设计方法在高层结构设计过程中,需要对结构的整体稳定性进行充分的分析。
这包括对结构的受力情况、承载能力、变形情况等进行详尽的计算和分析,从而确保结构在受到外部力作用时能够保持稳定。
在高层结构设计中,需要对梁柱连接进行合理的设计优化。
这包括选择合适的连接形式、材料和工艺,确保连接的承载能力和适应性达到设计要求,从而有效地提高结构的安全性和稳定性。
为了确保高层结构的整体稳定,需要加强横纵向约束的设计。
这包括增加结构的横向约束形式、增加约束构件的数量和强度等措施,从而有效地减少结构的变形和位移,确保结构整体的稳定性。
4. 应用新型结构材料在高层结构设计中,可以考虑采用一些新型的结构材料,如钢筋混凝土、钢结构、复合材料等。
这些新型材料具有较高的抗压、抗拉、抗弯等性能,能够有效提高结构的承载能力和稳定性,从而提高结构的安全性。
高层建筑结构设计难点分析

高层建筑结构设计难点分析高层建筑作为城市的地标和象征,其结构设计一直是建筑领域的一个重要课题。
随着城市化进程的不断加快,高层建筑的数量和高度也在不断增加,因此高层建筑结构设计的难点也逐渐凸显出来。
本文将对高层建筑结构设计的难点进行分析,并探讨如何克服这些难点。
一、受力分析复杂高层建筑由于其高度较大,受力分析通常会比较复杂。
在高层建筑的结构设计中,受力分析是基础和关键,只有深入研究高层建筑所承受的荷载和受力状况,才能有效地解决高层建筑结构设计中的难题。
在受力分析方面,高层建筑在不同楼层和不同构件上所受的荷载和力的分布都会有所不同,需要对整个建筑结构进行全方位的受力分析,确保每一个构件都能满足受力要求。
高层建筑的结构设计还需要考虑各种不同作用下的受力情况,包括静载荷、动载荷、风荷载等,这些都增加了受力分析的复杂性。
针对受力分析复杂的难点,结构设计师需要运用先进的受力分析方法和工具,如有限元分析、结构动力学分析等,对高层建筑的受力状况进行准确的模拟和计算,为结构设计提供科学的依据。
二、抗震设计要求高高层建筑所处的地理位置和环境不同,其抗震设计要求也会有所不同。
一般来说,地震是高层建筑面临的最大威胁之一,因此抗震设计是高层建筑结构设计中的一个重要难点。
高层建筑的抗震设计要求通常比较严格,需要考虑地震波的作用、建筑结构的受力状态、结构的位移要求等多个方面。
抗震设计需要考虑建筑结构在地震作用下的变形和破坏情况,要求建筑结构在地震发生时能够安全稳定地承受地震力的作用,减小地震对建筑结构的影响。
对于高层建筑抗震设计的难点,结构设计师需要根据建筑所处地区的地震烈度和其他地质条件,结合抗震设计规范,进行合理的抗震设计方案设计和结构计算。
还需要采用高性能材料和先进技术,提高建筑结构的抗震能力,确保建筑在地震发生时能够安全稳定地运行。
三、构造系统选择和优化高层建筑的构造系统选择和优化也是结构设计的难点之一。
构造系统的选择直接影响到建筑的结构性能和经济性,因此需要根据建筑的形式、功能和受力特点,合理选择和优化构造系统。
高层建筑结构设计案例分析(全文)

高层建筑结构设计案例分析(全文)第一篇范本:高层建筑结构设计案例分析一:前言本文档旨在对高层建筑结构设计进行案例分析,以便更好地了解和掌握高层建筑结构设计的相关知识和技术。
本文将从以下几个方面进行详细介绍和讨论。
二:背景介绍2.1 高层建筑的定义与分类2.2 高层建筑结构设计的重要性和挑战三:结构设计理论与方法3.1 高层建筑结构设计的基本原理3.2 结构设计的常用方法和工具四:案例分析4.1 高层建筑结构设计案例14.1.1 建筑背景介绍4.1.2 结构设计目标和要求4.1.3 结构设计方案分析4.1.4 结构材料选择和参数设计4.1.5 结构计算和优化4.1.6 结构施工和监控4.2 高层建筑结构设计案例24.2.1 建筑背景介绍4.2.2 结构设计目标和要求4.2.3 结构设计方案分析4.2.4 结构材料选择和参数设计4.2.5 结构计算和优化4.2.6 结构施工和监控五:结论与展望六:附件本文档涉及的附件包括:- 高层建筑结构设计案例1相关图纸和计算表格 - 高层建筑结构设计案例2相关图纸和计算表格七:法律名词及注释本文档中涉及的法律名词及其注释可见附件。
第二篇范本:高层建筑结构设计案例分析一:引言本文档旨在对高层建筑结构设计进行案例分析,以便更好地了解和掌握高层建筑结构设计的相关知识和技术。
通过详细的案例分析,我们可以探讨高层建筑结构设计的理论基础、设计方法、实际应用等方面的问题。
二:背景介绍2.1 高层建筑的定义与分类2.1.1 高层建筑的定义2.1.2 高层建筑的分类2.2 高层建筑结构设计的重要性和挑战2.2.1 高层建筑结构设计的重要性2.2.2 高层建筑结构设计面临的挑战三:结构设计理论与方法3.1 高层建筑结构设计的基本原理3.1.1 荷载分析与计算3.1.2 结构承载体系选择3.2 结构设计的常用方法和工具3.2.1 结构设计的常用方法3.2.2 结构设计的工具和软件四:案例分析4.1 高层建筑结构设计案例14.1.1 建筑背景介绍4.1.1.1 建筑用途和功能 4.1.1.2 建筑地理环境4.1.2 结构设计目标和要求4.1.3 结构设计方案分析4.1.4 结构材料选择和参数设计 4.1.5 结构计算和优化4.1.6 结构施工和监控4.2 高层建筑结构设计案例24.2.1 建筑背景介绍4.2.1.1 建筑用途和功能4.2.1.2 建筑地理环境4.2.2 结构设计目标和要求4.2.3 结构设计方案分析4.2.4 结构材料选择和参数设计4.2.5 结构计算和优化4.2.6 结构施工和监控五:结论与展望六:附件本文档涉及的附件包括:- 高层建筑结构设计案例1相关图纸和计算表格 - 高层建筑结构设计案例2相关图纸和计算表格七:法律名词及注释本文档中涉及的法律名词及其注释可见附件。
高层建筑结构设计难点分析

高层建筑结构设计难点分析高层建筑的结构设计是一项重要而复杂的工作,其难点如下:1. 抗风设计:高层建筑所面对的最主要的外部力是风力。
在设计过程中,需要考虑到风的速度、方向和频率等因素,并采取相应的措施来确保建筑的抗风性能。
2. 抗震设计:地震是另一个高层建筑结构设计中需要考虑的重要因素。
建筑的结构需要具有足够的强度和刚度,以确保在地震发生时能够保持稳定,并保护建筑内部的人员和设备安全。
3. 分析方法选择:在高层建筑结构设计中,有多种分析方法可供选择,如静力分析、模态分析和时程分析等。
设计师需要根据具体的要求和限制,选择适合的分析方法,并合理应用于设计中。
4. 结构材料选择:高层建筑的结构材料需要具备足够的强度、刚度和耐久性。
在选择材料时,需要考虑到建筑的荷载要求、环境条件、施工工艺等因素,并进行合理的材料搭配。
5. 施工技术要求:高层建筑的施工对结构设计有着很高的要求。
设计师需要考虑到施工过程中可能出现的各种情况,并进行合理的施工技术设计,以确保建筑的质量和安全。
6. 空间布局和功能需求:高层建筑的结构设计需要满足建筑的空间布局和功能需求。
设计师需要考虑到建筑的各个部分之间的相互关系和协调性,以及建筑的使用功能和舒适性等因素。
7. 维护和保养:高层建筑的结构设计需要考虑到建筑的维护和保养问题。
设计师需要合理设计建筑的各项设施和设备,以方便后期的维护和保养工作。
在高层建筑结构设计中,以上难点都需要设计师具备深入的专业知识和丰富的设计经验,以确保建筑的结构安全和使用性能。
设计师还需要密切关注不断发展的科学技术和行业标准,不断提升自身的设计水平和能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于高层建筑结构设计的分析
摘要:本文围绕高层建筑结构,总结了高层建筑结构设计的特点以及提出了高层建筑结构分析和各种体系相对应的方法,为探讨实际高层建筑结构分析与设计提供一定参考。
关键词:高层建筑;结构设计;分析
中图分类号:tu3文献标识码:a文章编号:
1 高层建筑结构设计特点
1.1 水平荷载成为决定因素
一方面,因为楼房自重和楼面使用荷载在竖构件中所引起的轴力和弯矩的数值,仅与楼房高度的一次方成正比;而水平荷载对结构产生的倾覆力矩,以及由此在竖构件中引起的轴力,是与楼房高度的两次方成正比;另一方面,对某一定高度楼房来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随结构动力特性的不同而有较大幅度的变化。
1.2 轴向变形不容忽视
高层建筑中,竖向荷载数值很大,能够在柱中引起较大的轴向变形,从而会对连续梁弯矩产生影响,造成连续梁中间支座处的负弯矩值减小,跨中正弯矩之和端支座负弯矩值增大;还会对预制构件的下料长度产生影响,要求根据轴向变形计算值,对下料长度进行调整。
1.3 侧移成为控制指标
与较低楼房不同,结构侧移已成为高楼结构设计中的关键因素。
随着楼房高度的增加,水平荷载下结构的侧移变形迅速增大,因而结构在水平荷载作用下的侧移应被控制在某一限度之内。
2 高层建筑的结构体系
2.1 框架-剪力墙体系
当框架体系的强度和刚度不能满足要求时,往往需要在建筑平面的适当位置设置较大的剪力墙来代替部分框架,便形成了框架-剪力墙体系。
在承受水平力时,框架和剪力墙通过有足够刚度的楼板和连梁组成协同工作的结构体系。
在体系中框架体系主要承受垂直荷载,剪力墙主要承受水平剪力。
框架-剪力墙体系的位移曲线呈弯剪型。
剪力墙的设置,增大了结构的侧向刚度,使建筑物的水平位移减小,同时框架承受的水平剪力显著降低且内力沿竖向的分布趋于均匀,所以框架-剪力墙体系的能建高度要大于框架体系。
2.2 剪力墙体系
当受力主体结构全部由平面剪力墙构件组成时,即形成剪力墙体系。
在剪力墙体系中,单片剪力墙承受了全部的垂直荷载和水平力。
剪力墙体系属刚性结构,其位移曲线呈弯曲型。
剪力墙体系的强度和刚度都比较高,有一定的延性,传力直接均匀,整体性好,抗倒塌能力强,是一种良好的结构体系,能建高度大于框架或框架-剪力墙体系。
2.3 筒体体系
凡采用筒体为抗侧力构件的结构体系统称为筒体体系,包括单筒体、筒体-框架、筒中筒、多束筒等多种型式。
筒体是一种空间受
力构件,分实腹筒和空腹筒两种类型。
实腹筒是由平面或曲面墙围成的三维竖向结构单体,空腹筒是由密排柱和窗裙梁或开孔钢筋混凝土外墙构成的空间受力构件。
筒体体系具有很大的刚度和强度,各构件受力比较合理,抗风、抗震能力很强,往往应用于大跨度、大空间或超高层建筑。
3 高层建筑结构分析
3.1 高层建筑结构分析的基本假定高层建筑结构是由竖向抗侧力构件(框架、剪力墙、筒体等)通过水平楼板连接构成的大型空间结构体系。
要完全精确地按照三维空间结构进行分析是十分困难的。
各种实用的分析方法都需要对计算模型引入不同程度的简化。
下面是常见的一些基本假定:
3.1.1 弹性假定。
目前工程上实用的高层建筑结构分析方法均采用弹性的计算方法。
在垂直荷载或一般风力作用下,结构通常处于弹性工作阶段,这一假定基本符合结构的实际工作状况。
但是在遭受地震或强台风作用时,高层建筑结构往往会产生较大的位移,出现裂缝,进入到弹塑性工作阶段。
此时仍按弹性方法计算内力和位移时不能反映结构的真实工作状态的,应按弹塑性动力分析方法进行设计。
3.1.2 小变形假定。
小变形假定也是各种方法普遍采用的基本假定。
但有不少人对几何非线性问题(p-δ效应)进行了一些研究。
一般认为,当顶点水平位移δ与建筑物高度h的比值δ/h > 1/500时, p-δ效应的影响就不能忽视了。
3.1.3 刚性楼板假定。
许多高层建筑结构的分析方法均假定楼板在自身平面内的刚度无限大,而平面外的刚度则忽略不计。
这一假定大大减少了结构位移的自由度,简化了计算方法。
并为采用空间薄壁杆件理论计算筒体结构提供了条件。
一般来说,对框架体系和剪力墙体系采用这一假定是完全可以的。
但是,对于竖向刚度有突变的结构,楼板刚度较小,主要抗侧力构件间距过大或是层数较少等情况,楼板变形的影响较大。
特别是对结构底部和顶部各层内力和位移的影响更为明显。
可将这些楼层的剪力作适当调整来考虑这种影响。
3.2 高层建筑结构静力分析方法
3.2.1 框架-剪力墙结构
框架-剪力墙结构内力与位移计算的方法很多,大都采用连梁连续化假定。
由剪力墙与框架水平位移或转角相等的位移协调条件,可以建立位移与外荷载之间关系的微分方程来求解。
由于采用的未知量和考虑因素的不同,各种方法解答的具体形式亦不相同。
框架-剪力墙的机算方法,通常是将结构转化为等效壁式框架,采用杆系结构矩阵位移法求解。
3.2.2 剪力墙结构
剪力墙的受力特性与变形状态主要取决于剪力墙的开洞情况。
单片剪力墙按受力特性的不同可分为单肢墙、小开口整体墙、联肢墙、特殊开洞墙、框支墙等各种类型。
不同类型的剪力墙,其截面应力分布也不同,计算内力与位移时需采用相应的计算方法。
剪力墙
结构的机算方法是平面有限单元法。
此法较为精确,而且对各类剪力墙都能适用。
但因其自由度较多,机时耗费较大,目前一般只用于特殊开洞墙、框支墙的过渡层等应力分布复杂的情况。
3.3 筒体结构
筒体结构的分析方法按照对计算模型处理手法的不同可分为三类:等效连续化方法、等效离散化方法和三维空间分析,这里主要讨论三维空间分析。
等效连续化方法是将结构中的离散杆件作等效连续化处理。
一种是只作几何分布上的连续化,以便用连续函数描述其内力;另一种是作几何和物理上的连续处理,将离散杆件代换为等效的正交异性弹性薄板,以便应用分析弹性薄板的各种有效方法。
等效离散化方法是将连续的墙体离散为等效的杆件,以便应用适合杆系结构的方法来分析。
这一类方法包括核心筒的框架分析法和平面框架子结构法等。
比等效连续化和等效离散化更为精确的计算模型是完全按三维空间结构来分析筒体结构体系,其中应用最广的是空间杆-薄壁杆系矩阵位移法。
这种方法将高层结构体系视为由空间梁元、空间柱元和薄壁柱元组合而成的空间杆系结构。
4 结束语
随着高层建筑进一步的发展,满足高层建筑的形式,材料,力学分析模型都将日趋复杂多元,为了革新高层建筑,体现其魅力,追求新的结构形式和更加合理的力学模型将是土木工程师们的目标和方向。
在高层建筑结构设计中,结构工程师不能仅仅重视结构设
计的准确性而忽略结构方案的具体实际情况,应作出合理的结构方案选择。
高层建筑结构设计人员应根据具体情况进行具体分析掌握的知识处理实际建筑设计中遇到了各种问题。
参考文献:
[1] 晏育松.高层建筑结构设计中的若干问题研究[d].南昌大学,2010年.
[2] 刘东波,刘辉平.预应力技术在建筑工程中的应用[a].土木建筑学术文库(第14卷)[c].2010年.
[3] 王全凤,张波,罗漪.框一剪结构剪力墙中断和楼层刚度比[j].建筑结构,2009年.
[4] 李国胜,多高层钢筋混凝土结构设计中疑难问题的处理及算例,中国建筑工业出版社,2007.
[5] 于险峰.高层建筑结构设计特点及其体系[j].建筑技术,2009,(24).。