光纤通信:第8章光纤通信网络.ppt
合集下载
第八章 光波分复用系统

36
8.2.3 WDM系统波长规划
表8-4 32通路DWDM系统中心频率
序号 1 2 3 …… 标称中心频率(THz) 标称中心波长(nm) 192.10 192.20 192.30 …… 1560.61 1559.79 1558.98 ……
30
31 32
195.00
195.10 195.20
37
8.1 波分复用原理
提高光纤通信系统的容量的方法包括时分复用( TDM )、 波分复用(WDM)、空分复用(SDM)、模分复用(MDM) 和极化复用(PDM)等 最常见的 TDM 方法的主要缺点是当电信号的传输速率达 到较高等级(如10Gbit/s或更高时),对于光器件(如激光 器和调制器)的开关速率等性能要求较高,实现难度较大, 同时光纤中的色散和非线性等也限制了调制信号的速率。 波分复用( WDM )为代表的多信道光纤通信系统成为实 现大容量传输的主要技术方案之一。
图8-2 双纤单向传输WDM系统 可以方便地分阶段动态扩容,可以根据实际业务量的需要
15 逐步增加波长来实现扩容,是目前最主要的应用形式。
8.1.2 WDM系统的应用形式
λ1
Tx1
复 用
Txn
λn
器
λ1······λ1n
解 复 用 器
λ1
Rห้องสมุดไป่ตู้1
λn
Rxn
λn+1
光纤放大器 解 复 用 器
复
Rxn+1
第8章 光波分复用系统
本章要点
本章主要介绍以波分复用(WDM)为代表的多 信道光纤通信系统及其关键技术,以及光时分复用 (OTDM)技术原理。
2
WDM系统和SDH系统的关系
在光网络传送层的关系:WDM系统与SDH系统均属于传送网 层,二者都是建立在光纤传输媒质。SDH系统是在电通道层上 进行的复用、交叉连接和组网,而WDM系是在光域上进行的复 用、交叉连接和组网。 对承载信号复用方式的区别:SDH是基于单波长(一根光纤 传输一个波长光路)的时分复用(TDM)系统;WDM技术在一根 光纤中同时传输不同波长的多个光载波信号,为FDM系统,充 分利用光纤带宽资源,增加系统传输容量。 信号的光接口标准:SDH设备的光接口符合ITU-T G.957和 G.691建议,该标准对工作中心波长没有特别规定。在WDM系统 中,光接口必须满足ITU-T G.692建议。该建议规定了每个光 通路的参考频率、通路间隔、标称中心频率(即中心波长)、 3 中心频率频率偏差等参数。
8.2.3 WDM系统波长规划
表8-4 32通路DWDM系统中心频率
序号 1 2 3 …… 标称中心频率(THz) 标称中心波长(nm) 192.10 192.20 192.30 …… 1560.61 1559.79 1558.98 ……
30
31 32
195.00
195.10 195.20
37
8.1 波分复用原理
提高光纤通信系统的容量的方法包括时分复用( TDM )、 波分复用(WDM)、空分复用(SDM)、模分复用(MDM) 和极化复用(PDM)等 最常见的 TDM 方法的主要缺点是当电信号的传输速率达 到较高等级(如10Gbit/s或更高时),对于光器件(如激光 器和调制器)的开关速率等性能要求较高,实现难度较大, 同时光纤中的色散和非线性等也限制了调制信号的速率。 波分复用( WDM )为代表的多信道光纤通信系统成为实 现大容量传输的主要技术方案之一。
图8-2 双纤单向传输WDM系统 可以方便地分阶段动态扩容,可以根据实际业务量的需要
15 逐步增加波长来实现扩容,是目前最主要的应用形式。
8.1.2 WDM系统的应用形式
λ1
Tx1
复 用
Txn
λn
器
λ1······λ1n
解 复 用 器
λ1
Rห้องสมุดไป่ตู้1
λn
Rxn
λn+1
光纤放大器 解 复 用 器
复
Rxn+1
第8章 光波分复用系统
本章要点
本章主要介绍以波分复用(WDM)为代表的多 信道光纤通信系统及其关键技术,以及光时分复用 (OTDM)技术原理。
2
WDM系统和SDH系统的关系
在光网络传送层的关系:WDM系统与SDH系统均属于传送网 层,二者都是建立在光纤传输媒质。SDH系统是在电通道层上 进行的复用、交叉连接和组网,而WDM系是在光域上进行的复 用、交叉连接和组网。 对承载信号复用方式的区别:SDH是基于单波长(一根光纤 传输一个波长光路)的时分复用(TDM)系统;WDM技术在一根 光纤中同时传输不同波长的多个光载波信号,为FDM系统,充 分利用光纤带宽资源,增加系统传输容量。 信号的光接口标准:SDH设备的光接口符合ITU-T G.957和 G.691建议,该标准对工作中心波长没有特别规定。在WDM系统 中,光接口必须满足ITU-T G.692建议。该建议规定了每个光 通路的参考频率、通路间隔、标称中心频率(即中心波长)、 3 中心频率频率偏差等参数。
通信原理课件第八章 时分复用(一)

基带信号 m1(t)
m2(t)
信道
低通滤波器 1 低通滤波器 2
m1 ′(t ) m2′(t )
mn -1 (t ) mn(t)
发送端
接收端
低通滤波器 n-1 低通滤波器 n
mn -1 ′(t ) mn ′(t )
图 6-4 时分复用系统示意图
wujing
现代通信原理——第八章 时分复用
8
1路 2路 3路 4路
同步时分复用原理
4 32 1
D CB A d cb a
cC3 bB2 aA1
帧3
帧2
帧1
2
1
B
A
b
a
异步时分复用原理
2b B a A 1
帧6 帧5 帧4 帧3 帧2 帧1
wujing
现代通信原理——第八章 时分复用
12
TDM方式的优点(相对与FDM)
❖ 1、多路信号的汇合和分路都是数字电路,比 FDM的模拟滤波器分路简单、可靠。
❖ 把基群数据流采用同步(SDH)或准同步数字复接 技术汇合成更高速的数据(称为高次群),高次群 的复接结构称为高次群的复接帧。
❖ 对帧的研究是时分复用系统研究的重点,相当于 对频分复用系统中频道的研究。
wujing
现代通信原理——第八章 时分复用
17
E1帧结构源于语音通信:
❖ 抽样频率:
fs=8000Hz
❖ 空分复用方式(SDM,space division multiplex ) 无线通信中(包括卫星通信)的位置复用 有线通信中的同缆多芯复用。
❖ 码分复用方式(CDM,code division multiplex ) 编码发射、相关接收技术。
光纤通信(第二版)课件PPT(刘增基著)

第1章 概 论
为了克服气候对激光通信的影响,人们自然想到把激光束 限制在特定的空间内传输, 因而提出了透镜波导和反射镜波导的 光波传输系统。透镜波导是在金属管内每隔一定距离安装一个 透镜,每个透镜把经传输的光束会聚到下一个透镜而实现的。 反射镜波导和透镜波导相似,是用与光束传输方向成45°角的 两个平行反射镜代替透镜而构成的。这两种波导,从理论上讲 是可行的,但在实际应用中遇到了不可克服的困难。首先,现 场施工中校准和安装十分复杂;其次,为了防止地面活动对波
由于没有找到稳定可靠和低损耗的传输介质,对光通信的 研究曾一度走入了低谷。
第1章 概 论
1.1.2 现代光纤通信 1966 年,英籍华裔学者高锟(C.K.Kao)和霍克哈姆
(C.A.Hockham)发表了关于传输介质新概念的论文,指出了利用 光纤(Optical Fiber)进行信息传输的可能性和技术途径,奠定了 现代光通信——光纤通信的基础。当时石英纤维的损耗高达 1000 dB/km以上,高锟等人指出:这样大的损耗不是石英纤维 本身固有的特性,而是由于材料中的杂质,例如过渡金属(Fe、 Cu等)离子的吸收产生的。材料本身固有的损耗基本上由瑞利 (Rayleigh)散射决定,它随波长的四次方而下降,其损耗很小。 因此有可能通过原材料的提纯制造出适合于长距离通信使用的 低损耗光纤。如果把材料中金属离子含量的比重降低到10-6以 下,就可以使光纤损耗减小到10 dB/km。再通过改进制造工艺 的热处理提高材料的均匀性,可以进一步把损耗减小到几 dB/km。这个思想和预测受到世界各国极大的重视。
十一五 普通高等教育“十一五”国家级规划教材
光 纤 通 信(第二版)
刘增基 周洋溢 胡辽林 编著
任光亮 周绮丽
西 安 电 子西科 技 大 学 出 版 社
光纤通信系统PPT课件

套塑光纤结构
48 .
现代通信系统 第4章 光纤通信系统
❖按传输波长分类 (1)短波长光纤
37 .
现代通信系统 第4章 光纤通信系统
(3)三角形光纤 纤芯折射
率分布曲线为 三角形。
38 .
现代通信系统 第4章 光纤通信系统
光纤折射率分布曲线 39 .
现代通信系统 第4章 光纤通信系统
❖按传导模的数目分类: 传导模指能够在光纤中远距离传输的传
播模式。 (1)多模光纤
当纤芯的几何尺寸(直径一般为50μm) 远大于光波波长(如1.55μm)时,光纤剖面折 射率分布为渐变型,外径125μm。光纤传输 的过程中会存在着几十种乃至几百种传输模 式,称为多模光纤。
40 .
现代通信系统 第4章 光纤通信系统
(2)单模光纤 当纤芯的几何尺寸较小(一般为
8μm~10μm),与光波长在同一数量级, 这时,光纤只允许一种模式(基模)在 其中传播,其余的高次模全部截止,这 样的光纤称为单模光纤。
单模光纤的折射率分布多呈阶跃性。
41 .
现代通信系统 第4章 光纤通信系统
目前光纤已成为信息宽带传输的主要媒 质,光纤通信系统将成为未来国家信息基础 设施的支柱。
7 .
现代通信系统 第4章 光纤通信系统
光纤通信系统是以光导纤维和激光 技术、光电集成技术为基础发展起来的 通信系统,它具有频带宽、重量轻、体 积小、节省能源,主要用于大容量国际、 国内长途通信干线,也用于短局间中继。 我国今后不再敷设新的长途电缆线路, 而全部采用光缆。
实用的光纤通信系统一般都是双向 的,每一端都有光发送机、光接收机和 电发送机、电接收机并且每一端的光发 送机和光接收机做在一起,称为光端机, 电发送机和电接收机组合起来称为电端 机。同样,中继器也有正反两个方向。
48 .
现代通信系统 第4章 光纤通信系统
❖按传输波长分类 (1)短波长光纤
37 .
现代通信系统 第4章 光纤通信系统
(3)三角形光纤 纤芯折射
率分布曲线为 三角形。
38 .
现代通信系统 第4章 光纤通信系统
光纤折射率分布曲线 39 .
现代通信系统 第4章 光纤通信系统
❖按传导模的数目分类: 传导模指能够在光纤中远距离传输的传
播模式。 (1)多模光纤
当纤芯的几何尺寸(直径一般为50μm) 远大于光波波长(如1.55μm)时,光纤剖面折 射率分布为渐变型,外径125μm。光纤传输 的过程中会存在着几十种乃至几百种传输模 式,称为多模光纤。
40 .
现代通信系统 第4章 光纤通信系统
(2)单模光纤 当纤芯的几何尺寸较小(一般为
8μm~10μm),与光波长在同一数量级, 这时,光纤只允许一种模式(基模)在 其中传播,其余的高次模全部截止,这 样的光纤称为单模光纤。
单模光纤的折射率分布多呈阶跃性。
41 .
现代通信系统 第4章 光纤通信系统
目前光纤已成为信息宽带传输的主要媒 质,光纤通信系统将成为未来国家信息基础 设施的支柱。
7 .
现代通信系统 第4章 光纤通信系统
光纤通信系统是以光导纤维和激光 技术、光电集成技术为基础发展起来的 通信系统,它具有频带宽、重量轻、体 积小、节省能源,主要用于大容量国际、 国内长途通信干线,也用于短局间中继。 我国今后不再敷设新的长途电缆线路, 而全部采用光缆。
实用的光纤通信系统一般都是双向 的,每一端都有光发送机、光接收机和 电发送机、电接收机并且每一端的光发 送机和光接收机做在一起,称为光端机, 电发送机和电接收机组合起来称为电端 机。同样,中继器也有正反两个方向。
光纤通信原理-(全套)课件

1.2 光纤通信的主要特性
1.2.1 光纤通信的优点
1. 光纤的容量大
光纤通信是以光纤为传输媒介,光波为载 波的通信系统,其载波—光波具有很高的 频率(约1014Hz),因此光纤具有很大的通信 容量。
2. 损耗低、中继距离长
目前,实用的光纤通信系统使用的光 纤多为石英光纤,此类光纤在1.55μm波长 区的损耗可低到0.18dB/km,比已知的其他 通信线路的损耗都低得多,因此,由其组 成的光纤通信系统的中继距离也较其它介 质构成的系统长得多。
光纤通信原理
1
第一章 概 述
1.1 光纤通信的发展与现状 1.2 光纤通信的主要特性 1.3 光纤通信系统的组成和分类
1.1 光纤通信的发展与现状
1.1.1 早期的光通信
到了1880年,贝尔发明了第一个光电 话,这一大胆的尝试,可以说是现代光通 信的开端。
在这里,将弧光灯的恒定光束投射在 话筒的音膜上,随声音的振动而得到强弱 变化的反射光束,这个过程就是调制。
式中:R、T都是复数,包括大小及相
位。其模值分别表示反射波、传递波与入
射波幅度的大小之比;2Ф1、2Ф2是R和T的
相角,分别表示在介质分界面上反射波、 传递波比入射波超前的相位。
3. 平面波的全反射
全反射是一种重要的物理现象,当光 波从光密介质射入光疏介质,且入射角大 于临界角时才能产生全反射,即全反射必
1. 子午射线在阶跃型光纤中的传播
阶跃型光纤是由半径为a、折射率为常 数n 1的纤芯和折射率为常数n2的包层组 成,并且n1>n2,如图2.6所示。
图2.6 光线在阶跃型光纤中的传播
2. 子午射线在渐变型光纤中的传播
渐变型光纤与阶跃型光纤的区别在于 其纤芯的折射率不是常数,而是随半径的 增加而递减直到等于包层的折射率。
光纤通信原理和技术PPT课件

波长(µm) 系统类型
0.85
IM/DD
光纤 多模
BL(Gb/s·km) 年代
2
1978
1.3
IM/DD
单模
第1章 绪论
1.1 光通信发展史 1.2 国内外光纤通信技术发展概况 1.3 光纤通信系统的基本构成
第1章 绪论
1.1 光通信发展史
1.1.1 现代通信的发展
人类社会出现后,人与人之间就需要信息交流。原始社会 人们可以靠声音(语言)、肢体动作(肢体语言)或面部表情 等交流信息,这就是原始的通信,是人们面对面的交流。
60年代最好的光纤传输衰减为1000dB/km,即传输1km, 光功率降到原来的1/10100≈0,因而这种光纤不可能用作通 信媒质。当时没有人相信光纤可以用于通信,也没有人从 事光纤用于通信的研究。英藉华人学者高锟博士的贡献在 于理论上证明这样大的传输衰减是由于光纤中杂质吸收和 散射引起的。如将光纤提纯,则传输衰减可以降到可在通 信中实用的程度(最初提出的指标是20dB/km)[1].这一贡 献具有深远意义,完全改变了通信容量不适应社会发展的 需求,推动了信息社会更快地到来。由于这一贡献,高锟 博士获得了2009年诺贝尔物理学奖。
第1章 绪论
2.半导体激光器性能的突破
1960年发明的第一个激光器是红宝石(固体)激光器,不久 (1961年)半导体激光器研制成功,但当时需要在低温(液氮) 下脉冲工作。后来采用异质结技术使激光器可在常温下连续 工作,但开始只有数小时甚至数分钟的寿命,由于寿命极短 不能实用化。经过一段时间的努力,才研制成功可实用的半 导体激光器。现在的半导体激光器的性能有了极大的提高, 其寿命可达106小时,甚至达108小时,功率可达10 毫瓦量级 (泵浦激光器可达几百毫瓦),可调谐范围几百GHz,线宽低到 1―10MHz(外腔激光器能达几十kHz),适用于各种光通信系统, 为光纤通信实用化打下了基础。激光器价格也在不断下降, 干线通信系统所用激光器已降到千美元量级;几十美元,甚 至几美元的半导体激光器可用于接入网系统。
光纤通信第五版-第8章-耦合器与连接器

插入损耗是各输出端口的输出功率状况,不仅与固有损耗有关,而且 与分光比有很大的关系。
描述光耦合器特性的一些技术参数
3.分光比(Coupling Ration)
CRi
Pouti 100% Pouti
(3.6)
它是光耦合器特有的技术指标。
4.方向性(Directivity)
方向性是光耦合器特有的技术指标, 是衡量器件定 向传输特性的参数。以X形耦合器为例,方向性 定义为耦合器正常工作时,输入一侧非注入光的
衡量器件对于传输光信号的偏振态的敏感程度的参量,也称为偏振灵 敏度。
描述光耦合器特性的一些技术参数
当传输光信号的偏振态变化 360 时,器件各输出
端输出功率的最大变化量:
PDL
10
lg
Min(Pouti ) Max(Pouti )
(dB)
(3.9)
7.隔离度(Isolation)
对于要求均匀分光的光耦合器(主要是星形和树 形),由于工艺局限,往往不可能做到绝对的均 匀,用均匀性来衡量其不均匀程度:
FL
10
lg
Min(Pouti ) Max(Pouti )
(dB)
(3.8)
6.偏振相关损耗(Polarization Dependent
Loss)
I
10
lg
P 式中,Pouti为在第i个光路输出端测到的其他输出端
光信号的功率; 为Pin输i 入的光功率。
光耦合器的制作方法
光耦合器大致可分为分立元件组合型、全 光纤型和平面波导型。
1、早期采用分立光学元件(如棒透镜、反射镜 、棱镜等)组合拼接。
光纤通信_08_光波分复用

3.中心频率偏差
中心频率偏差定义为标称中心频率和实际中心频 率之差
对于信道间隔大于200GHz的系统,各个信道的
偏差应小于信道间隔的1/5 16通道WDM的 系统通道间隔为 100GHz( 约 0.8nm),最大中心频率偏移为±20GHz 8通道WDM系统的通道间隔为200GHz(约为 1.6nm),为了能向16通道升级,最大中心频率 偏差也为±20GHz
数倍,或整数分之一
如0.4 nm,0.8 nm,1.6 nm等
在可用的1530~1565nm波长范围内,目前广 泛使用的是各个通道频率基于参考频率为 193.1THz、最小间隔为100GHz的频率间隔系
列
2.通道分配表
我国国标《光波分复用系统总体技术要求》中对 32波以及16波、8波的WDM系统的中心波长进
三、SDH与WDM的关系
目前实际应用的WDM系统的客户层信号都是基于 SDH的,也就是N×2.5 (10Gb/s)SDH系统
但并不是说WDM系统只能承载SDH信号
WDM系统的一个最重要特点是与业务无关,也就
是说业务透明
还是IP、ATM信号
它可以承载各种格式的信号,无论是PDH、SDH,
三、SDH与WDM的关系
一、WDM基本概念
目 前 , WDM 系 统 主 要 指 密 集 波 分 复 用 系 统 (DWDM),应用在1550nm波长区段内,复
用8、16或更多的波长在一对光纤上(也可采用
单纤)构成光纤通信系统 ITU-T 建 议 的 标 准 的 波 长 间 隔 为 0.8nm ( 在 或整数分之一
如0.4nm,0.8nm,1.6nm等
光纤链路的优势是许多不同的波长可以在 1300~1600 nm的光谱带宽内沿一根光纤同时
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字化就是在通信网的各个部分(核心网和接入网)及各个 环节(传输、交换、接入、终端等)全面采用数字技术。目前核 心网(或称骨干网)已实现了数字化,采用了数字传输和数字交 换技术,其优越性已十分明显。 接入网的情况比较复杂,模 拟的东西还大量存在,如电话网从核心网边缘的端局交换机到 用户终端的用户环路,大量使用的还是模拟二线;有线电视系 统也基本上是模拟的;新近采用的非对称数字用户线(ADSL) 实际上是模数混合体制。
随着计算机网络的出现和发展,特别是因特网(Internet)扩 展到全世界,对数据业务量的需求不断增长,近十年来,几 乎每半年翻一番。数据业务量猛增的主要推动力是因特网的 WWW业务和高速多媒体业务。因此,用不了多少时间, 数 据业务的总量将超过电话业务。此外,电视会议、远程教育、 电子商务等应用都要求通信网提供高速数据和视频业务,而 这些业务所需的带宽都远大于电话业务。因此业务综合化必 将导致网络的宽带化。
今天, 在核心网内以光纤为传输媒质,采用DWDM技术 实现宽带传输,同时采用光交换技术构成全光通信网,已成为 现实。
在接入网中,光纤正在伸向用户,从光纤到路边(FTTC)、 光纤到大楼(FTTB)发展到光纤到交接箱(FTTCab),最后将实 现光纤到家(FTTH)。 当然, 从带宽需求和经济性考虑,接 入网采用光纤没有必要也不可能如同核心网那样采用DWDM 技术,而是采用比较简单和廉价的光纤通信设备。 因此接入 网和核心网实现宽带化的技术途径是不同的。本章将分别予 以介绍。
SDH传送网分层模型如图8.1所示。自上而下依次为电路 层网络、通道层网络和传输媒质层网络。
传送 网 电路 层网络
通道 层网络 传输 媒质层网 络
64 kb/ s电 路交 换网
示例
分组 交 换网
租用 线 电路 网
SD H VC -n1通道网
SD H VC -通3 道网 n= 1,2
SDH传送网的分层模型
电路层网络涉及到电路层接入点之间的信息传递并直接 为用户提供通信业务,如电路交换业务、分组交换业务、租 用线业务和BISDN虚通路等。根据提供业务的不同可以分为 不同的电路层网络,如64 kb/s电路交换网、 分组交换网、 租 用线电路网和ATM交换网等。电路层网络的设备包括用于各 种交换业务的交换机(例如电路交换机或分组交换机)和用于租 用线业务的交叉连接设备等。电路层网络与相邻的通道层网 络是相互独立的。
综合业务数字网(包括窄带和宽带)的主要目的是要实现接 入部分的数字化,提供端到端数字连接,从而支持综合业务, 但由于种种原因,并没有普遍推广应用。所以现在只能说接入 网正处于数字化的过程中,还不能说已实现了数字化。
综合化,主要指业务的综合,即通信网要由原来的单一业 务网(如电话网、 分组数据网)发展为能同时提供多种业务(包 括话音、 数据、 图像等), 特别是多媒体业务的网络。数字化 是综合化的前提。当各种类型的消息都用统一的数字符号表示 时,通过端到端的数字传输,便能实现综合业务。长期以来, 通信网的主要业务是话音,所以电信网基本上等同于电话网; 电信网中还有一种业务是电报, 相当于原始的低速数据业务。
1. 传送网的分层和分割
传送网是分层的,由垂直方向的连续的传送网络层(即层 网络)叠加而成,从上而下分别为电路层、 通道层和传输媒质 层(又分为段层和物理层)。每一层网络为其相邻的高一层网络 提供传送服务,同时又使用相邻的低一层网络所提供的传送 服务。 提供传送服务的层称为服务者(Server),使用传送服务 的层称为客户(Client), 因而相邻的层网络之间构成了客户/服 务者关系。
通道层网络用于通道层接入点之间的信息传递并支持不 同类型的电路层网络,为电路层网络提供传送服务,其提供 传输链路的功能与PDH中的2 Mb/s、34 Mb/s 和140Mb/s, SDH中的VC11、VC12、VC2、VC3 和VC4,以及BISDN中的虚 通道功能类似。
能够对通道层网络的连接性进行管理控制是SDH网的重 要特性之一,SDH传送网中的通道层网络还可进一步分为高 阶通道层网络和低阶通道层网络。
传输媒质层网络为通道层网络结点提供合适的通道容量, 并且可以进一步分为段层网络和物理媒质层网络(简称物理层), 其中段层网络是为了保证通道层的两个结点间信息传递的完 整性,物理层是指具体的支持段层网络的传输媒质,如光缆 或无线。SDH网中的段层网络还可以进一步细分为复用段层 网络和再生段层网络,其中复用段层网络涉及复用段终端之 间的端到端的信息传递,再生段层网络涉及再生器之间或再 生器与复用段终端之间的信息传递。一个完整的SDH传送网 分层模型如图8.2所示。
通信网络从电话业务为主演进到多媒体业务为主,每个 用户占用的带宽由64 kb/s要提高到6 Mb/s左右,由此估计总 业务量约增加100倍。
如果考虑到今后要支持高清晰度电视等更宽带宽的业务, 则总业务量还会不断增加。所以网络宽带化首先是人们的迫切 需求。另一方面,由于光纤通信技术的成就,特别是密集波分 复用(DWDM)技术的发展,使得网络的传输带宽大大增加。如 果双绞铜线的传输带宽按2 Mb/s估计,一根光纤采用DWDM技 术,传输容量可达到20~200 Gb/s, 也就是说, 光纤的传输容 量是铜线的一万至十万倍。因此宽带化意味着光纤将成为主要 的传输媒质。
8.2 SDH 传 送 网
8.2.1 SDH传送网的功能结构
一个电信网有两大功能群:传送功能群和控制功能群。 所谓传送网就是完成传送功能的手段,当然传送网也能传递各 种网络控制信息。传送网主要指逻辑功能意义上的网络,是一 个复杂庞大的网络。为了便于网络的设计和管理,通常用分层 (Laying)和分割(Partitioning)的概念,将网络的结构元件按功能 分为参考点(接入点)、拓扑元件、传送实体和传送处理功能四 大类。网络的拓扑元件分为三种,即层网络、子网和链路, 只需这三种元件就可以完全地描述网络的逻辑拓扑,从而使网 络的结构变得灵活,网络描述变得容易。
第 8 章 光纤通信网络
8.1 通信网的发展趋势
8.2 SDH传送网
8.3 WDM光网络
8.4 光接入网
返回主目录
第8章 光纤通信网络
8.1通信网的发展趋势
通信网总的发展趋势是数字化、综合化和宽带化。与光纤 通信关系最为密切的是宽带化,这是人类社会发展到信息时代 的迫切需求, 也是科技进步的必然产物。
随着计算机网络的出现和发展,特别是因特网(Internet)扩 展到全世界,对数据业务量的需求不断增长,近十年来,几 乎每半年翻一番。数据业务量猛增的主要推动力是因特网的 WWW业务和高速多媒体业务。因此,用不了多少时间, 数 据业务的总量将超过电话业务。此外,电视会议、远程教育、 电子商务等应用都要求通信网提供高速数据和视频业务,而 这些业务所需的带宽都远大于电话业务。因此业务综合化必 将导致网络的宽带化。
今天, 在核心网内以光纤为传输媒质,采用DWDM技术 实现宽带传输,同时采用光交换技术构成全光通信网,已成为 现实。
在接入网中,光纤正在伸向用户,从光纤到路边(FTTC)、 光纤到大楼(FTTB)发展到光纤到交接箱(FTTCab),最后将实 现光纤到家(FTTH)。 当然, 从带宽需求和经济性考虑,接 入网采用光纤没有必要也不可能如同核心网那样采用DWDM 技术,而是采用比较简单和廉价的光纤通信设备。 因此接入 网和核心网实现宽带化的技术途径是不同的。本章将分别予 以介绍。
SDH传送网分层模型如图8.1所示。自上而下依次为电路 层网络、通道层网络和传输媒质层网络。
传送 网 电路 层网络
通道 层网络 传输 媒质层网 络
64 kb/ s电 路交 换网
示例
分组 交 换网
租用 线 电路 网
SD H VC -n1通道网
SD H VC -通3 道网 n= 1,2
SDH传送网的分层模型
电路层网络涉及到电路层接入点之间的信息传递并直接 为用户提供通信业务,如电路交换业务、分组交换业务、租 用线业务和BISDN虚通路等。根据提供业务的不同可以分为 不同的电路层网络,如64 kb/s电路交换网、 分组交换网、 租 用线电路网和ATM交换网等。电路层网络的设备包括用于各 种交换业务的交换机(例如电路交换机或分组交换机)和用于租 用线业务的交叉连接设备等。电路层网络与相邻的通道层网 络是相互独立的。
综合业务数字网(包括窄带和宽带)的主要目的是要实现接 入部分的数字化,提供端到端数字连接,从而支持综合业务, 但由于种种原因,并没有普遍推广应用。所以现在只能说接入 网正处于数字化的过程中,还不能说已实现了数字化。
综合化,主要指业务的综合,即通信网要由原来的单一业 务网(如电话网、 分组数据网)发展为能同时提供多种业务(包 括话音、 数据、 图像等), 特别是多媒体业务的网络。数字化 是综合化的前提。当各种类型的消息都用统一的数字符号表示 时,通过端到端的数字传输,便能实现综合业务。长期以来, 通信网的主要业务是话音,所以电信网基本上等同于电话网; 电信网中还有一种业务是电报, 相当于原始的低速数据业务。
1. 传送网的分层和分割
传送网是分层的,由垂直方向的连续的传送网络层(即层 网络)叠加而成,从上而下分别为电路层、 通道层和传输媒质 层(又分为段层和物理层)。每一层网络为其相邻的高一层网络 提供传送服务,同时又使用相邻的低一层网络所提供的传送 服务。 提供传送服务的层称为服务者(Server),使用传送服务 的层称为客户(Client), 因而相邻的层网络之间构成了客户/服 务者关系。
通道层网络用于通道层接入点之间的信息传递并支持不 同类型的电路层网络,为电路层网络提供传送服务,其提供 传输链路的功能与PDH中的2 Mb/s、34 Mb/s 和140Mb/s, SDH中的VC11、VC12、VC2、VC3 和VC4,以及BISDN中的虚 通道功能类似。
能够对通道层网络的连接性进行管理控制是SDH网的重 要特性之一,SDH传送网中的通道层网络还可进一步分为高 阶通道层网络和低阶通道层网络。
传输媒质层网络为通道层网络结点提供合适的通道容量, 并且可以进一步分为段层网络和物理媒质层网络(简称物理层), 其中段层网络是为了保证通道层的两个结点间信息传递的完 整性,物理层是指具体的支持段层网络的传输媒质,如光缆 或无线。SDH网中的段层网络还可以进一步细分为复用段层 网络和再生段层网络,其中复用段层网络涉及复用段终端之 间的端到端的信息传递,再生段层网络涉及再生器之间或再 生器与复用段终端之间的信息传递。一个完整的SDH传送网 分层模型如图8.2所示。
通信网络从电话业务为主演进到多媒体业务为主,每个 用户占用的带宽由64 kb/s要提高到6 Mb/s左右,由此估计总 业务量约增加100倍。
如果考虑到今后要支持高清晰度电视等更宽带宽的业务, 则总业务量还会不断增加。所以网络宽带化首先是人们的迫切 需求。另一方面,由于光纤通信技术的成就,特别是密集波分 复用(DWDM)技术的发展,使得网络的传输带宽大大增加。如 果双绞铜线的传输带宽按2 Mb/s估计,一根光纤采用DWDM技 术,传输容量可达到20~200 Gb/s, 也就是说, 光纤的传输容 量是铜线的一万至十万倍。因此宽带化意味着光纤将成为主要 的传输媒质。
8.2 SDH 传 送 网
8.2.1 SDH传送网的功能结构
一个电信网有两大功能群:传送功能群和控制功能群。 所谓传送网就是完成传送功能的手段,当然传送网也能传递各 种网络控制信息。传送网主要指逻辑功能意义上的网络,是一 个复杂庞大的网络。为了便于网络的设计和管理,通常用分层 (Laying)和分割(Partitioning)的概念,将网络的结构元件按功能 分为参考点(接入点)、拓扑元件、传送实体和传送处理功能四 大类。网络的拓扑元件分为三种,即层网络、子网和链路, 只需这三种元件就可以完全地描述网络的逻辑拓扑,从而使网 络的结构变得灵活,网络描述变得容易。
第 8 章 光纤通信网络
8.1 通信网的发展趋势
8.2 SDH传送网
8.3 WDM光网络
8.4 光接入网
返回主目录
第8章 光纤通信网络
8.1通信网的发展趋势
通信网总的发展趋势是数字化、综合化和宽带化。与光纤 通信关系最为密切的是宽带化,这是人类社会发展到信息时代 的迫切需求, 也是科技进步的必然产物。