高中数学人教版必修4任意角和弧度制教学设计

合集下载

高中数学 第一课 任意角和弧度制教学设计 新人教A版必修4-新人教A版高一必修4数学教案

高中数学 第一课 任意角和弧度制教学设计 新人教A版必修4-新人教A版高一必修4数学教案

任意角和弧度制
三维目标1.知识与技能:
(1)了解正、负角与零角的相关定义;
(2)根据图形写出角及根据终边写出角的集合;
(3)了解弧度制;
2.过程与方法:
(1)培养学生数型转化的思想;
(2)训练学生思维活跃性,能够举一反三;
(3)培养学生思维的抽
3.情感、态度与价值观:
(1)增强学生观察生活中事物的规律能力;
(2)在老师的引导下建立数学模型,把数学运用到生活中去。

明确目标了解任意角的概念
重点难点重点:将0
0360
~
0范围内的角推广到任意角
难点:判断象限角
课型□讲授□习题□复习□讨论□其它
教学内容与教师活动设计学生活
动设计一.知识点:
1、任意角:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成
的图形.如右图,角 可以看作一条射线绕着端点O从起始位置OA按逆时针方向旋转
到终止位置OB所形成的,点O为角的顶点,射线OA是角的始边,射线OB是角的终边.
注意:(1)掌握角的概念应注意角的三要素:顶点、始边、终边.
(2)角可以是任意大小的.
2、角的分类
(1)正角:按逆时针方向旋转形成的角。

(2)负角:按顺时针方向旋转形成的角。

高中数学教案《任意角和弧度制》

高中数学教案《任意角和弧度制》

教学计划:《任意角和弧度制》一、教学目标1.知识与技能:学生能够理解并掌握任意角的概念,熟悉角度制与弧度制的转换方法,掌握利用弧度制进行简单三角函数的计算。

2.过程与方法:通过直观演示和抽象概括,引导学生自主探究任意角与弧度制的定义及性质;通过例题解析和课堂练习,提高学生的逻辑思维能力和数学运算能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生严谨的科学态度和探究精神;通过学习任意角和弧度制,让学生体会到数学知识的连续性和统一性。

二、教学重点和难点●教学重点:任意角的概念,角度制与弧度制的转换,弧度制下三角函数的基本性质。

●教学难点:理解并接受弧度制作为角的另一种度量方式,以及利用弧度制进行三角函数的计算。

三、教学过程1. 引入新课(约5分钟)●情境导入:以生活中的实例(如钟表指针的转动、体操运动员的旋转动作)为例,引导学生思考角的度量不仅仅局限于0°到360°之间,从而引出任意角的概念。

●定义揭示:明确任意角的定义,包括正角、负角和零角,强调角的旋转方向和度量范围。

●激发兴趣:简述历史上角度制与弧度制的发展过程,引起学生对弧度制的好奇心。

2. 讲授新知(约15分钟)●弧度制介绍:详细介绍弧度制的定义,即弧长与半径的比值,强调弧度制在三角学和微积分中的重要性。

●转换方法:讲解角度制与弧度制之间的转换公式,并通过具体例子演示转换过程。

●性质探讨:引导学生探讨弧度制下三角函数的基本性质,如正弦、余弦和正切函数的周期性、奇偶性等。

3. 直观演示与操作(约10分钟)●单位圆与弧度制:利用多媒体或实物教具展示单位圆上的角度与弧度的对应关系,加深学生对弧度制的理解。

●互动操作:让学生在纸上绘制单位圆,并尝试用尺子量取特定弧长,计算对应的弧度值,以增强感性认识。

●小组讨论:组织学生讨论角度制与弧度制的优缺点,促进知识的内化和吸收。

4. 例题解析与练习(约15分钟)●例题解析:选取典型例题,如角度制与弧度制的转换、利用弧度制计算三角函数值等,进行详细解析,展示解题步骤和思路。

《任意角和弧度制》教案

《任意角和弧度制》教案

《任意角和弧度制》教案篇一:人教A版高中数学必修四1.1《任意角和弧度制》1.1 《任意角和弧度制》教案【教学目的】1.理解任意角的概念.2.学会建立直角坐标系讨论任意角,推断象限角,掌握终边一样角的集合的书写.3.理解弧度制,能进展弧度与角度的换算.4.认识弧长公式,能进展简单应用.对弧长公式只要求理解,会进展简单应用,不必在应用方面加深.5.理解角的集合与实数集建立了一一对应关系,培养学生学会用函数的观点分析、处理征询题. 【导入新课】复习初中学习过的知识:角的度量、圆心角的度数与弧的度数及弧长的关系提出征询题:1.初中所学角的概念.2.实际生活中出现一系列关于角的征询题. 3.初中的角是如何度量的?度量单位是什么?4.1°的角是如何定义的?弧长公式是什么?5.角的范围是什么?如何分类的?新授课阶段一、角的定义与范围的扩大1.角的定义:一条射线绕着它的端点O,从起始位置OA旋转到终止位置OB,构成一个角?,点O是角的顶点,射线OA,OB分别是角?的终边、始边. 说明:在不引起混淆的前提下,“角?”或“??”能够简记为?.2.角的分类:正角:按逆时针方向旋转构成的角叫做正角;负角:按顺时针方向旋转构成的角叫做负角;零角:假设一条射线没有做任何旋转,我们称它为零角. 说明:零角的始边和终边重合. 3.象限角:在直角坐标系中,使角的顶点与坐标原点重合,角的始边与x轴的非负轴重合,那么(1)象限角:假设角的终边(端点除外)在第几象限,我们就说这个角是第几象限角. 例如:30?,390?,?330?都是第一象限角;300?,?60?是第四象限角.(2)非象限角(也称象限间角、轴线角):如角的终边在坐标轴上,就认为这个角不属于任何象限.例如:90?,180?,270?等等.说明:角的始边“与x轴的非负半轴重合”不能说成是“与x轴的正半轴重合”.由于x轴的正半轴不包括原点,就不完全包括角的始边,角的始边是以角的顶点为其端点的射线.4.终边一样的角的集合:由特别角30看出:所有与30角终边一样的角,连同30角本身在内,都能够写成30?k?360??????k?Z?的方式;反之,所有形如30??k?360??k?Z?的角都与30?角的终边一样.从而得出一般规律:所有与角?终边一样的角,连同角?在内,可构成一个集合S|?k?360?,k?Z?,即:任一与角?终边一样的角,都能够表示成角?与整数个周角的和. 说明:终边一样的角不一定相等,相等的角终边一定一样.例1在0与360范围内,找出与以下各角终边一样的角,并推断它们是第几象限角?(1)?120;(2)640;(3)?95012?.?????解:(1)?120?240?360,因而,与?120角终边一样的角是240,它是第三象限角;(2)640?280?360,因而,与640角终边一样的角是280角,它是第四象限角;(3)?95012??12948??3?360,??????????因而,?95012?角终边一样的角是12948?角,它是第二象限角.??例2 假设??k?360??1575?,k?Z,试推断角?所在象限. 解:∵??k?360??1575?(k?5)?360??225?, (k?5)?Z ∴?与225终边一样,因而,?在第三象限.?例3 写出以下各边一样的角的集合S,并把S中适宜不等式?360720?的元素? 写出来:(1)60;(2)?21;(3)36314?.?????解:(1)S??|??60?k?360,k?Z,??S中适宜?360720?的元素是60??1?360300?,60??0?360??60?,?60??1?360??420.??(2)S??|21?k?360,k?Z,??S中适宜?360720?的元素是?21??0?36021?,?21??1?360??339?,?21??2?260??699???(3)S??|??36314??k?360,k?ZS中适宜?360720?的元素是363?14??2?360356?46?, 363?14??1?360??3?14?,?363?14??0?360??363?14.例4 写出第一象限角的集合M.分析:(1)在360内第一象限角可表示为090;(2)与0,90终边一样的角分别为0?k?360,90?k?360,(k?Z);(3)第一象限角的集合确实是夹在这两个终边一样的角中间的角的集合,我们表示为:?????????M|k?360?90??k?360?,k?Z?.学生讨论,归纳出第二、三、四象限角的集合的表示法:P|90??k?360?180??k?360?,k?Z?;N|90??k?360?180??k?360?,k?Z?;Q|270??k?360?360??k?360?,k?Z?.说明:区间角的集合的表示不唯一.例5写出y??x(x?0)所夹区域内的角的集合.??解:当?终边落在y?x(x?0)上时,角的集合为?|??45?k?360,k?Z;????当?终边落在y??x(x?0)上时,角的集合为?|45?k?360,k?Z;??因而,按逆时针方向旋转有集合:S??|?45?k?36045?k?360,k?Z.??二、弧度制与弧长公式1.角度制与弧度制的换算:∵360?=2?(rad),∴180?=? rad. ∴1?=?180rad?0.01745rad.??180 1rad?57.30?5718.oSl2.弧长公式:l?r?. 由公式:?ln?r?l?r??.比公式l?简单. r180lR,其中l是扇形弧长,R是圆的半径. 2弧长等于弧所对的圆心角(的弧度数)的绝对值与半径的积3.扇形面积公式S?留意几点:1.今后在详细运算时,“弧度”二字和单位符号“rad”能够省略,如:3表示3rad ,sin?表示?rad角的正弦;2.一些特别角的度数与弧度数的对应值应该记住:3.应确立如下的概念:角的概念推行之后,不管用角度制仍然弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系.任意角的集合实数集R例6 把以下各角从度化为弧度:(1)252?;(2)1115;(3) 30;(4)67?30. 解:(1)/71? (2)0.0625? (3) ? (4) 0.375? 56变式练习:把以下各角从度化为弧度:(1)22o30′;(2)-210o;(3)1200o. 解:(1) ?;(2)? 18720?;(3)?. 63例7 把以下各角从弧度化为度:(1)?;(2) 3.5;(3) 2;(4)35?. 4解:(1)108 o;(2)200.5o;(3)114.6o;(4)45o. 变式练习:把以下各角从弧度化为度:(1)?4?3?;(2)-;(3).12310解:(1)15 o;(2)-240o;(3)54o.例8 知扇形的周长为8cm,圆心角?为2rad,,求该扇形的面积. 解:由于2R+2R=8,因而R=2,S=4. 课堂小结1.弧度制的定义;2.弧度制与角度制的转换与区别;3.牢记弧度制下的弧长公式和扇形面积公式,并灵敏运用;篇二:(教案3)1.1任意角和弧度制1.1.1任意角教学目的:要求学生掌握用“旋转”定义角的概念,理解任意角的概念,学会在平面内建立适当的坐标系来讨论角;并进而理解“正角”“负角”“象限角”“终边一样的角”的含义。

人教版高中必修41.1任意角和弧度制教学设计

人教版高中必修41.1任意角和弧度制教学设计

人教版高中必修4-1.1 任意角和弧度制教学设计一、教学目标1.知识目标:理解弧长、辐角和弧度的概念,掌握弧度制与角度制的相互转换方法。

2.技能目标:能够准确地表示任意角的大小,计算圆的周长和面积。

3.情感目标:通过实际操作,培养学生良好的数学思维和解决问题的能力。

二、教学重点难点1.重点:弧长、辐角和弧度的概念,弧度制与角度制的相互转换。

2.难点:如何正确理解并计算任意角的大小,如何正确应用弧度制与角度制。

三、教学方法1.讲授与示范相结合的方法。

通过讲解和演示弧长、辐角和弧度的概念,引导学生理解概念。

2.反思式探究的方法。

通过完成一些练习题和实际操作,引导学生独立思考、合作探究和反思总结。

3.讨论交流的方法。

引导学生在小组内相互探讨、交流解题经验,加深对概念的理解和掌握技能。

四、教学过程1. 导入(5分钟)通过实际操作,向学生呈现“用刀割一个披萨”的活动,引导学生认识切割的式样以及分数的概念。

2. 概念讲解(25分钟)1.弧和弧长的概念:引导学生理解弧的概念,了解计算弧长的公式及其证明过程。

2.辐角和角的概念:引导学生掌握辐角和角的概念,了解任意角的大小的概念及其计算方法。

3.弧度制:介绍弧度制的概念及其优缺点,讲解弧度制与角度制的相互转换方法及应用。

3. 讲解示范(15分钟)示范如何计算各种角的大小及弧长的计算、圆的周长和面积的计算,并且提供实例进行实操。

4. 练习与应用(25分钟)1.对学生提供练习题及实际问题,引导学生计算弧长、辐角、面积和周长。

2.在小组内讨论交流、合作解题,加深对概念及计算方法的理解。

5. 总结反思(5分钟)互相交流解题经验,讲述探究过程,反思总结此次学习内容。

五、教学评价方法1.作业评价:检查学生的学习状况,对正确掌握本节课内容的学生进行表扬和奖励,帮助没有学好的学生弥补差漏。

2.学生综合评价:通过学生自我评价、小组评价、教师评价的方式,将本节课的学习成果进行综合评价。

高中数学必修四教学方案范文《任意角和弧度制》

高中数学必修四教学方案范文《任意角和弧度制》

高中数学必修四教学方案范文《任意角和弧度制》高中数学必修4《任意角和弧度制》教案【一】教学准备教学目标1、知识与技能(1)推广角的概念、引入大于角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4)掌握所有与角终边相同的角(包括角)的表示方法;(5)树立运动变化观点,深刻理解推广后的角的概念;(6)揭示知识背景,引发学生学习兴趣.(7)创设问题情景,激发学生分析、探求的学习态度,强生的参与意识.2、过程与方法通过创设情境:“转体,逆(顺)时针旋转”,角有大于角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习.3、情态与价值通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分.角的概念推广以后,知道角之间的关系.理解掌握终边相同角的表示方法,学会运用运动变化的观点认识事物.教学重难点重点:理解正角、负角和零角的定义,掌握终边相同角的表示法.难点:终边相同的角的表示.教学工具投影仪等.教学过程【创设情境】思考:你的手表慢了5分钟,你是怎样将它校准的假如你的手表快了1.25小时,你应当如何将它校准当时间校准以后,分针转了多少度[取出一个钟表,实际操作]我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于之间,这正是我们这节课要研究的主要内容——任意角.【探究新知】1.初中时,我们已学习了角的概念,它是如何定义的呢[展示投影]角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图1.1-1,一条射线由原来的位置,绕着它的端点o按逆时针方向旋转到终止位置OB,就形成角a.旋转开始时的射线叫做角的始边,OB叫终边,射线的端点o叫做叫a的顶点.2.如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转体”(即转体2周),“转体”(即转体3周)等,都是遇到大于的角以及按不同方向旋转而成的角.同学们思考一下:能否再举出几个现实生活中“大于的角或按不同方向旋转而成的角”的例子,这些说明了什么问题又该如何区分和表示这些角呢[展示课件]如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角,这些都说明了我们研究推广角概念的必要性.为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角(poitiveangle),按顺时针方向旋转所形成的角叫负角(negativeangle).如果一条射线没有做任何旋转,我们称它形成了一个零角(zeroangle).8.学习小结(1)你知道角是如何推广的吗(2)象限角是如何定义的呢(3)你熟练掌握具有相同终边角的表示了吗会写终边落在某轴、y轴、直线上的角的集合.五、评价设计1.作业:习题1.1A组第1,2,3题.2.多举出一些日常生活中的“大于的角和负角”的例子,熟练掌握他们的表示,进一步理解具有相同终边的角的特点.课后小结(1)你知道角是如何推广的吗(2)象限角是如何定义的呢(3)你熟练掌握具有相同终边角的表示了吗会写终边落在某轴、y 轴、直线上的角的集合.课后习题作业:1、习题1.1A组第1,2,3题.2.多举出一些日常生活中的“大于的角和负角”的例子,熟练掌握他们的表示,进一步理解具有相同终边的角的特点.板书略高中数学必修4《任意角和弧度制》教案【二】教学准备教学目标一、知识与技能(1)理解并掌握弧度制的定义;(2)领会弧度制定义的合理性;(3)掌握并运用弧度制表示的弧长公式、扇形面积公式;(4)熟练地进行角度制与弧度制的换算;(5)角的集合与实数集之间建立的一一对应关系.(6)使学生通过弧度制的学习,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系.二、过程与方法创设情境,引入弧度制度量角的大小,通过探究理解并掌握弧度制的定义,领会定义的合理性.根据弧度制的定义推导并运用弧长公式和扇形面积公式.以具体的实例学习角度制与弧度制的互化,能正确使用计算器.三、情态与价值教学重难点重点:理解并掌握弧度制定义;熟练地进行角度制与弧度制地互化换算;弧度制的运用.难点:理解弧度制定义,弧度制的运用.教学工具投影仪等教学过程一、创设情境,引入新课师:有人问:海口到三亚有多远时,有人回答约250公里,但也有人回答约160英里,请问那一种回答是正确的(已知1英里=1.6公里)显然,两种回答都是正确的,但为什么会有不同的数值呢那是因为所采用的度量制不同,一个是公里制,一个是英里制.他们的长度单位是不同的,但是,他们之间可以换算:1英里=1.6公里.在角度的度量里面,也有类似的情况,一个是角度制,我们已经不再陌生,另外一个就是我们这节课要研究的角的另外一种度量制---弧度制.二、讲解新课1.角度制规定:将一个圆周分成360份,每一份叫做1度,故一周等于360度,平角等于180度,直角等于90度等等.弧度制是什么呢1弧度是什么意思一周是多少弧度半周呢直角等于多少弧度弧度制与角度制之间如何换算请看课本,自行解决上述问题.2.弧度制的定义长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1,或1弧度,或1(单位可以省略不写).(师生共同)探究:如图,半径为的圆的圆心与原点重合,角的终边与轴的正半轴重合,交圆于点,终边与圆交于点.请完成表格.我们知道,角有正负零角之分,它的弧度数也应该有正负零之分,如-π,-2π等等,一般地,正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定.角的概念推广以后,在弧度制下,角的集合与实数集R之间建立了一一对应关系:即每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.四、课堂小结度数与弧度数的换算也可借助“计算器”《中学数学用表》进行;在具体运算时,“弧度”二字和单位符号“rad”可以省略如:3表示3radinp表示prad角的正弦应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系。

任意角和弧度制教案

任意角和弧度制教案

任意角和弧度制教案教案标题:任意角和弧度制教案教案目标:1. 了解任意角的概念,能够在坐标系中表示和定位任意角。

2. 理解弧度制的概念,能够在弧度制和度数制之间进行转换。

3. 掌握任意角的三角函数值的计算方法。

教学准备:1. 教师准备:教学投影仪、白板、笔记本电脑、教学PPT等。

2. 学生准备:纸和铅笔。

教学过程:Step 1: 引入1. 教师通过展示一张钟表图,引导学生思考角度的概念。

提问:你们平时见过哪些角度的度量方式?2. 学生回答后,教师解释度数制的概念,并引出本节课学习的内容:任意角和弧度制。

Step 2: 任意角的表示和定位1. 教师通过示意图和坐标系,解释任意角的表示方法。

提醒学生注意正角、负角和零角的特点。

2. 学生跟随教师的指导,在纸上练习绘制不同角度的示意图,并用坐标系表示和定位这些角。

Step 3: 弧度制的介绍和转换1. 教师给出弧度制的定义:1弧度是半径等于1的圆的弧所对应的角。

2. 教师通过示意图和实际物体(如一根铁丝弯成的圆弧),展示弧度制的概念和计算方法。

3. 教师引导学生进行度数制和弧度制之间的转换练习,提供一些常见的转换例题。

Step 4: 任意角的三角函数值的计算1. 教师复习正弦、余弦和正切的定义,并介绍任意角的三角函数值的计算方法。

2. 教师通过示例演示三角函数值的计算步骤,引导学生进行练习。

Step 5: 拓展应用1. 教师提供一些与任意角和弧度制相关的实际问题,引导学生运用所学知识解决问题。

2. 学生个别或小组合作完成拓展应用题。

Step 6: 总结和归纳1. 教师带领学生总结本节课所学内容,并强调重点和难点。

2. 学生将所学知识进行整理和归纳,完成课堂笔记。

Step 7: 作业布置1. 教师布置相关的课后作业,包括练习题和思考题。

2. 学生完成作业,以便巩固所学知识。

教学评估:1. 教师观察学生在课堂上的参与度和理解程度。

2. 教师检查学生完成的课堂练习和作业,评估学生的掌握情况。

人教版高中数学必修四教案1.1 任意角和弧度制 弧度制(2)

人教版高中数学必修四教案1.1 任意角和弧度制 弧度制(2)

一、教学目标重点:角度制与弧度制的互化;弧度制的运用. 难点::弧度的概念及其与角度的关系.知识点:角度制与弧度制的互化公式;弧长公式;扇形面积公式. 能力点:建立角的集合与实数集R 之间的一一对应关系.教育点:使学生通过弧度制的学习,理解并认识角度制与弧度制是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系.自主探究点:利用对应成比例关系得出结论.训练(应用)点:角度制与弧度制的互化换算,弧度制的运用. 考试点:掌握角度制与弧度制的换算,并熟练的进行换算操作. 易错点:角度与弧度的单位写法易错. 易混点:角度和弧度的转换易混 二、引入新课:【师生活动】:教师:我们学习了角的概念的推广知道角可以分为哪几类?学生回答 “正角”与“负角”“0角”教师:要描述一个角的大小,通常用什么表示呢? 学生回答:是用度来表示的。

教师引出角度制的概念,那么1︒的角是如何定义的?学生:1︒的角可以理解为将圆周角分成360等份,每一等份的弧所对的圆心角就是1︒.它是一个定值,与所取圆的半径大小无关.有了它,可以计算弧长,公式为180n rl π=. 【设计意图】:温故而知新,引导学生切身感受角的弧度制引入的必要性. 三、探究新知: (一)弧度制的概念【师生活动】:教师:角除了以度为单位,还有分和秒,他们是六十进制的,计算不方便,角的度量是否也能用不同的单位制?学生分组讨论.教师引导:我们能用等于半径的弧所对的圆心角作为角的度量单位吗?这个弧度数是否与圆半径的大小有关?教师引导学生画出图形.在圆内作出AOB COD α∠=∠=当半径为1r 时,弧长1180n r AB π=(n α=︒) ,弧长与半径的比值为111180180n r AB n r r ππ==. 当半径为2r 时,弧长2180n r CD π=, 弧长与半径的比值为222180180n r CD n r r ππ==. 两比值相等.讨论结果:能.当圆心角一定时,它所对弧长与半径的比值是一定的,与半径大小无关.【设计意图】:学生亲手作图,感受角的弧度制与角度制是角的度量单位,都可以刻画角的大小,与角所在的圆半径无关。

高中教育数学人教版必修4 教学设计-弧度制

高中教育数学人教版必修4 教学设计-弧度制

弧度制教学设计一、教材分析:1、教材地位与作用:本节课是普通高中实验教科书人教A版必修4第一章第一节第二课时。

本节课起着承上启下的作用:在前面学生在初中已经学过角的度量单位“度”,并且上节课学了任意角的概念,将角的概念推广到了任意角;本节课作为三角函数的第二课时,该课的知识还是后继学习任意角的三角函数等知识的理论准备,因此本节课还起着启下的作用。

通过本节弧度制的学习,我们很容易找出与角对应的实数而且在弧度制下的弧长公式与扇形面积公式有了更为简单形式。

另外弧度制为今后学习三角函数带来很大方便。

2、教材内容分析:新的教育理念认为:数学教学过程就是学生对有关的数学内容进行探索,实践与思考的过程,所以学生应当成为学习活动的主体,教师应成为学习活动的组织者、引导者与合作者。

在教学中教师首先应考虑的是要充分调动学生的主动性与积极性,引导学生开展观察、比较、概括、推理、交流等多种形式的活动,使学生通过这些活动,掌握基本的数学知识与技能。

教师在发挥组织、引导作用的同时,又是学生的合作者。

教材遵循了由浅入深、循序渐进的原则.从学生熟悉的基本单位转换入手,体会不同的单位制能给解决问题带来方便,引导学习去思考寻找另一种的单位制度量角,接下来用四点来分析教材的内容:(1)要弄清1弧度的意义。

弧度制与角度制一样,只是度量角的一种方法,但由于学生有先入为主的想法,所以学起来有一定的困难,首先必须清楚1弧度的概念,它与所在圆的半径大小无关。

(2)通过实例,来讲述1弧度的含义,这样便于学生概念的理解,通过弧度制与角度制对比来分析、说明应用弧度制的度量比应用角度制的度量方法是否具有优越性;(3)关于弧度与角度二者的换算,教学时应抓住:;二、学情分析在本节课中,学生已具备了以下学习条件:1、知识基础:学生在初中已经学过角的度量单位“度”并且上节课学了任意角的概念,学生已掌握了角的概念的推广。

2、心理准备:目前只知道角可以用度为单位进行度量,在寻找另一种的单位制度量角的时候思维受挫是学生学习本节课的内在动机。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1 任意角和弧度制1.1.1 任意角整体设计教学分析教材首先通过实际问题的展示,引发学生的认知冲突,然后通过具体例子,将初中学过的角的概念推广到任意角,在此基础上引出终边相同的角的集合的概念.这样可以使学生在已有经验(生活经验、数学学习经验)的基础上,更好地认识任意角、象限角、终边相同的角等概念.让学生体会到把角推广到任意角的必要性,引出角的概念的推广问题.本节充分结合角和平面直角坐标系的关系,建立了象限角的概念.使得任意角的讨论有一个统一的载体.教学中要特别注意这种利用几何的直观性来研究问题的方法,引导学生善于利用数形结合的思想方法来认识问题、解决问题.让学生初步学会在平面直角坐标系中讨论任意角.能熟练写出与已知角终边相同的角的集合,是本节的一个重要任务.学生的活动过程决定着课堂教学的成败,教学中应反复挖掘“探究”栏目及“探究”示图的过程功能,在这个过程上要不惜多花些时间,让学生进行操作与思考,自然地、更好地归纳出终边相同的角的一般形式.也就自然地理解了集合S={β|β=α+k·360°,k∈Z}的含义.如能借助信息技术,则可以动态表现角的终边旋转的过程,更有利于学生观察角的变化与终边位置的关系,让学生在动态的过程中体会,既要知道旋转量,又要知道旋转方向,才能准确刻画角的形成过程的道理,更好地了解任意角的深刻涵义.三维目标1.通过实例的展示,使学生理解角的概念推广的必要性,理解并掌握正角、负角、零角、象限角、终边相同角的概念及表示,树立运动变化的观点,并由此深刻理解推广之后的角的概念.2.通过自主探究、合作学习,认识集合S中k、α的准确含义,明确终边相同的角不一定相等,终边相同的角有无限多个,它们相差360°的整数倍.这对学生的终身发展,形成科学的世界观、价值观具有重要意义.3.通过类比正、负数的规定,让学生认识正角、负角并体会类比、数形结合等思想方法的运用,为今后的学习与发展打下良好的基础.重点难点教学重点:将0°—360°范围的角推广到任意角,终边相同的角的集合.教学难点:用集合来表示终边相同的角.课时安排1课时教学过程导入新课图1思路 1.(情境导入)如图1,在许多学校的门口都有摆设的一些游戏机,只要指针旋转到阴影部分即可获得高额奖品.由此发问:指针怎样旋转,旋转多少度才能赢?还有我们所熟悉的体操运动员旋转的角度,自行车车轮旋转的角度,螺丝扳手的旋转角度,这些角度都怎样解释?在学生急切想知道的渴望中引入角的概念的推广.进而引入角的概念的推广的问题.思路2.(复习导入)回忆初中我们是如何定义一个角的?所学的角的范围是什么?用这些角怎样解释现实生活的一些现象,比如你原地转体一周的角度,应怎样修正角的定义才能解释这些现象?由此让学生展开讨论,进而引入角的概念的推广问题.推进新课新知探究提出问题①你的手表慢了5分钟,你将怎样把它调整准确?假如你的手表快了1.25小时,你应当怎样将它调整准确?当时间调整准确后,分针转过了多少度角?②体操运动中有转体两周,在这个动作中,运动员转体多少度?③请两名男生(或女生、或多名男女学生)起立,做由“面向黑板转体背向黑板”的动作.在这个过程中,他们各转体了多少度?活动:让学生到讲台利用准备好的教具——钟表,实地演示拨表的过程.让学生站立原地做转体动作.教师强调学生观察旋转方向和旋转量,并思考怎样表示旋转方向.对回答正确的学生及时给予鼓励、表扬,对回答不准确的学生提示引导考虑问题的思路.角可以看作是平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形,设一条射线的端点是O,它从起始位置OA按逆时针方向旋转到终止位置OB,则形成了一个角α,点O 是角的顶点,射线OA、OB分别是角α的始边和终边.我们规定:一条射线绕着它的端点按逆时针方向旋转形成的角叫做正角,按顺时针方向旋转形成的角叫做负角.钟表的时针和分针在旋转过程中所形成的角总是负角,为了简便起见,在不引起混淆的前提下,“角α”或“∠α”可以简记作“α”.如果一条射线没有作任何旋转,我们称它形成了一个零角,零角的始边和终边重合,如果α是零角,那么α=0°.讨论结果:①顺时针方向旋转了30°;逆时针方向旋转了450°.②顺时针方向旋转了720°或逆时针方向旋转了720°.③-180°或+180°或-540°或+540°或900°或1 080°……提出问题①能否以同一条射线为始边作出下列角:210°,-45°,-150°.②如何在坐标系中作出这些角,象限角是什么意思? 0°角又是什么意思?活动:先让学生看书、思考、并讨论这些问题,教师提示、点拨,并对回答正确的学生及时表扬,对回答不准确的学生,教师提示、引导考虑问题的思路.学生作这样的角,使用一条射线作为始边,没有固定的参照,所以会作出很多形式不同的角.教师可以适时地提醒学生:如果将角放到平面直角坐标系中,问题会怎样呢?并让学生思考讨论在直角坐标系内讨论角的好处:使角的讨论得到简化,还能有效地表现出角的终边“周而复始”的现象.今后我们在坐标系中研究和讨论角,为了讨论问题的方便,我们使角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合.那么角的终边在第几象限,我们就说这个角是第几象限角.要特别强调角与直角坐标系的关系——角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合.讨论结果:①能.②使角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合.角的终边在第几象限,我们就说这个角是第几象限角.这样:210°角是第三象限角;-45°角是第四象限角;-150°角是第三象限角.特别地,终边落在坐标轴上的角不属于任何一个象限,比如0°角.可以借此进一步设问:锐角是第几象限角?钝角是第几象限角?直角是第几象限角?反之如何?将角按照上述方法放在直角坐标系中,给定一个角,就有唯一一条终边与之对应,反之,对于直角坐标系中的任意一条射线OB,以它为终边的角是否唯一?如果不唯一,那么终边相同的角有什么关系?提出问题①在直角坐标系中标出210°,-150°的角的终边,你有什么发现?它们有怎样的数量关系?328°,-32°,-392°角的终边及数量关系是怎样的?终边相同的角有什么关系?②所有与α终边相同的角,连同角α在内,怎样用一个式子表示出来?活动:让学生从具体问题入手,探索终边相同的角的关系,再用所准备的教具或是多媒体给学生演示:演示象限角、终边相同的角,并及时地引导:终边相同的一系列角与0°到360°间的某一角有什么关系,从而为终边相同的角的表示作好准备.为了使学生明确终边相同的角的表示方法,还可以用教具作一个32°角,放在直角坐标系内,使角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合,形成-32°角后提问学生这是第几象限角?是多少度角?学生对后者的回答是多种多样的.至此,教师因势利导,予以启发,学生对问题探究的结果已经水到渠成,本节难点得以突破.同时学生也在这一学习过程中,体会到了探索的乐趣,激发起了极大的学习热情,这是比学习知识本身更重要的.讨论结果:①210°与-150°角的终边相同;328°,-32°,-392°角的终边相同.终边相同的角相差360°的整数倍.设S={β|β=-32°+k·360°,k∈Z},则328°,-392°角都是S的元素,-32°角也是S的元素(此时k=0).因此,所有与-32°角的终边相同的角,连同-32°在内,都是集合S的元素;反过来,集合S的任何一个元素显然与-32°角终边相同.②所有与α终边相同的角,连同角α在内,可以构成一个集合S={β|β=k·360°+α,k∈Z}.即任一与角α终边相同的角,都可以表示成α与整数个周角的和.适时引导学生认识:①k∈Z;②α是任意角;③终边相同的角不一定相等,终边相同的角有无数多个,它们相差360°的整数倍.应用示例例1 在0°—360°范围内,找出与-950°12′角终边相同的角,并判定它是第几象限角. 解:-950°12′=129°48′-3×360°,所以在0°—360°的范围内,与-950°12′角终边相同的角是129°48′,它是第二象限的角.点评:教师可引导学生先估计-950°12′大致是360°的几倍,然后再具体求解.例2 写出终边在y轴上的角的集合.活动:终边落在y轴上,应分y轴的正方向与y轴的负方向两个.学生很容易分别写出所有与90°,270°的终边相同的角构成集合,这时应启发引导学生进一步思考:能否化简这两个式子,用一个式子表示出来.让学生观察、讨论、思考,并逐渐形成共识,教师再规范地板书出来.并强调数学的简捷性.在数学表达式子不唯一的情况下,注意采用简约的形式.图2解:在0°—360°范围内,终边在y轴上的角有两个,即90°和270°角,如图2.因此,所有与90°的终边相同的角构成集合S1={β|β=90°+k·360°,k∈Z}.而所有与270°角的终边相同的角构成集合S2={β|β=270°+k·360°,k∈Z}.于是,终边在y轴上的角的集合S=S1∪S2={β|β=90°+2k·180°,k∈Z}∪{β|β=90°+180°+2k·180°,k∈Z}={β|β=90°+2k·180°,k∈Z}∪{β|β=90°+(2k+1)·180°,k∈Z}={β|β=90°+n·180°,n∈Z}.点评:本例是让学生理解终边在坐标轴上的角的表示.教学中,应引导学生体会用集合表示终边相同的角时,表示方法不唯一,要注意采用简约的形式.变式训练①写出终边在x轴上的角的集合.②写出终边在坐标轴上的角的集合.答案:①S={β|β=(2n+1)·180°,n∈Z}.②S={β|β=n·90°,n∈Z}.例3 写出终边在直线y=x上的角的集合S,并把S中适合不等式-360°≤β<720°的元素β写出来.图3解:如图3,在直角坐标系中画出直线y=x,可以发现它与x轴夹角是45°,在0°—360°范围内,终边在直线y=x上的角有两个:45°和225°,因此,终边在直线y=x上的角的集合S={β|β=45°+k·360°,k∈Z}∪{β|β=225°+k·360°,k∈Z}.S中适合-360°≤β<720°的元素是:45°-2×180°=-315°,45°-1×180°=-135°,45°+0×180°=45°,45°+1×180°=225°,45°+2×180°=405°,45°+3×180°=585°.点评:本例是让学生表示终边在已知直线的角,并找出某一范围的所有的角,即按一定顺序取k的值,应训练学生掌握这一方法.例4 写出在下列象限的角的集合:①第一象限; ②第二象限;③第三象限; ④第四象限.活动:本题关键是写出第一象限的角的集合,其他象限的角的集合依此类推即可,如果学生阅读例题后没有解题思路,或者把①中的范围写成0°—90°,可引导学生分析360°—450°范围的角是不是第一象限的角呢?进而引导学生写出所有终边相同的角.解:①终边在第一象限的角的集合:{β|n·360°<β<n·360°+90°,n∈Z}.②终边在第二象限的角的集合:{β|n·360°+90°<β<n·360°+180°,n∈Z}.③终边在第三象限的角的集合:{β|n·360°+180°<β<n·360°+270°,n∈Z}.④终边在第四象限的角的集合:{β|n·360°+270°<β<n·360°+360°,n∈Z}.点评:教师给出以上解答后可进一步提问:以上的解答形式是唯一的吗?充分让学生思考、讨论后形成共识,并进一步深刻理解终边相同角的意义.课堂小结以提问的方式与学生一起回顾本节所学内容并简要总结:让学生自己回忆:本节课都学习了哪些新知识?你是怎样获得这些新知识的?你从本节课上都学到了哪些数学方法?让学生自己得到以下结论:本节课推广了角的概念,学习了正角、负角、零角的定义,象限角的概念以及终边相同的角的表示方法,零角是射线没有作任何旋转.一个角是第几象限的角,关键是看这个角的终边落在第几象限,终边相同的角的表示有两方面的内容:(1)与角α终边相同的角,这些角的集合为S={β|β=k·360°+α,k∈Z};(2)在0°—360°内找与已知角终边相同的角α,其方法是用所给的角除以360°,所得的商为k,余数为α(α必须是正数),α即为所找的角.数形结合思想、运动变化观点都是学习本课内容的重要思想方法.作业①课本习题1.1 A组1、3、5.②预习下一节:弧度制.设计感想1.本节课设计的容量较大,学生的活动量也较大,若用信息技术辅助教学效果会很好.教师可充分利用多媒体做好课件,在课堂上演示给学生;有条件的学校,可以让学生利用计算机或计算器进行探究,让学生在动态中掌握知识、提炼方法.2.本节设计的指导思想是加强直观.利用几何直观有利于对抽象概念的理解.在学生得出象限角的概念后,可以充分让学生讨论在直角坐标系中研究角的好处.前瞻性地引导学生体会:在直角坐标系中角的“周而复始”的变化规律,为研究三角函数的周期性奠定基础.3.几点说明:(1)列举不在0°—360°的角时,应注意所有的角在同一个平面内,且终边在旋转的过程中,角的顶点不动.(2)在研究终边相同的两个角的关系时,k的正确取值是关键,应让学生独立思考领悟.(3)在写出终边相同的角的集合时,可根据具体问题,对相应的集合内容进行复习.1.1.2 弧度制整体设计教学分析在物理学和日常生活中,一个量常常需要用不同的方法进行度量,不同的度量方法可以满足我们不同的需要.现实生活中有许多计量单位,如度量长度可以用米、厘米、尺、码等不同的单位制,度量重量可以用千克、斤、吨、磅等不同的单位制,度量角的大小可以用度为单位进行度量,并且一度的角等于周角的 3601,记作1°. 通过类比引出弧度制,给出1弧度的定义,然后通过探究得到弧度数的绝对值公式,并得出角度和弧度的换算方法.在此基础上,通过具体的例子,巩固所学概念和公式,进一步认识引入弧度制的必要性.这样可以尽量自然地引入弧度制,并让学生在探究过程中,更好地形成弧度的概念,建立角的集合与实数集的一一对应,为学习任意角的三角函数奠定基础.通过探究讨论,关键弄清1弧度角的定义,使学生建立弧度的概念,理解弧度制的定义,达到突破难点之目的.通过电教手段的直观性,使学生进一步理解弧度作为角的度量单位的可靠性、可行性.通过周角的两种单位制的度量,得到角度与弧度的换算公式.使学生认识到角度制、弧度制都是度量角的制度,二者虽单位不同,但却是互相联系、辩证统一的.进一步加强对辩证统一思想的理解,渗透数学中普遍存在、相互联系、相互转化的观点. 三维目标1.通过类比长度、重量的不同度量制,使学生体会一个量可以用不同的单位制来度量,从而引出弧度制.2.通过探究使学生认识到角度制和弧度制都是度量角的制度,通过总结引入弧度制的好处,学会归纳整理并认识到任何新知识的学习,都会为解决实际问题带来方便,从而激发学生的学习兴趣.重点难点教学重点:理解弧度制的意义,并能进行角度和弧度的换算.教学难点:弧度的概念及其与角度的关系.课时安排1课时教学过程导入新课思路1.(类比导入)测量人的身高常用米、厘米为单位进行度量,这两种度量单位是怎样换算的?家庭购买水果常用千克、斤为单位进行度量,这两种度量单位是怎样换算的?度量角的大小除了以度为单位度量外,还可采用哪种度量角的单位制?它们是怎样换算的?思路2.(情境导入)利用古代度量时间的一种仪器——日晷,或者利用普遍使用的钟表.实际上我们使用的钟表是用时针、分针和秒针角度的变化来确定时间的.无论采用哪一种方法,度量一个确定的量所得到的量数必须是唯一确定的.在初中,已学过利用角度来度量角的大小,现在来学习角的另一种度量方法——弧度制.要使学生真正了解弧度制,首先要弄清1弧度的含义,并能进行弧度与角度换算的关键.在引入弧度制后,可以引导学生建立弧与圆心角的联系——弧的度数等于圆心角的度数.随着角的概念的推广,圆心角和弧的概念也随之推广:从“形”上说,圆心角有正角、零角、负角,相应的,弧也就有正弧、零弧、负弧;从“数”上讲,圆心角与弧的度数有正数、0、负数.圆心角和弧的正负实际上表示了“角的不同方向”,就像三角函数值的正负可以用三角函数线(有向线段)的方向来表示一样.每一个圆心角都有一条弧与它对应,并且不同的圆心角对应着不同的弧,反之亦然.推进新课新知探究提出问题问题①:在初中几何里,我们学习过角的度量,1°的角是怎样定义的呢?问题②:我们从度量长度和重量上知道,不同的单位制能给我们解决问题带来方便.那么角的度量是否也能用不同单位制呢?图1活动:教师先让学生思考或讨论问题,并让学生回忆初中有关角度的知识,提出这是认识弧度制的关键,为更好地理解角度弧度的关系奠定基础.讨论后教师提问学生,并对回答好的学生及时表扬,对回答不准确的学生提示引导考虑问题的关键.教师板书弧度制的定义:规定长度等于半径长的圆弧所对的圆心角叫做1弧度的角.以弧度为单位来度量角的制度叫做弧度制;在弧度制下,1弧度记作1 rad.如图1中,的长等于半径r,AB 所对的圆心角∠AOB 就是1弧度的角,即rl =1. 讨论结果:①1°的角可以理解为将圆周角分成360等份,每一等份的弧所对的圆心角就是1°.它是一个定值,与所取圆的半径大小无关.②能,用弧度制.提出问题问题①:作半径不等的甲、乙两圆,在每个圆上作出等于其半径的弧长,连结圆心与弧的两个端点,得到两个角,将乙图移到甲图上,两个角有什么样的关系?问题②:如果一个半径为r 的圆的圆心角α所对的弧长是l,那么α的弧度数是多少?既然角度制、弧度制都是角的度量制,那么它们之间如何换算?活动:教师引导学生学会总结和归纳角度制和弧度制的关系,提问学生归纳的情况,让学生找出区别和联系.教师给予补充和提示,对表现好的学生进行表扬,对回答不准确的学生提示和鼓励.引入弧度之后,应与角度进行对比,使学生明确:第一,弧度制是以“弧度”为单位来度量角的单位制,角度制是以“度”为单位来度量角的单位制;第二,1弧度是等于半径长的弧所对的圆心角(或这条弧)的大小,而1°的角是周角的3601;第三,无论是以“弧度”还是以“度”为单位,角的大小都是一个与半径大小无关的定值.教师要强调为了让学生习惯使用弧度制,本教科书在后续的内容中尽量采用弧度制.讨论结果:①完全重合,因为都是1弧度的角.②α=r 1;将角度化为弧度:360°=2π rad,1°=180πrad≈0.017 45 rad,将弧度化为角度:2π rad=360°,1 rad=(π180)°≈57.30°=57°18′.弧度制与角度制的换算公式:设一个角的弧度数为α rad=(πa 180)°,n°=n 180π(rad). 提出问题问题①:引入弧度之后,在平面直角坐标系中,终边相同的角应该怎么用弧度来表示?扇形的面积与弧长公式用弧度怎么表示? 问题②:填写下列的表格,找出某种规律.的长 OB 旋转的方向∠AOB 的弧度数 ∠AOB 的度数 πr 逆时针方向2πr 逆时针方向R1 2r-2-π180°360° 活动:教师先给学生说明教科书上为什么设置这个“探究”?其意图是先根据所给图象对一些特殊角填表,然后概括出一般情况.教师让学生互动起来,讨论并总结出规律,提问学生的总结情况,让学生板书,教师对做正确的学生给予表扬,对没有总结完全的学生进行简单的提示.检查完毕后,教师做个总结.由上表可知,如果一个半径为r 的圆的圆心角α所对的弧长是l,那么α的弧度数的绝对值是a1这里,应当注意从数学思想的高度引导学生认识“换算”问题,即角度制、弧度制都是角的度量制,那么它们一定可以换算.推而广之,同一个数学对象用不同方式表示时,它们之间一定有内在联系,认识这种联系性也是数学研究的重要内容之一.教师给学生指出,角的概念推广后,在弧度制下,角的集合与实数集R 之间建立起一一对应关系:每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.值得注意的是:今后在表示与角α终边相同的角时,有弧度制与角度制两种单位制,要根据角α的单位来决定另一项的单位,即两项所用的单位制必须一致,绝对不能出现k·360°+3π或者2k π+60°一类的写法.在弧度制中,与角α终边相同的角,连同角α在内,可以写成β=α+2k π(k∈Z )的形式.如图2为角的集合与实数集R 之间的一一对应关系.图2讨论结果:①与角α终边相同的角,连同角α在内,可以写成β=α+2k π(k∈Z )的形式.弧度制下关于扇形的公式为l=αR,S=21αR 2,S=21lR. ②的长OB 旋转的方向 ∠AOB 的弧度数 ∠AOB 的度数 πr 逆时针方向 Π 180°2πr逆时针方向 2π 360° R逆时针方向 1 57.3° 2r顺时针方向 -2 -114.6° πr顺时针方向 -π -180° 0未旋转 0 0° πr逆时针方向 Π 180° 2πr 逆时针方向 2π 360°应用示例例1 下列诸命题中,真命题是( )A.一弧度是一度的圆心角所对的弧B.一弧度是长度为半径的弧C.一弧度是一度的弧与一度的角之和D.一弧度是长度等于半径长的弧所对的圆心角,它是角的一种度量单位活动:本例目的是让学生在教师的指导下理解弧度制与角度制的联系与区别,以达到熟练掌握定义.从实际教学上看,弧度制不难理解,学生结合角度制很容易记住.根据弧度制的定义:我们把长度等于半径长的弧和所对的圆心角叫做一弧度的角.对照各项,可知D 为真命题.答案:D点评:本题考查弧度制下角的度量单位:1弧度的概念.变式训练下列四个命题中,不正确的一个是( )A.半圆所对的圆心角是π radB.周角的大小是2πC.1弧度的圆心角所对的弧长等于该圆的半径D.长度等于半径的弦所对的圆心角的大小是1弧度答案:D例2 将下列用弧度制表示的角化为2k π+α(k∈Z ,α∈[0,2π))的形式,并指出它们所在的象限:①-415π;②332π;③-20;④-32. 活动:本题的目的是让学生理解什么是终边相同的角,教师给予指导并讨论归纳出一般规律.即终边在x 轴、y 轴上的角的集合分别是:{β|β=k π,k∈Z },{β|β2π=k π,k∈Z }.第一、二、三、四象限角的集合分别为:{β|2k π<β<2k π+2π,k∈Z }, {β|2k π+2π<β<2k π+π,k∈Z }, {β|2k π+π<β<2k π+23π,k∈Z }, {β|2k π+23π<β<2k π+2π,k∈Z }. 解:①415π-=-4π+4π,是第一象限角.②432π=10π+32π,是第二象限角. ③-20=-3×6.28-1.16,是第四象限角.④-23≈-3.464,是第二象限角.点评:在这类题中对于含有π的弧度数表示的角,我们先将它化为2k π+α(k∈Z ,α∈[0,2π))的形式,再根据α角终边所在的位置进行判断,对于不含有π的弧度数表示的角,取π=3.14,化为k×6.28+α,k∈Z ,|α|∈[0,6.28)的形式,通过α与2π,π,23π比较大小,估计出角所在的象限.变式训练(1)把-1 480°写成2k π+α(k∈Z ,α∈[0,2π))的形式;(2)若β∈[-4π,0),且β与(1)中α终边相同,求β. 解:(1)∵-1 480°=-974π=-10π+916π,0≤916π <2π, ∴-1 480°=2(-5)π+916π. (2)∵β与α终边相同,∴β=2k π+916π,k∈Z . 又∵β∈[-4π,0),∴β1=92π-,β2=920π-. 例3 已知0<θ<2π,且θ与7θ相同,求θ.活动:本例目的是让学生在教师的指导下会用弧度制求终边相同的角,并通过独立完成课后练习真正领悟弧度制的要领,最终达到熟练掌握.从实际教学来看,用弧度制解决角的问题要很容易却难掌握,很有可能记错或者混淆或者化简错误,学生需多做些这方面的题来练基本功.可先让学生多做相应的随堂练习,在黑板上当场演练,教师给予批改指导,对易出错的地方特别强调.对学生出现的种种失误,教师不要着急,在学生的练习操作中一一纠正,这对以后学习大有好处.解:由已知,得7θ=2k π+θ,k∈Z ,即6θ=2k π.∴θ=3k π. 又∵0<θ<2π,∴0<3k π<2π. ∵k∈Z ,当k=1、2、3、4、5时,θ=3π、32π、π、34π、35π. 点评:本题是在一定的约束条件下,求与角α终边相同的角,一般地,首先将这样的角表示为2k π+α(k∈Z ,α∈[0,2π))的形式,然后在约束条件下确定k 的值,进而求适合条件的角.例 4 已知一个扇形的周长为a,求当扇形的圆心角多大时,扇形的面积最大,并求这个最大值.活动:这是一道应用题,并且考查了函数思想,教师提示学生回顾一下用函数法求最值的思路与步骤,教师提问学生对已学知识的掌握和巩固,并对回答好的学生进行表扬,对回答不全面的学生给予一定的提示和鼓励.教师补充,函数法求最值所包括的五个基本环节:(1)选取自变量;(2)建立目标函数;(3)指出函数的定义域;(4)求函数的最值;(5)作出相应结论.其中自变量的选取不唯一,建立目标函数结合有关公式进行,函数定义域要根据题意确定,有些函数是结构确定求最值的方法,并确保在定义域内能取到最值.。

相关文档
最新文档