细胞信号转导进展-细胞信号分子
细胞信号传导通路的研究进展

细胞信号传导通路的研究进展细胞作为生命的基本单位,它们之间的信息交流和协调对于维持生命活动的正常进行至关重要。
细胞信号传导通路就是细胞之间传递信息、调控细胞功能的重要途径。
近年来,随着生物技术的飞速发展,对细胞信号传导通路的研究取得了显著的进展,为我们深入理解生命现象、疾病发生机制以及开发新的治疗方法提供了重要的理论基础。
细胞信号传导通路可以大致分为三类:物理接触依赖型、旁分泌型和内分泌型。
物理接触依赖型信号传导通常发生在相邻的细胞之间,通过细胞间直接接触来传递信号,例如免疫细胞之间的相互作用。
旁分泌型信号传导则是指细胞分泌信号分子作用于附近的细胞,这些信号分子在局部发挥作用,不会进入血液循环。
而内分泌型信号传导是指细胞分泌的激素等信号分子进入血液循环,作用于远处的靶细胞。
在细胞信号传导通路中,信号分子与受体的结合是启动信号传导的关键步骤。
受体可以分为细胞表面受体和细胞内受体两大类。
细胞表面受体包括离子通道偶联受体、G 蛋白偶联受体和酶联受体等。
离子通道偶联受体通过改变离子通道的通透性来传递信号,例如神经细胞中的谷氨酸受体。
G 蛋白偶联受体是最大的一类细胞表面受体,它们通过与 G 蛋白的相互作用来激活下游的信号通路,如肾上腺素受体。
酶联受体则自身具有酶活性或者与酶结合,通过催化底物的磷酸化等反应来传递信号,例如胰岛素受体。
细胞内受体通常位于细胞质或细胞核内,能够直接与进入细胞的脂溶性信号分子结合,如甾体激素受体。
当信号分子与受体结合后,会引起受体的构象变化,从而激活受体的活性。
一旦受体被激活,就会启动下游的信号转导通路。
这些通路通常涉及一系列的蛋白质磷酸化和去磷酸化反应,以及蛋白质之间的相互作用。
其中,最为常见的信号转导分子包括蛋白激酶和磷酸酶。
蛋白激酶能够将ATP 上的γ磷酸基团转移到底物蛋白质的特定氨基酸残基上,从而改变底物蛋白质的活性。
磷酸酶则能够去除底物蛋白质上的磷酸基团,恢复其原来的活性。
细胞生物化学第22章 细胞信号转导

• PKB在体内参与许多重要生理过程:
• 参与胰岛素促进糖类由血液转入细胞、糖原 合成及蛋白质合成过程。
• PKB还参与多种生长因子如PDGF、EGF、 NGF等信号的转导。
• 在细胞外基质与细胞相互作用的信号转导过 程中,PKB亦是关键信号分子。
(四) TPKR介导的信号减弱和终止机制
• 蛋白激酶B(protein kinase B,PKB)也是 一类丝/苏氨酸蛋白激酶,其激酶活性区序 列与PKA(68%)和PKC(73%)高度同 源。
• 由于PKB分子又与T细胞淋巴瘤中的逆转录
病毒癌基因v-akt编码的蛋白Akt同源,又
被称为Akt。
• PKB的底物有糖原合酶激酶-3、核糖体蛋 白S6激酶、某些转录因子、翻译因子抑制 剂4E-BPI以及细胞凋亡相关蛋白BAD等。
配体
能与受体呈特异性结合的生物活性分 子则称配体(ligand)。
(一)受体的分类
1、膜受体(membrane receptor) 是存在于细胞膜上的受体,绝大部分
是镶嵌糖蛋白。
胞浆段内组成性含有不同功能 结构域的膜受体亚类
酪氨酸蛋白激酶受体(TPKR) 丝氨酸/苏氨酸蛋白激酶受体(SPKR) 肿瘤坏死因子受体家族(TNF-R) T淋巴细胞受体和B淋巴细胞受体(TCR and BCR) Toll样受体
亚基亦含有一个富含半胱氨酸重复序列。 第三类型:胞外段内含5个免疫球蛋白样结构域(IG)。 第四类型:胞外段内含3个免疫球蛋白样结构域(IG)。
(二) TPKR的激活和信号转导
(三)TPKR介导的信号转导途径
1、MAPK途径 2、PI3K-Akt/PKB途径 3、PLC-PKC途径 4、STAT途径
细胞生物学中的细胞信号转导途径

细胞生物学中的细胞信号转导途径细胞信号转导途径是指细胞内外信息传递的过程,其目的是使信号传递到细胞内部,从而引起细胞内某种生理反应。
细胞信号转导途径是一种复杂的过程,主要包括信号的识别、传递、放大等多个环节,其中参与的蛋白质、代谢物和信号分子非常多。
当细胞外界环境改变时,例如发生感染、受到刺激、遭到损伤等,细胞就会接收到相应的信号。
这些信号会通过受体蛋白在细胞外表面传递到细胞内部,从而影响到细胞内部代谢物的表达和转化,导致细胞内部发生变化。
在这个过程中,细胞吸收和放出的各种分子会共同构成细胞信号转导途径,这些分子形成细胞传递的信息流。
细胞信号转导途径是细胞内部信号传递最基本、最重要的机制之一。
在细胞生理学中,信号转导途径主要分为三大类:离子通道和荷载体、CDK和激酶酶级联反应、细胞膜受体信号转导途径。
其中,细胞膜受体信号转导途径是最重要的一类信号转导途径。
细胞膜受体信号转导途径细胞膜受体信号转导途径是细胞内部信号转导的主要道路。
膜内受体通常是细胞表面的磷脂酰基肌醇酰化酶(PI3K)、激酶、培养激素受体、酰化酶、酪氨酸激酶和肽激素受体等;膜外受体则包括细胞外信号括号、膜外的受体和胞外基质分子等。
膜内受体和膜外受体的反应控制了信息分子的转导。
细胞膜受体信号转导途径是细胞间相互联系的重要机制。
细胞所受到的信息来源是多种多样的,它们通过膜上的受体传递到细胞内部。
这些信息会进入细胞内部,然后将这些信息传递到细胞内部组织的某些分子。
这种传递方式,能够影响细胞各种代谢物的表达和转化,从而引起细胞内部发生变化。
细胞膜受体信号转导途径的层次非常复杂,大致分为三个层次:一是细胞外部膜受体中间介质和酶的级联反应;二是已死或无反应的凋亡模式;三是积极生长和再生的分化模式。
从细胞的发育到细胞的老化,所有过程都用到了细胞膜受体信号转导途径。
细胞膜受体信号转导途径中有很多的信号传递方式,它们通过另一些关键的因素进行调控、互作,并中断某些传递过程。
细胞传递信息的信号转导途径

细胞传递信息的信号转导途径细胞在一个有机体中承担着信息传递的重要任务,细胞所接收到的外部信号必须被传递到内部,从而激活或抑制特定的行为和功能。
这种信号传递的过程称为信号转导。
信号转导的途径主要包括细胞表面受体和细胞内信号转导蛋白。
一、细胞表面受体细胞表面受体是指定位于细胞膜上的蛋白质,可以感受到外部环境的信号,并将这些信号转化为细胞内部的信号。
有两种主要类型的细胞表面受体:离子通道受体和型受体。
离子通道受体的作用是通过感受到化学或电学信号来调节细胞的电位或离子浓度。
这些受体如神经元细胞表面的神经递质受体,可以让离子穿过细胞膜,从而改变细胞膜电位。
型受体基本上都是蛋白质,包括G蛋白偶联受体和酪氨酸激酶受体(TK受体)。
G蛋白偶联受体广泛分布在人体内,不仅能感受到最靠近细胞表面的化学信号,也能感受到内分泌系统在人体内分泌的激素。
当受体与信号分子结合时,G蛋白偶联受体在细胞内活动,引起了多种反应,包括调节细胞膜、细胞内酶和G蛋白的活性等。
与刚刚提到的不同,TK受体是通过细胞内部酪氨酸激酶的活性改变来改变细胞功能。
当信号分子和TK结合后,活性发生了改变,细胞内往往会发生一系列反应,以改变细胞的酶活性、内部的蛋白合成和其他生化反应。
二、细胞内信号转导蛋白一旦细胞表面受体被信号分子激活,细胞内信号转导蛋白就被激活了,信息转导向细胞内部进行传递。
参与信息转导的蛋白主要包括激酶和磷酸酶。
激酶被激活时会磷酸化其下游的靶蛋白,磷酸酶则终止下游靶蛋白的振荡。
细胞内信息转导途径主要包括以下几种途径:1.丝裂原激活蛋白(MAPK)途径:MAPK途径的激活是通过一条多步骤的反应路径来完成的。
当活化G蛋白特异性GTP酶时,会导致下游的Mek被磷酸化,引起MAPK的激活。
MAPK激活后可以调节许多细胞转录程序中的基因表达。
2.磷脂酶C(PLC)途径:PLC途径的激活是磷酸水解的结果。
当激活Rhodopsin时,可以激发PLC的活性,从而导致IP3和钙出现,IP3会引起胞质内钙的释放。
细胞信号传导和信号转导途径

细胞信号传导和信号转导途径细胞信号传导是细胞内外信息传递的重要过程,它调控细胞的生长、分化、凋亡等重要生理过程。
信号传导的目的是将外界的信号转导到细胞内,最终调控细胞的活动。
细胞信号传导可以分为离子信号传导和分子信号传导两种途径。
一、离子信号传导离子信号传导是利用离子的浓度差或者电位差来传递信息的一种方式。
常见的离子信号有钠离子、钾离子、钙离子等。
离子信号的传导涉及到通道蛋白、转运蛋白等的活动。
1. 钠离子和钾离子的传导钠离子和钾离子在神经细胞的动作电位过程中起着重要的作用。
在静息状态下,神经细胞的细胞外钠离子浓度高,细胞内钾离子浓度高,通过离子通道的开闭来保持这种浓度差。
当神经细胞接收到信号时,离子通道会发生打开或关闭,导致钠离子和钾离子的流动,从而产生了动作电位。
2. 钙离子的传导钙离子在细胞信号传导中也扮演着重要的角色。
当细胞受到刺激时,细胞膜的钙离子通道会打开,细胞外的钙离子会流入细胞内。
钙离子的浓度变化会引发一系列的信号传导事件,进而调控细胞的功能和代谢活动。
二、分子信号传导分子信号传导是利用分子信号分子间的相互作用来传递信息的一种方式。
细胞表面的受体蛋白会与外界信号分子结合,从而激活一系列的信号传导通路。
1. G蛋白偶联受体信号转导G蛋白偶联受体是细胞表面的一类受体蛋白,通过与G蛋白的相互作用来传递信号。
当外界信号分子结合到受体上时,受体会发生构象变化,启动了G蛋白的活化。
活化的G蛋白能够与细胞内的酶或离子通道相互作用,从而传递信号。
2. 酪氨酸激酶受体信号转导酪氨酸激酶受体是一类有丝分裂相关的受体蛋白,它们在细胞的生长、分化和凋亡等过程中发挥重要作用。
当外界信号分子与受体结合时,受体会发生构象变化,进而激活受体内的酪氨酸激酶活性。
激活的酪氨酸激酶会磷酸化其他蛋白,从而引发一系列信号传导事件。
3. 核内受体信号转导核内受体是一类位于细胞核内的蛋白,它们能够与脱氧核糖核酸(DNA)结合,直接影响基因的转录和翻译过程。
细胞生物学 第十二章 细胞的信号转导

第十二章细胞的信号转导信号转导:细胞之间联系的信号有许多种,由细胞分泌的、能够调节机体功能的生物活性物质是一类重要的化学信号分子,它们通过与细胞膜上或胞内的受体特异性结合,将信号转换后传给相应的胞内系统,使细胞对外界信号做出适当的反应,这一过程称为信号转导。
第一信使:细胞所接收的信号包括物理信号、化学信号等,其中最重要的是由细胞分泌的、能够调节机体功能的一大类生物活性物质,它们是细胞间通讯的信号,被称为“第一信使”。
激素:由内分泌细胞合成,经血液或淋巴循环到达机体各部位靶细胞的化学信号分子,如胰岛素、甲状腺素等,作用特点是距离远、范围大、持续时间长。
神经递质:由神经元的突触前膜终端释放,作用于突触后膜上的特殊受体,如乙酰胆碱、去甲肾上腺素等,特点是作用时间短、作用距离短。
局部化学介质:由某些细胞产生并分泌的一大类生物活性物质,包括生长因子、前列腺素和一氧化氮等,它们通过细胞外液的介导作用于附近的靶细胞。
胞外信号分子可根据与受体结合后细胞所产生的效应不同,分为激动剂和拮抗剂。
激动剂:指与受体结合后能使细胞产生效应的物质。
①Ⅰ型激动剂:与受体结合的部位与内源性配体相同,产生的细胞效应与内源性配体相当或更强者②Ⅱ型激动剂:与受体结合的部位不同于内源性配体,本身不能使细胞产生效应,但可增强内源性配体对细胞作用者拮抗剂:指与受体结合后不产生细胞效应,但可阻碍激动剂对细胞作用的物质。
①Ⅰ型拮抗剂:结合于受体的部位与内源性配体相同,可阻断或减弱内源性配体对细胞的效应②Ⅱ型拮抗剂:结合于受体的部位与内源性配体不同,能阻断或减弱内源性配体对细胞的作用。
受体:是一类存在于胞膜或胞内的特殊蛋白质,能特异性识别并结合胞外信号分子,进而激活细胞内一系列生物化学反应,使细胞对外界刺激产生相应的效应。
配体(ligand):与受体结合的生物活性物质统称为配体,包括激素、神经递质、生长因子、某些药物和毒物等。
膜受体:主要为镶嵌在胞膜上糖蛋白,由与配体相互作用的细胞外域、将受体固定在细胞膜上的穿膜域和起传递信号作用的胞内域三部分构成,其配体是一些亲水的、不能直接穿过细胞膜脂质双分子层的肽类激素、生长因子和递质。
细胞信号转导的研究进展

细胞信号转导的研究进展细胞信号转导是指细胞内分子之间的信息传递,转导的目的是使细胞对环境变化做出反应,从而维持生命。
信号转导的方式不同,但是它们有一个共同点:信息的传递是通过一系列分子间的相互作用完成的。
这些分子包括激酶、受体、细胞器等。
本文将介绍细胞信号转导的研究进展。
化学合成是信号转导研究的重要手段。
化学家们在模拟细胞信号传递过程中,合成了一大批与细胞信号分子相似的化合物,这些化合物能够抑制、激活或模拟细胞信号传递过程。
这些合成的化合物,被广泛运用于药物研发、疾病治疗和生命科学研究。
细胞信号转导研究中的一个重大发现是:G蛋白偶联受体的结构。
这种受体负责了细胞外信息的识别和传递,通过它们,细胞可以感知到多种外界信号,例如,光、声、化学物质等。
最新的研究揭示了G蛋白偶联受体的结构,这使得研究人员可以设计更加精确的信号分子,帮助了理解细胞信号传递机制。
除了G蛋白偶联受体,另一个有名的分子是蛋白激酶。
蛋白激酶在细胞信号转导中起着极其重要的作用。
与传统的蛋白激酶通常被激活后向底物转移磷酸基不同,一种名为MAPK激酶级联的蛋白激酶集群发挥作用。
这种级联反应可以使信息传递具有决定性地速度和准确度。
研究认为,被破坏的细胞信号转导之一便是MAPK级联反应,这将影响许多基础疾病和癌症的治疗。
另一项进展是较早发现的一些信号转导通路的细微鉴定。
例如,Wnt信号通路可以控制胚胎发育、细胞增殖和分化。
纳米技术已被应用于更好地理解Wnt信号通路,这有助于探究Wnt信号通路的机制并为相关疾病提供治疗策略。
此外,微生物领域的技术也被用于研究信号转导通路。
例如,CRISPR/Cas9技术可以用于有效地诱导信号转导通路中多种关键蛋白的基因组编辑,为疾病治疗开辟了新的途径。
总而言之,信号转导及其研究已经成为细胞生物学的前沿领域,并且在药物研发和相关疾病治疗中扮演着重要角色。
当前,学者们正在积极开展细胞信号转导方面的研究,期待在这个领域取得更多的有趣发现,并推进生命科学的进一步发展。
细胞信号转导途径的研究现状及未来发展方向

细胞信号转导途径的研究现状及未来发展方向细胞信号转导途径是细胞间相互沟通和调节的重要机制,它在维持细胞正常功能和生物体内稳态中起着关键作用。
近年来,随着细胞生物学的深入研究,对细胞信号转导途径的理解也在不断深化,但仍存在许多未解之谜和待探索的领域。
本文将就细胞信号转导途径的研究现状和未来发展方向进行探讨。
一、研究现状1.1 信号转导途径的基本概念细胞信号转导途径是指细胞内外信息的传递和相应的生物学效应,主要通过信号分子的传导、转导和放大来实现。
信号转导途径包括几个基本组成部分:信号分子、受体、信号转导分子和效应分子。
信号分子首先与受体结合,激活受体后,通过一系列的信号转导分子传递信号,最终影响特定效应分子的活动或基因转录,从而实现生物学效应。
1.2 信号转导途径研究的突破与进展随着研究技术的不断进步,我们对细胞信号转导途径的研究取得了一系列重要突破。
首先,基因组学和蛋白质组学的发展为我们提供了大量的基因和蛋白质信息,使得我们能够深入研究信号转导途径的分子机制和相互作用网络。
其次,生物成像技术的进步使得我们能够直接观察和定量分析信号转导途径中的细胞行为和分子过程。
此外,计算生物学的发展也为我们解析信号转导途径提供了有力的工具。
1.3 信号转导途径的分类和调控机制细胞信号转导途径可以分为多个类别,包括Wnt信号通路、Notch信号通路、Hedgehog信号通路、TGF-β信号通路、MAPK信号通路等。
每个信号通路有不同的组成成分和调节机制,但它们都紧密联系并相互作用,形成复杂的生物学网络。
细胞通过内源性和外源性调节机制来控制信号通路的活性和时机,以确保细胞内外环境的稳定和功能的正常执行。
二、未来发展方向2.1 深入解析信号转导途径的分子机制目前,我们对信号转导途径的研究已经实现了许多重要突破,但仍有很多问题有待解决。
未来的研究方向之一是深入解析信号转导途径的分子机制。
这包括进一步探索信号分子与受体的结合机制、信号传导分子的激活和传递机制、有效分子的寻找和调控机制等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
➢ 参与细胞分化:胚胎发育的早期,细胞间通过间隙
连接相互协调发育和分化。
可编辑版
14
细胞通讯方式
➢间隙连接 ➢膜表面分子接触通讯 ➢化学通讯
可编辑版
15
膜表面分子接触通讯
• 细胞有众多的分子分布于膜的外表面。这些分子或为蛋白 质,或为糖蛋白。这些表面分子作为细胞的触角,可以与 相邻细胞的膜表面分子特异性地相互识别和相互作用,以 达到功能上的相互协调。这种细胞通讯方式称为膜表面分 子接触通讯。
可编辑版
13
间隙连接的功能
➢ 代谢偶联:分子量为1500Da以下的水溶性小分子代 谢物和信号分子可通过连接子的亲水性通道 (1.5nm),由一个细胞进入相邻的另一个细胞,从 而快速和可逆地促进相邻细胞对外界信号的协同反 应。
➢ 电偶联:无须依赖神经递质或信息物质即可将一些 细胞的电兴奋活动传递到相邻的细胞。
可编辑版
3
细胞连接
在相邻细胞表面形成的连接结构,以加 强细胞间的机械联系和组织的牢固性,同 时协助细胞间的代谢活动,这些结构称为 细胞连接(cell junction)。
可编辑版
4
细胞连接的种类
种类 封闭连接
锚定连接
连接肌动蛋白 连接中间纤维
通讯连接
可编辑版
名称 紧密连接
黏着带 黏着斑
桥粒 半桥粒 间隙连接 化学突触
• APCs通过吞噬作用或受体介 导的胞吞作用内化抗原,抗原 片段通过与组织相容性抗原
(major histocompatibility complex, MHC) 的结合被提呈 至APCs表面,T细胞通过与抗 原-MHCII复合物结合而被激 活。
可编辑版
17
细胞间的接触通讯
可编辑版
18
细胞通讯方式
➢间隙连接 ➢膜表面分子接触通讯 ➢化学通讯
可编辑版
19
化学通讯
• 细胞可以分泌一些化学物质-蛋白质或小分子 有机化合物至细胞外,这些化学物质作为化学 信号(chemical signals)作用于其它的细胞(靶细 胞),调节其功能,这种通讯方式称为化学通讯。
• 化学通讯是间接的细胞通讯,即细胞间的相互 联系不再需要它们之间的直接接触,而是以化 学信号为介质来介导的。
细胞信号转导进展
可编辑版
1
内容
• 绪论 • 第一章 细胞信号分子 • 第二章 蛋白质的可逆磷酸化 • 第三章 离子通道 • 第四章 核受体的作用机制 • 第五章 G蛋白介导的信号转导 • 第六章 第二信使——cAMP与cGMP • 第七章 第二信使——IP3, DAG与Ca2+ • 第八章 酪氨酸蛋白激酶途径
根据分子作用的距离分类
• 内分泌(endocrine)信号 由内分泌器官分泌的化学信号,并 随血流作用于全身靶器官。
• 旁分泌(paracrine)信号 以细胞因子为主,主要作用于局部 的细胞,作用距离以毫米计算。
• 自分泌(autocrine)信号 作用于细胞自身,作用距离在 100nm以内。
• 化学突触 (synapse)
5
细胞连接
可编辑版
Basement membrane
6
第一章 胞间信号
➢细胞连接 ➢细胞通讯方式 ➢细胞信息传递方式
可编辑版
Hale Waihona Puke 7细胞通讯 (cell communication)
一个细胞发出的信息通过介质传递到另一 个细胞产生相应的反应。细胞间的通讯对于 多细胞生物体的发生和组织的构建,协调细 胞的功能,控制细胞的生长、分裂、分化和 凋亡是必须的。
可编辑版
8
细胞通讯方式
➢间隙连接 ➢膜表面分子接触通讯 ➢化学通讯
可编辑版
9
间隙连接
• gap junction • 分布:脊椎动物除
骨骼肌细胞及循环 血细胞外的细胞之 间。
可编辑版
10
间隙连接的结构特点
• 在连接处相邻细胞间有2~4nm 的缝隙,在间隙与两层质膜中 有大量蛋白质颗粒,是构成间 隙连接的基本单位,称连接子 (connexon)。
可编辑版
20
化学信号分类(I)
根据其溶解性分类
• 脂溶性化学信号: 脂溶性化学信号可以通过膜脂 双层结构进 入胞内,其受体位于胞浆或胞核内。
• 水溶性化学信号: 水溶性化学信号不能进入细胞, 其受体位于细胞外表面。
• 所有的化学信号都必须通过与受体结合方可发挥 作用.
可编辑版
21
化学信号分类(II)-化学通讯
» Ras-Raf-MAPK 信号途径 » PI3K/Akt 信号途径 » JAK/Stat 信号途径 • 第九章 TGF-β/SMAD信号途径 • 第十章 细胞凋亡信号途径 • 第十一章 Wnt信号途径 • 第十二章 Hedgehog/Notch 途径
可编辑版
2
第一章 细胞信号分子
➢细胞连接 ➢细胞通讯方式 ➢细胞信息传递方式
• 膜表面分子接触通讯也属于细胞间的直接通讯,最为典型 的例子是T淋巴细胞与抗原提呈细胞(antigen presenting cells, APC)的相互作用。
可编辑版
16
T细胞与APC间的接触通讯
• Professional APCs: – 树突状细胞(dendritic cells) – 巨噬细胞(macrophage) – B-cells
• 通过相邻细胞的直接接触—通讯连接。
• 通过细胞分泌各种化学物质来调节其他细 胞的代谢和功能—细胞识别(cell recognition)。
可编辑版
25
细胞信号
• 物理信号:电、光、磁
• 生物大分子的结构信号: 蛋白质、多糖、核酸的结构信息
• 连接子两端分别嵌入两个相邻
的细胞,由6个相同或相似的跨
膜蛋白亚单位环绕而成,直径
8nm,中心形成一个直径约
1.5nm的亲水性孔道。
可编辑版
11
连接子
可编辑版
12
连接子
• 为一个多基因家庭,现已发现24个成员。
• 根据分子量命名。 – 例如,Cx26即分子量为26kDa的连接子。
• 在肿瘤生长和创伤愈合等过程中都观察到某些类 型连接子表达的变化。因此,连接子可能对细胞 的生长、分化、定位及细胞形态的维持具有重要 意义。
可编辑版
22
细胞通讯方式
➢接触性依赖的通讯: 细胞间 直接接触,信号分子与受体都 是细胞的跨膜蛋白
➢间隙连接实现代谢耦联或电 耦联
➢分泌化学信号进行通讯
• 特异性
• 作用复杂性
• 时间效应不同
可编辑版
23
第一章 胞间信号
➢细胞连接 ➢细胞通讯方式 ➢细胞信息及传递方式
可编辑版
24
细胞信息传递方式