第5章数字光纤通信系统5.1两种传输体制

合集下载

光纤通信刘增基第5章课稿

光纤通信刘增基第5章课稿
(3) 管理单元指针(AU-PTR)。管理单元指针是一种指示符, 主要用于指示Payload第一个字节在帧内的准确位置(相对于 指针位置的偏移量)。对于STM-1而言,AU-PTR有9个字节(第 4行), 相应于9×8×8000=0.576 Mb/s。
采用指针技术是SDH的创新,结合虚容器(VC)的概念, 解决了低速信号复接成高速信号时,由于小的频率误差所造 成的载荷相对位置漂移的问题。
最简单的例子是,由PDH的4次群信号到SDH的STM-1 的复 接过程。把139.264 Mb/s的信号装入容器C-4,经速率适配处 理后,输出信号速率为149.760 Mb/s; 在虚容器VC-4 内加上 通道开销POH(每帧9 Byte, 相应于0.576 Mb/s)后,输出信号 速率为150.336 Mb/s;在管理单元AU-4 内,加上管理单元指 针AU -PTR(每帧9 Byte, 相应于0.576 Mb/s),输出信号速率 为150.912 Mb/s; 由 1个AUG加上段开销SOH(每帧72 Byte,相 应于4.608 Mb/s), 输出信号速率为155.520 Mb/s, 即为 STM-1。
由于误码率随时间变化,用长时间内的平均误码率来衡量系统性
能的优劣,显然不够准确。在实际监测和评定中, 规定一个较长的
监测时间 “不可用
时TL,间例”如。几天或一个月,并把这个时间分为“可
用时间”和
在连续10 s时间内,BER劣于1×10-3,为“不可用时间”,或称系统 处于故障状态;
在连续10 s时间内,BER优于1×10-3,为“可用时间”。
对于以2.048 Mb/s为基础速率的制式,各次群的话路数按4倍递增。 对于以1.544 Mb/s为基础速率的制式,在3次群以上,日本和北美各国 又不相同,看起来很杂乱。

SDH传输网

SDH传输网

第5章 SDH 传输网 5.1 概述 5.1.1 SDH 的产生传统的准同步数字体系(PDH ),暴露出现有的准同步数字体系所存在的一些固有弱点,具体表现在:1. 北美、欧洲和日本三种数字体系彼此互不兼容,造成国际互通的困难。

三种数字体系的电接口速率等级如图5.1.12.没有世界性的标准光接口规范,导致不同厂家生产的设备无法在光路上互通和调配,只能通过光/电转换成标准电接口才能互通,限制了联网应用的灵活性,增加了网络复杂性和运营成本。

3.采用的准同步复用技术,难以从高速信号中识别和提取低速之路信号,复用结构复杂,缺乏灵活性,硬件数量大,上下业务费用高。

例如从140Mbit/s 的信号中分/插出2Mbit/s 低速信号要经过如图5.1.2所示的过程。

4.在复用信号的帧结构中,由于开销比特的数量很少,不能提供足够的操作、维护和管理(OAM )功能;因而不能满足现代通信网对监控和网管的要求。

欧洲系列日本系列北美系列5.由于建立在点对点的传输基础上的复用结构复杂,缺乏网络拓扑灵活性,无法提供最佳路由选择上下话路困难,难于实现数字交叉连接功能。

PDH所存在的上述这些固有弱点,制约了电信网的“网络化、智能化、综合化”的发展,而要想完满地在原有的技术体制和技术框架上来修改完善,解决这些问题已无济于事,于是一个更为先进的体制——同步数字体系(SDH)应运而生。

5.1.2 SDH的基本概念和特点一、SDH的基本概念所谓SDH是一套可进行同步信息传输、复用、分插和交叉连接的标准化数字信号的结构等级。

SDH网络是由一些基本网络单元(NE)组成的,在传输媒质上(如光纤、微波等)进行同步信息传输、复用、分插和交叉连接的传送网络。

它的基本网元有终端复用器(TM)、分插复用器(ADM)、同步数字交叉连接设备(SDXC)和再生中继器(REG)等。

SDH网络有一套标准化的信息结构等级,称为同步传送模块STM-N(N=1,4,16,64……)。

第05章数字光纤通信系统资料

第05章数字光纤通信系统资料

2020/5/21
8
5.1.2 同步数字传输系列SDH---SDH传输网(1/9)
SDH不仅适合于点对点传输,而且适合于多点 之间的网络传输。图5.1示出SDH传输网的拓扑 结构。
SDH传输网由SDH终接设备(或称SDH终端复 用器TM)、分插复用设备ADM、数字交叉连接 设备DXC等网络单元以及连接它们的(光纤)物理 链路构成。
2020/5/21

E
1
E
1
11
5.1.2 同步数字传输系列SDH---SDH传输网(4/9)
中继线 STM-N
DMX 分接 Drop
MUX
Add
复接
中继线 STM-N
STM- n STM-n 本地
图5.2(b) SDH传输网络单元分插复用设备ADM(Add/DropMultiplexer)
分插复用器(ADM)
➢ 信号复用/解复用需要逐级进行,复接/分接设备结构复杂,上下话路价 格昂贵。
➢ 各种复用系列都有其相应的帧结构,没有足够的OAM开销比特,使网 络设计缺乏灵活性,无法适应不断演变的电信网要求。
➢ 由于建立在点对点传输基础上的复用结构缺乏灵活性,使得数字通道 设备的利用率很低,非最短的通道路由占了业务量的大部分。
SDH解决了PDH存在的问题,是一种比较完善的传输体制,现已 得到大量应用。这种传输体制不仅适用于光纤信道,也适用于微波和 卫星干线传输。
2020/5/21
4
5.1.1 准同步数字系列PDH---基础速率
准同步数字系列有两种基础速率
➢以1.544 Mb/s为第一级(一次群,或称基群)基础速率,采 用的国家有北美各国和日本; ➢以2.048 Mb/s为第一级(一次群)基础速率, 采用的国家 有西欧各国和中国。

SDH传输网

SDH传输网

第五章光传输网通常传输网是将信息信号通过具体物理媒介传输的全部设备和设施的集合,而传送网是指在不同地点之间传递用户信息的全部功能集合,包括传送送功能和控制功能。

由二者定义可知,传输网与传送网是存在一定区别的。

有一些书上,也将传输网的概念归纳为全部实体网和逻辑网,本章将从物理实体和逻辑实体两个角度,对光传输网的有关知识作一些简单介绍。

§5.1 光同步数字(SDH)传输网80年代中期以来,由于光纤通信在通信网中的大规模应用,光通信技术也随之得到迅速的发展,从而使得光纤通信中的准同步数字系统(PDH),越来越不能够适应其通信网的发展和用户要求的提高。

光传输网络面临重大的改革问题,这就使得光同步数字(SDH)传输网应运而生。

5.1.1 SDH传输网的概念1、SDH网的定义SDH网是指由一些SDH网元(NE)组成的,在光纤上进行同步信息传输,复用分插和交叉连接的网络。

SDH的概念最早由美国贝尔通信研究所提出,称为SONET(同步光网络),国际电信联盟标准部(ITU-T)于1988年正式接受了这一概念并重新命名为SDH。

目前,ITU-T已对SDH的比特率、网络节点接口、复用结构、复用设备、网络管理、线路系统和光接口、信息模型、网络结构和抖动性能、误码性能和网络保护等提出相关标准化建议。

2、SDH网的特点与PDH相比,SDH主要有以下特点:(1)使北美、日本和欧洲三个地区性标准在STM—1及其以上等级获得了统一,真正实现了数字传输体制上的世界性标准。

(2)SDH 采用同步复用方式和灵活的复用映射结构,只需利用软件即可使高速信号一次直接分插出低速支路信号,使得网络结构和设备都大大简化,而且数字交叉连接的实现也比较容易。

(3)具有标准统一的光接口,简化了硬件,缓解了布线拥挤,改善了网络的可用性和误码性能。

(4)SDH 帧结构中安排了丰富的开销比特,使网络的运行、管理维护能力都大大加强。

(5)SDH 网具有良好的兼容性,与现有网络能够完全兼容,使SDH 可以支持已经建起来的PDH 网络,同时SDH 网还能容纳像ATM 信元等各种新业务信号。

光纤通信重点考点

光纤通信重点考点

典型例题STM-1光帧的结构包含哪几部分?传输速率是如何定义的?激光是通过什么产生的(C)受激辐射多模光纤:纤芯内传输多个模式的光波,纤芯直径较大(50 m左右),适用于中容量、中距离通信。

光纤的单模工作条件为0<V≤2.4048 多模工作条件为V>2.4048 2. 单模光纤:纤芯内只传输一个最低模式的光波,纤芯直径很小(几个微米),适用于大容量、长距离通信。

受激吸收:在外来入射光的作用下,处在低能级上的电子可以吸收入射光子的能量而跃迁到高能级上。

数值孔径: 入射到光纤端面的光线并不能全部被光纤所传输,只是在光纤端面临界入射角范围内的入射光可以在光纤内传输,取这个角度的正弦值称为数值孔径。

1.光纤通信是以( A )为载体,光纤为传输媒体的通信方式。

A.光波B.电信号C.微波D.卫星2.要使光纤导光必须使(B )A.纤芯折射率小于包层折射率B.纤芯折射率大于包层折射率C.纤芯折射率是渐变的D.纤芯折射率是均匀的3.( D )是把光信号变为电信号的器件A.激光器B.发光二极管C.光源D.光检测器4.SDH传输网最基本的同步传送模块是STM-1,其信号速率为(A )kbit/s。

A.155520B.622080C.2488320D.9953280ITT于(C)年接受了SONET概念,并重新命名为SDH。

A、1985B、1970C、1988D、19906.掺铒光纤放大器(EDFA)的工作波长为( B )nm波段。

A.1310B.1550C.1510D.8507.发光二极管发出的光是非相干光,它的基本原理是( B )。

A.受激吸收B.自发辐射C.受激辐射D.自发吸收8.光纤通信指的是(B )A .以电波作载波、以光纤为传输媒介的通信方式B .以光波作载波、以光纤为传输媒介的通信方式C .以光波作载波、以电缆为传输媒介的通信方式9.弱导光纤中纤芯折射率n1和包层折射率n2的关系是( A )A.n1≈n2B.n1=n2C.n1>>n2D.n1<<n210.决定光纤通信中继距离的主要因素是( B )A.光纤的型号B.光纤的损耗和传输带宽C.光发射机的输出功率D.光接收机的灵敏度11.光纤单模传输条件,归一化频率V应满足(B )A.V>2.405B. V<2.405C.V>3.832D.V<3.83212.光纤包层需要满足的基本要求是( A )A.为了产生全反射,包层折射率必须比纤芯低B. 包层不能透光,防止光的泄漏C.必须是塑料,使得光纤柔软D.包层折射率必须比空气低13.在激光器中,光的放大是通过( A )A.粒子数反转分布的激活物质来实现的B.光学谐振腔来实现的C.泵浦光源来实现的D.外加直流来实现的14.STM-64信号的码速率为( D )A.155.520 Mb/s B.622.080 Mb/s C.2 488.320 Mb/s D.9 953.280 Mb/s 15.数字光接收机的灵敏度Pr=100微瓦,则为( A )dBm。

数字光纤通信系统简介

数字光纤通信系统简介

数字光纤通信系统简介浅谈数字光纤通信系统摘要当今世界,计算机与通信技术高度结合,光纤通信有了长足发展。

纵观当今电信的主要技术,光纤和光波的变革极大的提高着信息的传输容量。

因而传统的模拟信号的传输的信息容量已经远远不能满足当前生产生活的实际技术需求,从上世纪开始数字信号传输已经逐步取代模拟信号,成为当前电视、电话、网络中信息传输的主要方式。

本文就光纤通信网络中的数字光纤通信部分进行了简要的介绍以及分析,涉及数字光纤通信系统基本概念特点的解析,系统的组成结构,主要传输体制以及线路的编码方式。

关键字数字光纤通信系统准同步数字系列(PDH)同步数字系列(SDH)线路编码内容一.数字光纤通信系统概况光纤是数字通信的理想的传输信道。

与模拟通信相比,数字通信有许多优点,最主要的是数字系统可以恢复因传输损失导致的信号畸变,因而传输质量高。

大容量长距离的光纤通信系统几乎都是采用数字传输方式。

在光纤通信系统中,光纤中传输的是二进制光脉冲“0”码和“1”码,它由二进制数字信号对光源进行通断调制而产生。

而数字信号是对连续变化的模拟信号进行抽样、量化和编码产生的,称为PCM(pulse code modulation),即脉冲编码调制。

这种电的数字信号称为数字基带信号,由PCM电端机产生。

二.数字光纤通信系统组成数字光纤通信系统如图1所示,与模拟系统主要区别在于数字系统中有模数转换设备和数字复接设备,即为PCM端机。

1.模数转换设备。

它将来自用户的模拟信号转换为对应的数字信号。

数字复接设备则将多路低速数字信号按待定的方式复接成一路高速数字信号,以便在单根光纤中传输。

2.输入接口将来自PCM端机的数字基带信号适配成适合在光纤信道中传输的形态。

3. 光发送机将数字电信号转换为数字光信号,并将其反馈入光纤传输。

发送端一般采用强度调制方式实现数字电信号到数字光信号的转换,即通过直接调制或者间接调制,使得“1”码出现时发出光脉冲,而“0”码出现时不发光。

数字光纤通信系统简介

数字光纤通信系统简介

浅谈数字光纤通信系统摘要当今世界,计算机与通信技术高度结合,光纤通信有了长足发展。

纵观当今电信的主要技术,光纤和光波的变革极大的提高着信息的传输容量。

因而传统的模拟信号的传输的信息容量已经远远不能满足当前生产生活的实际技术需求,从上世纪开始数字信号传输已经逐步取代模拟信号,成为当前电视、电话、网络中信息传输的主要方式。

本文就光纤通信网络中的数字光纤通信部分进行了简要的介绍以及分析,涉及数字光纤通信系统基本概念特点的解析,系统的组成结构,主要传输体制以及线路的编码方式。

关键字数字光纤通信系统准同步数字系列(PDH)同步数字系列(SDH)线路编码内容一.数字光纤通信系统概况光纤是数字通信的理想的传输信道。

与模拟通信相比,数字通信有许多优点,最主要的是数字系统可以恢复因传输损失导致的信号畸变,因而传输质量高。

大容量长距离的光纤通信系统几乎都是采用数字传输方式。

在光纤通信系统中,光纤中传输的是二进制光脉冲“0”码和“1”码,它由二进制数字信号对光源进行通断调制而产生。

而数字信号是对连续变化的模拟信号进行抽样、量化和编码产生的,称为PCM(pulse code modulation),即脉冲编码调制。

这种电的数字信号称为数字基带信号,由PCM电端机产生。

二.数字光纤通信系统组成数字光纤通信系统如图1所示,与模拟系统主要区别在于数字系统中有模数转换设备和数字复接设备,即为PCM端机。

1.模数转换设备。

它将来自用户的模拟信号转换为对应的数字信号。

数字复接设备则将多路低速数字信号按待定的方式复接成一路高速数字信号,以便在单根光纤中传输。

2.输入接口将来自PCM端机的数字基带信号适配成适合在光纤信道中传输的形态。

3. 光发送机将数字电信号转换为数字光信号,并将其反馈入光纤传输。

发送端一般采用强度调制方式实现数字电信号到数字光信号的转换,即通过直接调制或者间接调制,使得“1”码出现时发出光脉冲,而“0”码出现时不发光。

数字光纤通信系统及结构

数字光纤通信系统及结构

上述TM、ADM和DXC的功能框图分别如图5.2(a)#, (b)#, (c)所示。通过DXC的交叉连接作用,在SDH传输网内可提供 许多条传输通道,每条通道都有相似的结构,其连接模型如图 5.3(a)所示,相应的分层结构如图5.3(b)所示。每个通道(Path) 由一个或多个复接段(Line)构成,而每一复接段又由若干个再 生段(Section)串接而成。
数字光纤通信系统和结构

E1
通道
线路
再 生中 继器
线路
终 接设 备 E3
终 接设 备
Secti on
终 接设 备
TM
ADM/DXC 再 生 段 再 生 段 再 生 段 ADM/DXC
复 接 段 (L in e)
传 输 通 道 (P ath )
(a)
通道
E1

终 接设 备 E3
TM
P ath Line Secti on P hotonic
数字光纤通信系统和结构
图 5.4 示出PDH和SDH分插信号流程的比较。在PDH中, 为了从140 Mb/s码流中分出一个2 Mb/s的支路信号,必须经过 140/34 Mb/s, 34/8 Mb/s和8/2 Mb/s三次分接。 而若采用SDH分 插复用器(ADM),可以利用软件一次直接分出和插入 2 Mb/s支 路信号,十分简便。
(3) 由于低速率信号插入到高速率信号,或从高速率信号 分出,都必须逐级进行,不能直接分插,因而复接/分接设备 结构复杂,上下话路价格昂贵。
数字光纤通信系统和结构
5.1.2同步数字系列SDH
1. SDH
SDH不仅适合于点对点传输,而且适合于多点之间的网 络传输。图5.1示出SDH传输网的拓扑结构,它由SDH终接设 备(或称SDH终端复用器TM)、分插复用设备ADM、数字交叉 连接设备DXC等网络单元以及连接它们的(光纤)物理链路构 成。SDH终端的主要功能是复接/分接和提供业务适配,例如 将多路E1信号复接成STM1信号及完成其逆过程,或者实现与 非SDH网络业务的适配。ADM是一种特殊的复用器,它利用 分接功能将输入信号所承载的信息分成两部分:一部分直接 转发,另一部分卸下给本地用户。然后信息又通过复接功能 将转发部分和本地上送的部分合成输出。DXC类似于交换机, 它一般有多个输入和多个输出,通过适当配置可提供不同的 端到端连接。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PDH各次群比特率相对于其标准值有一个规定的容差,而 且是异源的,通常采用正码速调整方法实现准同步复用。 1 次 群至 4 次群接口比特率早在 1976 年就实现了标准化,并得到各 国广泛采用。 PDH主要适用于中、低速率点对点的传输。随着 技术的进步和社会对信息的需求,数字系统传输容量不断提高,
TM
低速 信号
TM
STM- n
ADM
STM- N
DXC
STM- N
ADM
STM- n
TM
低速 信号
STM- N 低速 信号
STM- N DXC
STM- N ADM TM 低速 信号

TM
STM- n
ADM
STM- N
STM- N
STM- n
(n <N)
图 5.1 SDH传输网的典型拓扑结构

上述TM、ADM和DXC的功能框图分别如图5.2(a), (b), (c) 所示。通过DXC的交叉连接作用,在SDH传输网内可提供许多 条传输通道,每条通道都有相似的结构,其连接模型如图5.3(a) 所示,相应的分层结构如图5.3(b)所示。每个通道(Path)由一个 或多个复接段 (Line) 构成,而每一复接段又由若干个再生段 (Section)串接而成。 与PDH相比, SDH (1) SDH采用世界上统一的标准传输速率等级。 最低的等 级也就是最基本的模块称为 STM-1,传输速率为155.520 Mb/s; 4 个 STM-1 同 步 复 接 组 成 STM4 , 传 输 速 率 为 4×155.52 Mb/s=622.080 Mb/s ; 16 个 STM-1 组成 STM16, 传输速率为 2488.320 Mb/s,以此类推。
网络管理和控制的要求日益重要,宽带综合业务数字网和计算
机网络迅速发展,迫切需要建立在世界范围内统一的通信网络。 在这种形势下,现有PDH的许多缺点也逐渐暴露出来,主要有:
(1) 北美、西欧和亚洲所采用的三种数字系列互不兼容, 没
有世界统一的标准光接口,使得国际电信网的建立及网络的营 运、 管理和维护变得十分复杂和困难。
E1
(Lin e)
传输通道 (Path) (a) Path Lin e Sectio n Pho to n ic Sectio n Pho to n ic Path Lin e Sectio n Pho to n ic
再生中继器 (b)
图 5.3 (a) 传输通道连接模型; (b) 分层结构

E3

第 5 章 数字光纤通信系统
5.1 5.2 系统的性能指标 5.3 系统的设计
第5章 数字光纤通信系统
5.1
光纤大容量数字传输目前都采用同步时分复用(TDM)技术, 复用又分为若干等级,因而先后有两种传输体制:准同步数 字系列(PDH)和同步数字系列(SDH)。 PDH早在1976年就实现 了标准化,目前还大量使用。随着光纤通信技术和网络的发 展,PDH遇到了许多困难。
在技术迅速发展的推动下,美国提出了同步光纤网 (SONET) 。 1988 年, ITUT( 原 CCITT) 参照 SONET 的概念,提 出了被称为同步数字系列(SDH)的规范建议。
SDH 解决了 PDH 存在的问题,是一种比较完善的传输体 制,现已得到大量应用。这种传输体制不仅适用于光纤信道,
MUX 同步复接
DMX 同步分接

E1 E1
STM- N
STM-N
E1 E1 1
分接 1: m

交叉连接矩阵
复接 m:1 1

(a) 中继线 STM- N DMX 分接 Dro p STM- n Ad d STM- n MUX 复接 中继线 STM- N
n
1: m
m:1
n
配置管理 (c)
本地 (b)
(2) 各种复用系列都有其相应的帧结构,没有足够的开销 比特,使网络设计缺乏灵活性,不能适应电信网络不断扩大、 技术不断更新的要求。 (3) 由于低速率信号插入到高速率信号,或从高速率信号 分出,都必须逐级进行,不能直接分插,因而复接/分接设备
结构复杂,上下话路价格昂贵。
5.1.2同步数字系列SDH
图5.2
SDH
(a) 终端复用器TM; (b) 分插复用设备ADM(Add/Drop Multiplexer); (c) 数字交叉连接设备DXC
E1
E3
通道 终接设备 TM
线路 终接设备 ADM/DXC 再生段
再生中继器 Sectio n 再生段 复接段 再生段
线路 终接设备 ADM/DXC
ห้องสมุดไป่ตู้
通道 终接设备 TM
1. SDH SDH不仅适合于点对点传输,而且适合于多点之间的网 络传输。图5.1示出SDH传输网的拓扑结构,它由SDH终接设 备(或称SDH终端复用器TM)、分插复用设备ADM、数字交叉 连接设备 DXC 等网络单元以及连接它们的 ( 光纤 ) 物理链路构 成。SDH终端的主要功能是复接/分接和提供业务适配,例如 将多路E1信号复接成STM1信号及完成其逆过程,或者实现与 非SDH网络业务的适配。ADM是一种特殊的复用器,它利用 分接功能将输入信号所承载的信息分成两部分:一部分直接 转发,另一部分卸下给本地用户。然后信息又通过复接功能 将转发部分和本地上送的部分合成输出。DXC类似于交换机, 它一般有多个输入和多个输出,通过适当配置可提供不同的 端到端连接。
(2) SDH各网络单元的光接口有严格的标准规范。因此, 光 接口成为开放型接口,任何网络单元在光纤线路上可以互连, 不同厂家的产品可以互通,这有利于建立世界统一的通信网络。 另一方面,标准的光接口综合进各种不同的网络单元, 简化了 硬件,降低了网络成本。
也适用于微波和卫星干线传输。
5.1.1准同步数字系列PDH
准同步数字系列有两种基础速率:一种是以1.544 Mb/s为
第一级 ( 一次群,或称基群 ) 基础速率,采用的国家有北美各 国和日本;另一种是以2.048 Mb/s为第一级(一次群)基础速率, 采用的国家有西欧各国和中国。表5.1是世界各国商用数字光 纤通信系统的PDH传输体制,表中示出两种基础速率各次群 的速率、话路数及其关系。对于以2.048 Mb/s为基础速率的制 式,各次群的话路数按4倍递增,速率的关系略大于4倍,这 是因为复接时插入了一些相关的比特。 对于以1.544 Mb/s为 基础速率的制式,在3次群以上,日本和北美各国又不相同, 看起来很杂乱。
相关文档
最新文档