热电偶温度特性实验

合集下载

热电偶特性实验总结

热电偶特性实验总结

热电偶特性实验总结热电偶,也叫温度电极,是一种采用特殊材料制成的电极,可以感知温度变化。

它能够将温度变化转化为电流/电压变化。

它由两种不同材料做成,这些材料具有不同的电阻和温度系数,从而形成一个可以检测温差的电路。

目前,热电偶已成为将温度变化转化为电压变化最为常用的传感器之一。

有许多种热电偶,它们之间的主要差异特征在于它们的温度特性不同。

热电偶的特性是指它输出的电阻对温度的变化关系。

评估热电偶的性能需要一组可控的测试条件,以及一组准确的测量参数,这需要做一个热电偶特性测试。

热电偶特性测试的实施主要分为3个方面:特性确定,性能测试和稳定性测试。

特性确定是最关键的环节,可以确定热电偶的电流输出特性,以及温度给定线性输出。

性能测试是为了确定热电偶的精度和稳定性,以及它改变是否符合要求。

稳定性测试主要是指测试在特定环境及时间内,热电偶的响应特性是否稳定。

热电偶特性测试实施完毕后,需要对测试结果进行评估,以求得对热电偶的细节评估。

首先,需要根据测试结果,确定热电偶的电阻/温度特性曲线,以确定热电偶的精度和稳定性。

其次,要检验热电偶的温度给定线性输出,确定热电偶在温度变化上的准确度。

最后,要确定热电偶在不同环境和时间内的稳定性,以及它的响应特性是否能满足要求。

以上就是热电偶特性实验的全部流程,经过精心实施,我们能够获得准确而完整的实验数据,从而帮助我们更好的判断热电偶的性能优劣。

当然,在实验的实施过程中,我们也要认真对待,确保实验结果的准确性,否则就会影响实验结果的准确性。

再次强调,热电偶是用来监测温度变化的传感器,在其他领域也有重要作用,所以,要正确实施热电偶特性实验。

总的来说,热电偶特性的实验主要包括特性确定、性能测试和稳定性测试,是研究热电偶技术发展的关键一环。

实施热电偶特性实验是关乎重大利益的重要事情,所以,要按照详细的流程,正确实施,以保证热电偶特性实验的准确性与可靠性。

热敏电阻和热电偶温差电势的测量

热敏电阻和热电偶温差电势的测量

热敏电阻和热电偶温差电势的测量随着半导体热敏电阻和热电偶在工业中的应用日益广泛,我们有必要对它们的一些温度特性有所了解。

DHT 型热学实验仪是集加热、传感、测量于一体的多功能实验仪器。

采用单片机测量、控制。

脉宽调制式加热,温度采用精确的PID 参数自整定控制。

具有测、控温精度高,加热时间快,降温时间短,操作使用方便。

实验安全、无环境污染。

可以任意地设定加热温度(室温~150℃) 一、实验目的1、热敏电阻的温度特性研究。

2、铜—康铜热电偶温差电势的特性研究。

3、描绘热敏电阻和热电偶温差电势的特性曲线。

4、了解PID 在工业控制中运用的原理和方法。

二、实验仪器DHT 型热学实验仪、直流电桥、数字万用表 三、实验原理 1、热敏电阻热敏电阻是一种电阻值随其电阻体的温度变化呈显著变化的热敏感电阻。

它多由金属氧化物半导体材料制成,也有由单晶半导体、玻璃和塑料制成的。

由于热敏电阻具有体积小、结构简单、灵敏度高、稳定性好、易于实现远距离测量和控制等优点,所以广泛应用于测温、控温、温度补偿、报警等领域。

本实验所测试样为负温度系数(NTC)热敏电阻,它的电阻值随温度升高而减小。

其电阻温度特性的通用公式为)11(2121T T B eR R -= (1)式中,R l 为温度T l 时的阻值;R 2为温度为T 2时的阻值;B 为热敏指数,由材料的物理特性决定。

若设T 2趋于无穷大,上式可简化成TB T Ae R = (2)热敏电阻温度系数的定义式为dTdR R TT 1=α对于负温度系数热敏电阻,其温度系数是温度丁的函数,以T α表示。

可以得出2TBT -=α (3) 上式表示,对负温度系数电阻来说,T α在工作温度范围内随温度增加迅速减小。

表示温度系数时要注明其温度值,通常以25℃时的值来表示。

对式(2)线性化,可得TBA R T 1ln ln += (4)作T1~T R ln 曲线,此直线斜率即为B ,截距为lnA 。

温度特性实验报告

温度特性实验报告

一、实验目的1. 了解温度传感器的基本原理和种类。

2. 掌握热电偶、热敏电阻等常用温度传感器的温度特性测量方法。

3. 研究不同温度传感器在不同温度范围内的响应特性。

4. 分析实验数据,评估温度传感器的准确性和可靠性。

二、实验原理温度传感器是将温度信号转换为电信号的装置,常用的温度传感器有热电偶、热敏电阻、热敏晶体管等。

本实验主要研究热电偶和热敏电阻的温度特性。

1. 热电偶测温原理热电偶是一种基于塞贝克效应的温度传感器,由两种不同材料的导体构成。

当两种导体的自由端分别处于不同温度时,会产生热电势,其大小与温度有关。

通过测量热电势,可以确定温度。

2. 热敏电阻测温原理热敏电阻是一种基于半导体材料的电阻值随温度变化的温度传感器。

根据电阻值随温度变化的规律,可以将温度信号转换为电信号。

热敏电阻分为正温度系数热敏电阻(PTC)和负温度系数热敏电阻(NTC)。

三、实验仪器与设备1. 热电偶(K型、E型)2. 热敏电阻(NTC、PTC)3. 温度控制器4. 数字多用表(万用表)5. 数据采集器6. 实验平台7. 温度传感器实验装置四、实验步骤1. 热电偶温度特性测量(1)将K型热电偶和E型热电偶分别接入实验装置,调节温度控制器,使温度逐渐升高。

(2)使用数字多用表测量热电偶两端的热电势,记录数据。

(3)将热电势与温度对应,绘制热电偶的温度特性曲线。

2. 热敏电阻温度特性测量(1)将NTC热敏电阻和PTC热敏电阻分别接入实验装置,调节温度控制器,使温度逐渐升高。

(2)使用数字多用表测量热敏电阻的电阻值,记录数据。

(3)将电阻值与温度对应,绘制热敏电阻的温度特性曲线。

五、实验结果与分析1. 热电偶温度特性曲线通过实验数据绘制出K型和E型热电偶的温度特性曲线,可以看出热电偶的温度特性与温度之间呈线性关系,但在低温区域可能存在非线性。

2. 热敏电阻温度特性曲线通过实验数据绘制出NTC和PTC热敏电阻的温度特性曲线,可以看出热敏电阻的温度特性与温度之间呈非线性关系,且NTC热敏电阻的电阻值随温度升高而减小,PTC热敏电阻的电阻值随温度升高而增大。

热电偶测温实验原理

热电偶测温实验原理

热电偶测温实验原理一、什么是热电偶热电偶是一种常用的温度测量传感器,基于热电效应和材料导电性温度系数之间的关系工作。

热电偶由两个不同的金属或金属合金组成,其两端被紧密地连接在一起,并浸泡在测量的温度介质内。

当两端存在温度差时,由于温度差激励下导体内部产生热电动势,进而在热电偶两端产生一个微弱的电信号。

二、热电偶的特性热电偶具有如下特性:1.灵敏度高:热电偶产生的电信号与温度变化呈线性关系,敏感度较高。

2.可靠性高:热电偶材料具有较高的稳定性和耐腐蚀性,使用寿命长。

3.测量范围广:热电偶温度测量范围可达-200℃ ~ 2300℃,可适用于当前众多行业的高、低温度测量。

4.抗电磁干扰:热电偶信号的幅度较小,且存在热电偶两端相反的电信号,具有很好的抗电磁干扰性。

三、热电偶测温实验原理1.实验原理热电偶的测温原理是基于热电效应原理。

当两个不同导电材料连接在一起形成一个回路时,被测量的物体部分与回路的一端(冷端)相接触,另一端(热端)则与较高温度物体相接触,两侧温差产生的热电动势使电荷通过回路。

在热电偶测量中,测量实际上是测量热电偶两端的电压。

热电偶两端产生的电压信号与热电偶的参考电极温度相对应,经过校准后即可获得被测物体的温度。

2.实验材料实验中需要的材料如下:•热电偶•稳压电源•文件夹•油浴3.实验步骤实验步骤如下:1.将热电偶连接成功能齐全的读数器或万用表。

2.将热电偶中的端线用文件夹夹紧,并通电预热10分钟左右。

3.准备一个油浴,油浴温度可以通过稳压电源进行控制。

4.将热电偶热端浸入油浴中,记录热端的温度。

5.随着油浴在热端降温,记录相应的热电偶温度,形成温度时间序列数据。

6.实验完成后,通过数据处理和分析,得到温度的变化数字表格,可以绘制温度时间曲线,明确温度变化趋势。

四、总结热电偶是一种可靠、灵敏的温度传感器,广泛应用于科学研究中的温度测量工作中。

通过实验,可以进一步了解热电偶原理和温度测量方法,具有推动测量技术进步的重要意义。

K 型热电偶测温实验

K 型热电偶测温实验

实验报告( )
实验名称K 型热电偶测温实验专业
姓名学号同组人实验日期指导教师图29-1(a)图29-1(b)
图29-2
热电偶的分度号热电偶的分度号是其分度表的代号(一般用大写字母S、R、B、K、E、J、T、N 表示)。

它是在热电偶的参考端为0℃的条件下,以列表的形式表示热电势与测量端温度的关系。

实验步骤及数据整理
一、实验步骤
1.将温度控制在500C,在另一个温度传感器插孔中插入K 型热电偶温
度传感器。

2.将±15V 直流稳压电源接入温度传感器实验模块中。

温度传感器实验模块的输出Uo2接主控台直流电压表。

3.将温度传感器模块上差动放大器的输入端Ui 短接,调节Rw3到最大位置,再调节电位器Rw4 使直流电压表显示为零。

4.拿掉短路线,按图29-3 接线,并将K 型热电偶的两根引线,热端(红色)接a,冷端(绿色)接b;记下模块输出Uo2 的电压值。

图29-3
5.改变温度源的温度每隔50C 记下Uo2 的输出值。

直到温度升至1200C。

并将实验结果填入表中
二、数据整理
1.完成下列数据表格
2.根据中间温度定律和K 型热电偶分度表,用平均值计算出差动放大器的放大倍数A。

热电偶的实验报告

热电偶的实验报告

热电偶的实验报告
实验目的:
1. 了解热电偶的原理和工作原理;
2. 了解热电偶的结构和特性;
3. 了解热电偶的测量方法;
4. 了解热电偶的应用。

实验内容:
1. 热电偶的原理:热电偶是一种用于测量温度的传感器,它由两种不同的金属组成,当金属之间的温度发生变化时,它们之间的电阻也会发生变化,从而可以测量温度。

2. 热电偶的结构和特性:热电偶由两种不同的金属组成,一种是热电偶的探头,另一种是热电偶的探头线,它们之间的电阻随温度的变化而变化,可以测量温度。

3. 热电偶的测量方法:热电偶的测量方法主要有两种,一种是用热电偶表测量,另一种是用热电偶仪表测量。

4. 热电偶的应用:热电偶的应用非常广泛,它可以用于温度控制、温度监测、温度测量等,在工业、冶金、化工、石油、电力、航空航天等领域都有广泛的应用。

实验结果:
通过本次实验,我们了解了热电偶的原理、结构和特性、测量方法以及应用,并且通过实验,我们可以测量出热电偶的温度变化,从而得出热电偶的测量结果。

结论:
热电偶是一种用于测量温度的传感器,它由两种不同的金属组成,当金属之间的温度发生变化时,它们之间的电阻也会发生变化,从而可以测量温度。

热电偶的应用非常广泛,它可以用于温度控制、温度监测、温度测量等,在工业、冶金、化工、石油、电力、航空航天等领域都有广泛的应用。

热电偶温度测量试验

热电偶温度测量试验

内燃机测试技术试验实验热电偶温度测量试验实验学时:2实验类型:基础型实验对象:本科生一.实验目的:1.了解热电偶温度测量基本原理。

2.了解热电偶的温度特性。

3.了解热电偶的不同封装型式和使用特点。

4.掌握热电偶温度测量电路实现和关键参数计算。

二.实验原理及设备说明1.热电偶温度测量基本原理热电偶是一种感温元件,是一次仪表。

它直接测量温度,并把温度信号转换成热电动势信号, 通过电气仪表(二次仪表)转换成被测介质的温度。

热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势——热电动势,这就是所谓的塞贝克效应。

两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。

根据热电动势与温度的函数关系, 制成热电偶分度表; 分度表是自由端温度在0℃时的条件下得到的,不同的热电偶具有不同的分度表。

在热电偶回路中接入第三种金属材料时,只要该材料两个接点的温度相同,热电偶所产生的热电势将保持不变,即不受第三种金属接入回路中的影响。

因此,在热电偶测温时,可接入测量仪表,测得热电动势后,即可知道被测介质的温度。

热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度,对于热电偶的热电势,应注意如下几个问题:1:热电偶的热电势是热电偶工作端的两端温度函数的差,而不是热电偶冷端与工作端,两端温度差的函数;2 :热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关;3:当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关;若热电偶冷端的温度保持一定,这进热电偶的热电势仅是工作端温度的单值函数。

常用热电偶可分为标准热电偶和非标准热电偶两大类。

所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。

热敏电阻和热电偶的温度特性测量

热敏电阻和热电偶的温度特性测量

热敏电阻和热电偶的温度特性研究(FB203型多档恒流智能控温实验仪)热敏电阻是阻值对温度变化非常敏感的一种半导体电阻,它有负温度系数和正温度系数两种,负温度系数它的电阻率随着温度的升高而急剧下降(一般是按指数规律),而正温度系数电阻率随着温度的升高而急剧升高(一般是按指数规律),金属的电阻率则是随温度的升高而缓慢地上升。

热敏电阻对于温度的反应要比金属电阻灵敏得多,热敏电阻的体积也可以做得很小,用它来制成的半导体温度计,已广泛地使用在自动控制和科学仪器中,并在物理、化学和生物学研究等方面得到了广泛的应用。

【实验目的】1.研究热敏电阻、铜电阻;铂电阻、热电偶的温度特性。

2.掌握利用直流单臂电桥与控温实验仪测量热敏元件在不同温度下电阻值的方法。

【实验原理】温度传感器是利用一些金属、半导体等材料与温度相关的特性制成的。

常用的温度传感器的类型、测温范围和特点各不相同,本实验将通过测量几种常用的温度传感器的特征物理量随温度的变化,来了解这些温度传感器的工作原理。

1.热敏电阻温度特性原理:在一定的温度范围内,半导体的电阻率ρ和温度T 之间有如下关系:/1B TAe ρ= (1) 式中1A 和B 是与材料物理性质有关的常数,T 为绝对温度。

对于截面均匀的热敏电阻,其阻值T R 可用下式表示:T lR Sρ= (2) 式中T R 的单位为Ω,ρ的单位为cm Ω,l 为两电极间的距离,单位为cm ,S 为电阻的横截面积,单位为2cm 。

将(1)式代入(2)式,令1l A A S=,于是可得:/B TT R Ae = (3)对一定的电阻而言,A 和B 均为常数。

对(3)式两边取对数,则有:1l n l n T R B A T=+ (4)T R ln 与T1成线性关系,在实验中测得各个温度T 的T R 值后,即可通过作图求出B 和A 值,代入(3)式,即可得到T R 的表达式。

式中T R 为在温度)K (T 时的电阻值)(Ω,A 为在某温度时的电阻值)(Ω,B 为常数)K (,其值与半导体材料的成分和制造方法有关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验四K热电偶温度特性实验
1、实验目的:了解热电偶测温原理及方法和应用。

2、基本原理:K型热电偶是由镍铬-镍硅或镍铝材料制成的热电偶,偶丝直径不同,测量的温度范围也不同。

对于确定的热电偶,其温度测量范围和电动势随温度的变化曲线是确定的,可通过查表得到。

选用确定的K型热电偶,插入温度源中,把热电偶的输出端通过差分放大,获得热电偶的电动势。

记录测量电动势,通过测量热电偶输出的电动势值再查分度表得到相应的温度值。

3、需用器件与单元:主机箱、温度源、Pt100热电阻(温度源温度控制传感器)、K热电偶(温度特性实验传感器)、温度传感器实验模板、应变传感器实验模板(代mV发生器)。

4、原理图如下图4.8所示
图4.8 K热电偶原理图
5、实验步骤:
热电偶使用说明:热电偶由A、B热电极材料及直径(偶丝直径)决定其测温范围,如K(镍铬-镍硅或镍铝)热电偶,偶丝直径3.2mm时测温范围0~1200℃,本实验用的K热电偶偶丝直径为0.5mm,测温范围0~800℃;E(镍铬-康铜),偶丝直径3.2mm时测温范围-200~+750℃,实验用的E热电偶偶丝直径为0.5mm,测温范围-200~+350℃。

由于温度源温度<200℃,所以,所有热电偶实际测温范围<200℃。

从热电偶的测温原理可知,热电偶测量的是测量端与参考端之间的温度差,必须保证参考端温度为0℃时才能正确测量测量端的温度,否则存在着参考端所处环境温度值误差。

热电偶的分度表(见附录)是定义在热电偶的参考端(冷端)为0℃时热电偶输出的热电动势与热电偶测量端(热端)温度值的对应关系。

热电偶测温时要对参考端(冷端)进行修正
(补偿),计算公式:E(t,t0)=E(t,t0')+E(t0', t0)
式中:E(t,t0)—热电偶测量端温度为t,参考端温度为t0=0℃时的热电势值;
E(t,t0')—热电偶测量温度t,参考端温度为t0'不等于0℃时的热电势值;
E(t0',t0)—热电偶测量端温度为t0',参考端温度为t0=0℃时的热电势值。

例:用一支分度号为K(镍铬-镍硅)热电偶测量温度源的温度,工作时的参考端温度(室温)t0'=20℃,而测得热电偶输出的热电势(经过放大器放大的信号,假设放大器的增益k=10)32.7mv,则E(t,t0')=32.7mV/10=3.27mV,那么热电偶测得温度源的温度是多少呢?
解:由附录K热电偶分度表查得:
E(t0',t0)=E(20,0)=0.798mV
已测得 E(t,t0')=32.7mV/10=3.27mV
故 E(t,t0)=E(t,t0')+E(t0', t0)= 3.27mV+0.798mV=4.068mV
热电偶测量温度源的温度可以从分度表中查出,与4.068mV所对应的温度是100℃。

(1)在主机箱总电源、调节仪电源、温度源电源关闭的状态下,按图4.11示意图接线。

图4.9 K型热电偶温度特性试验接线示意图
(2)调节温度传感器实验模板放大器的增益K=30倍:在图4.9中温度传感器实验模板上的放大器的二输入端引线暂时不要接入。

拿出应变传感器实验模板(实验一的模板),将应变传感器实验模板上的放大器输入端相连(短接),应变传感器实验模板上的±15V电源插孔与主机箱的±15V电源相应连接,合上主机箱电源开关(调节仪电源和温度源电源关闭)后调节应变传感器实验模板上的电位器R W4(调零电位器)使放大器输出一个较大的mV信号,如20mV(可用电压表2V档测量),再将这个20mV信号(Vi)输给图30A中温度传感器实
验模板的放大器输入端(单端输入:上端接mV,下端接⊥);用电压表(2V档)监测温度传感器实验模板中的Vo1,调节温度传感器实验模板中的RW2增益电位器,使放大器输出Vo1=60OmV,则放大器的增益K= Vo1/Vi=600/20=30倍。

注意:增益K调节好后,千万不要触碰RW2增益电位器。

(3)关闭主机箱电源,拆去应变传感器实验模板,恢复图4.9接线。

(4)测量热电偶冷端温度并进行冷端温度补偿:在温度源电源开关关闭(O为关,-为开)状态下,合上主机箱和调节仪电源开关并将调节仪控制方式(控制对象)开关按到内(温度)位置,记录调节仪PV窗的显示值(实验时的室温)即为热电偶冷端温度t0'(工作时的参考端温度);根据热电偶冷端温度t0'查附录K热电偶分度表得到E(t0',t0),再根据E(t0',t0) 进行冷端温度补偿-----调节温度传感器实验模板中的RW3(电平移动)使Vo2= E(t0',t0)*K= E(t0',t0)*30(用电压表2V档监测温度传感器实验模板中的Vo2)。

(5)将主机箱上的转速调节旋钮(2—24V)顺时针转到底(24V),合上温度源电源开关,在室温基础上,可按Δt=5℃增加温度并且小于160℃范围内设定温度源温度值(设定方法参阅实验二十七,重复6、7、8、9步骤),待温度源温度动态平衡时读取主机箱电压表的显示值并填入表4.3。

表4.3 K热电偶热电势(经过放大器放大后的热电势)与温度数据
(6)根据表4.3数据画出实验曲线并计算非线性误差。

实验结束,关闭所有电源。

注:实验数据V(mv)/k(增益)= E(t,t0)。

实验五E热电偶温度特性实验
1、实验目的:了解不同分度号热电偶测量温度的性能与应用。

2、基本原理:E型热电偶是由镍铬-康铜制成的热电偶,基本原理类似于K型热电偶。

选用确定的E型热电偶,插入温度源中,把热电偶的输出端通过差分放大,获得热电偶的电动势。

记录测量电动势,通过测量热电偶输出的电动势值再查分度表得到相应的温度值。

3、需用器件与单元:主机箱、温度源、P t100热电阻(温度源温度控制传感器)、E热电偶(温度特性实验传感器)、温度传感器实验模板。

4、实验原理图如下图4.12所示
图4.10 E热电偶实验原理图
5、实验步骤:
图4.11 E型热电偶温度特性试验接线示意图
(1)按图4.11示意接线,除了查附录E热电偶分度表外,实验方法和步骤完全与实验四相同,按实验四方法实验并将实验数据填入表4.4。

表4.4 E热电偶热电势(经过放大器放大后的热电势)与温度数据
(2)根据表4.4数据画出实验曲线并计算非线性误差。

实验结束,关闭所有电源。

注:实验数据V(mv)/k(增益)= E(t,t0)。

6、思考题:
通过实验四与实验五的实验数据比较分度号为E、K热电偶在(相同条件下)相同温度时的输出热电势大小。

从实验五热电偶使用说明中可知,K与E热电偶测
附录1:PT100铂电阻分度表
附录2:K型热电偶分度表
附录3:E型热电偶分度表。

相关文档
最新文档