一维抛物线偏微分方程数值解法(3)(附图及matlab程序)
一维抛物型偏微分方程初边值问题求解

一维抛物型偏微分方程初边值问题求解摘要:一、引言二、一维抛物型偏微分方程1.定义与性质2.初边值问题三、求解方法1.紧差分格式2.追赶法3.有限元算法四、Matlab程序实现1.紧差分格式程序2.追赶法程序五、结论与展望正文:一、引言在数学、物理等领域,偏微分方程是一类重要的方程。
其中,一维抛物型偏微分方程在科学研究和实际应用中具有广泛的意义。
本文将探讨一维抛物型偏微分方程的初边值问题的求解方法,并介绍相应的Matlab程序实现。
二、一维抛物型偏微分方程1.定义与性质一维抛物型偏微分方程是指具有如下形式的方程:u_t = a * u_xx其中,u(x, t) 表示未知函数,t 表示时间,x 表示空间坐标,a 为常数。
2.初边值问题初边值问题是指在给定的初始条件和边界条件下求解偏微分方程的问题。
在一维抛物型偏微分方程中,初边值问题可以表示为:u(x, 0) = u_0(x)u(x, t) = u_t(x, t) 在边界x=0,x=L上三、求解方法1.紧差分格式紧差分格式是一种求解偏微分方程的方法,其精度为O(h^(1/2) * Δt),无条件稳定。
在这种方法中,我们首先需要建立离散的网格系统,然后通过数值积分求解离散化的偏微分方程。
2.追赶法追赶法是一种求解线性方程组的方法,也可以用于求解初边值问题。
在这种方法中,我们首先需要将偏微分方程转化为线性方程组,然后使用追赶法求解线性方程组。
3.有限元算法有限元算法是一种基于变分原理的求解方法,可以将偏微分方程问题转化为求解有限元空间的线性方程组。
这种方法在求解一维抛物型偏微分方程时具有较高的精度和可靠性。
(完整版)偏微分方程的MATLAB解法

引言偏微分方程定解问题有着广泛的应用背景。
人们用偏微分方程来描述、解释或者预见各种自然现象,并用于科学和工程技术的各个领域fll。
然而,对于广大应用工作者来说,从偏微分方程模型出发,使用有限元法或有限差分法求解都要耗费很大的工作量,才能得到数值解。
现在,MATLAB PDEToolbox已实现对于空间二维问题高速、准确的求解过程。
偏微分方程如果一个微分方程中出现的未知函数只含一个自变量,这个方程叫做常微分方程,也简称微分方程;如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。
常用的方法有变分法和有限差分法。
变分法是把定解问题转化成变分问题,再求变分问题的近似解;有限差分法是把定解问题转化成代数方程,然后用计算机进行计算;还有一种更有意义的模拟法,它用另一个物理的问题实验研究来代替所研究某个物理问题的定解。
虽然物理现象本质不同,但是抽象地表示在数学上是同一个定解问题,如研究某个不规则形状的物体里的稳定温度分布问题,由于求解比较困难,可作相应的静电场或稳恒电流场实验研究,测定场中各处的电势,从而也解决了所研究的稳定温度场中的温度分布问题。
随着物理科学所研究的现象在广度和深度两方面的扩展,偏微分方程的应用范围更广泛。
从数学自身的角度看,偏微分方程的求解促使数学在函数论、变分法、级数展开、常微分方程、代数、微分几何等各方面进行发展。
从这个角度说,偏微分方程变成了数学的中心。
一、MATLAB方法简介及应用1.1 MATLAB简介MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。
1.2 Matlab主要功能数值分析数值和符号计算工程与科学绘图控制系统的设计与仿真数字图像处理数字信号处理通讯系统设计与仿真财务与金融工程1.3 优势特点1) 高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来;2) 具有完备的图形处理功能,实现计算结果和编程的可视化;3) 友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握;4) 功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等) ,为用户提供了大量方便实用的处理工具。
最新偏微分方程的matlab解法

求解双曲型方程的例子
例24.2.1 用 MATLAB 求解下面波动方程定解问题并动态显示解的分布
2u (2u t 2 x2
2u ) 0 y 2
u
|x
1
u
|x1
0,
u y
y 1
u y
y1 0
π
π
u(x,
y, 0)
atan[ sin(
2
x)], ut
( x,
y,
0)
2
cos(πx)
保持在100 °C,板的右边热量从板向环境空气定常流动,
t t 其他边及内孔边界保持绝缘。初始
°C ,于是概括为如下定解问题;
是板的温度为0 0
d u u0 , t
u 1 0 0 ,在 左 边 界 上
u 1, 在 右 边 界 上 n u = 0, 其 他 边 界 上 n
u t to 0
区域的边界顶点坐标为(-0.5,-0.8), (0.5,-0.8), (-0.5,0.8), (0.5,0.8)。 内边界顶点坐标(-0.05,-0.4), (-0.05,0.4) ,(0.05,-0.4), (0.05,0.4)。
第七步:单击Plot菜单中Parameter选项,打开Plot Selection对话框,选中Color,Height(3D plot)和 Show mesh三项.再单击Polt按钮,显示三维图形解, 如图22.5所示.
第八步:若要画等值线图和矢量场图,单击plot菜单 中parameter 选项,在plot selection对话框中选中 contour 和arrow两选项。然后单击plot按钮,可显示 解的等值线图和矢量场图,如图2.6所示。
网格划分,细化
(完整版)偏微分方程的MATLAB解法

引言偏微分方程定解问题有着广泛的应用背景。
人们用偏微分方程来描述、解释或者预见各种自然现象,并用于科学和工程技术的各个领域fll。
然而,对于广大应用工作者来说,从偏微分方程模型出发,使用有限元法或有限差分法求解都要耗费很大的工作量,才能得到数值解。
现在,MATLAB PDEToolbox已实现对于空间二维问题高速、准确的求解过程。
偏微分方程如果一个微分方程中出现的未知函数只含一个自变量,这个方程叫做常微分方程,也简称微分方程;如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。
常用的方法有变分法和有限差分法。
变分法是把定解问题转化成变分问题,再求变分问题的近似解;有限差分法是把定解问题转化成代数方程,然后用计算机进行计算;还有一种更有意义的模拟法,它用另一个物理的问题实验研究来代替所研究某个物理问题的定解。
虽然物理现象本质不同,但是抽象地表示在数学上是同一个定解问题,如研究某个不规则形状的物体里的稳定温度分布问题,由于求解比较困难,可作相应的静电场或稳恒电流场实验研究,测定场中各处的电势,从而也解决了所研究的稳定温度场中的温度分布问题。
随着物理科学所研究的现象在广度和深度两方面的扩展,偏微分方程的应用范围更广泛。
从数学自身的角度看,偏微分方程的求解促使数学在函数论、变分法、级数展开、常微分方程、代数、微分几何等各方面进行发展。
从这个角度说,偏微分方程变成了数学的中心。
一、MATLAB方法简介及应用1.1 MATLAB简介MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。
1.2 Matlab主要功能数值分析数值和符号计算工程与科学绘图控制系统的设计与仿真数字图像处理数字信号处理通讯系统设计与仿真财务与金融工程1.3 优势特点1) 高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来;2) 具有完备的图形处理功能,实现计算结果和编程的可视化;3) 友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握;4) 功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等) ,为用户提供了大量方便实用的处理工具。
【精品】偏微分的MATLAB数值解法课件

方法一:pdepe函数实现
• x=0:1:40; • t=0:0.01:0.2; • m=0; • sol=pdepe(m,@pdefun,@pdeic,@pdebc,x,t); • b=sol(20,:); • plot(x,b); • title('the solution of u') • xlabel('x') • ylabel('y') • zlabel('u')
偏微分的MATLAB数值解法
偏微分的MATLAB数值解法
• 方法一:pdepe函数实现 • 方法二:pdetool实现 • 方法三:程序实现
方法一:pdepe函数实现
• @pdeic: • function u0=pdeic(x) • if x<10 • u0=0; • elseif x<30 • u0=1; • else • u0=0; • end
•
end
• end
方法三:程序实现
图 22.12 波动方程解析解的分布
偏微分的MATLAB数值解法
• 方法总结: • 1.pdede调用简单,但计算功能稍弱 • 2.pdetool使用方便,但限于四种方程类
型 • 3.程序编写较为繁琐
方法一:pdepe函数实现
方法二:pdetool实现
• 1.pdetool界面 • 2.选定求解微分方程类型(双曲线、抛物线、椭
圆、特殊值型)并设定参数 • 3.绘制求解区域 • 4.边界条件和初值条件(Dirichlet和Neumann) • 5.生成网格 • 6.求解方程并绘制图形
方法二:pdetool实现
• 应用实例:
u(ux,y)
x2 y x0
偏微分的MATLAB数值解法

@pdefun(函数格式描述):
[c,f,s]=pdefun(x,t,u,du)
方法一:pdepe函数实现
u p ( x , t , u ) q ( x , t ) f x , t , u , 0 x
@pdebc(边界条件描述): [pa,qa,pb,qb]=pdebc(x,t,u,du)
方法三:程序实现
• 应用实例: • 波动方程
utt uxx 0 u(x,t) x0 0;u(x,t) xL 2sint u(x,t) t0 0;ut (x,t) t0 0
方法三:程序实现
• • • • • • • • • • • • • • • • • • • • 程序: function U=pianj(a,b,m,n) h = a/(m-1); k = b/(n-1); r = h/k r2=r^2; s2=2-2*r^2; for j=1:m U(1,j)=0; U(2,j)=0; end for i=1:n U(i,1)=0; U(i,m)=2*sin((i-1)*k); end for i=3:n for j=2:m-1 U(i,j) = s2*U(i-1,j)+r2*U(i-1,j-1)+r2*U(i-1,j+1)-U(i-2,j); end end
0 (x 1 0 ,x3 0 ) (x ) 1 ( 1 0x3 0 )
x 40
0
方法一:pdepe函数实现
• • • • • • • • • • • • 应用实例: @pdefun: function [c,f,s]=pdefun(x,t,u,du) c=1; f=400*du; s=0; @pdebc: function [pa,qa,pb,qb]=pdebc(xa,ua,xb,ub,t) pa=ua; qa=0; pb=ub; qb=0;
偏微分方程数值解上机实验报告(matlab做的)

偏微分方程数值解法上机报告(一)一、实验题目:用Ritz-Galerkin 方法求解边值问题2u '',01(0)0,(1)1u x x u u ⎧-+=<<⎨==⎩的第n 次近似()n u x ,基函数()sin(),1,2,...,i x i x i n ϕπ==.二、实验目的:通过本次上机实验,理解求解初值问题的变分问题的最重要的近似解法——Ritz-Galerkin 方法,以便为学习有限元法打好基础。
此外,要熟悉用Matlab 解决数学问题的基本编程方法,提高运用计算机解决问题的能力。
三、实验代码:n=5;syms x;for i=1:np(i)=sin(i*pi*x);q(i)=-i^2*pi^2*sin(i*pi*x);endfor i=1:nb(i)=2*int(p(i),0,1);for j=1:nA(i,j)=int((-q(j)+p(j))*p(i),0,1);endendt=inv(A)*b'四、运行结果:t=2251799813685248/3059521645650671/pi281474976710656/9481460623939047/pi281474976710656/43582901062631895/pi五、总结:通过本次上机,我了解了Ritz-Galerkin 方程 n j j p f cj p i p a n i i ,...,2,1)),(,())(),((1==∑=,明白了用Ritz-Galerkin 方法解决边值问题的变分问题的基本原理,并接近一步提高自己的编程动手能力,受益匪浅。
偏微分方程数值解法上机报告(二)一、 实验题目:用线性元求下列边值问题的数值解2''2sin ,0142(0)0,'(1)0y y x x y y ππ⎧-+=<<⎪⎨⎪==⎩二、 实验目的:通过本次上机,熟悉和掌握用Galerkin 法观点出发导出的求解处置问题数值解的线性有限元法。
MATLAB中的偏微分方程数值解法

MATLAB中的偏微分方程数值解法偏微分方程(Partial Differential Equations,PDEs)是数学中的重要概念,广泛应用于物理学、工程学、经济学等领域。
解决偏微分方程的精确解往往非常困难,因此数值方法成为求解这类问题的有效途径。
而在MATLAB中,有丰富的数值解法可供选择。
本文将介绍MATLAB中几种常见的偏微分方程数值解法,并通过具体案例加深对其应用的理解。
一、有限差分法(Finite Difference Method)有限差分法是最为经典和常用的偏微分方程数值解法之一。
它将偏微分方程的导数转化为差分方程,通过离散化空间和时间上的变量,将连续问题转化为离散问题。
在MATLAB中,使用有限差分法可以比较容易地实现对偏微分方程的数值求解。
例如,考虑一维热传导方程(Heat Equation):∂u/∂t = k * ∂²u/∂x²其中,u为温度分布随时间和空间的变化,k为热传导系数。
假设初始条件为一段长度为L的棒子上的温度分布,边界条件可以是固定温度、热交换等。
有限差分法可以将空间离散化为N个节点,时间离散化为M个时刻。
我们可以使用中心差分近似来计算二阶空间导数,从而得到以下差分方程:u(i,j+1) = u(i,j) + Δt * (k * (u(i+1,j) - 2 * u(i,j) + u(i-1,j))/Δx²)其中,i表示空间节点,j表示时间步。
Δt和Δx分别为时间和空间步长。
通过逐步迭代更新节点的温度值,我们可以得到整个时间范围内的温度分布。
而MATLAB提供的矩阵计算功能,可以大大简化有限差分法的实现过程。
二、有限元法(Finite Element Method)有限元法是另一种常用的偏微分方程数值解法,特点是适用于复杂的几何形状和边界条件。
它将求解区域离散化为多个小单元,通过构建并求解代数方程组来逼近连续问题。
在MATLAB中,我们可以使用Partial Differential Equation Toolbox提供的函数进行有限元法求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一维抛物线偏微分方程数值解法(3)
上一篇参看一维抛物线偏微分方程数值解法(2)(附图及matlab程序)
解一维抛物线型方程(理论书籍可以参看孙志忠:偏微分方程数值解法)
Ut-Uxx=0, 0<x<1,0<t<=1(Ut-aUxx=f(x,t),a>0)
U(x,0)=e^x, 0<=x<=1,
U(0,t)=e^t,U(1,t)=e^(1+t), 0<t<=1
精确解为:U(x,t)=e^(x+t);
此种方法精度为o(h1^2+h2^2)
一:用追赶法解线性方程组(还可以用迭代法解)
Matlab程序
function [u p e x t]=CN(h1,h2,m,n)
%Crank-Nicolson格式差分法解一维抛物线型偏微分方程
%此程序用的是追赶法解线性方程组
%h1为空间步长,h2为时间步长
%m,n分别为空间,时间网格数
%p为精确解,u为数值解,e为误差
x=(0:m)*h1+0; x0=(0:m)*h1; %定义x0,t0是为了f(x,t)~=0的情况%
t=(0:n)*h2+0; t0=(0:n)*h2+1/2*h2;
syms f;
for(i=1:n+1)
for(j=1:m+1)
f(i,j)=0; %f(i,j)=f(x0(j),t0(i))==0%
end
end
for(i=1:n+1)
u(i,1)=exp(t(i));
u(i,m+1)=exp(1+t(i));
end
for(i=1:m+1)
u(1,i)=exp(x(i));
end
r=h2/(h1*h1);
for(i=1:n) %外循环,先固定每一时间层,每一时间层上解一线性方程组%
a(1)=0;b(1)=1+r;c(1)=-r/2;d(1)=r/2*(u(i+1,1)+u(i,1))+h2*f(i,j)... +(1-r)*u(i,2)+r/2*u(i,3);
for(k=2:m-2)
a(k)=-r/2;b(k)=1+r;c(k)=-r/2;d(k)=h2*f(i,j)+r/2*u(i,k)+(1-r)...
*u(i,k+1)+r/2*u(i,k+2);
%输入部分系数矩阵,为0的矩阵元素不输入%
end
a(m-1)=-r/2;b(m-1)=1+r;d(m-1)=h2*f(i,j)+r/2*(u(i,m+1)+u(i+1,m+1). ..
)+r/2*u(i,m-1)+(1-r)*u(i,m);
for(k=1:m-2) %开始解线性方程组消元过程
a(k+1)=-a(k+1)/b(k);
b(k+1)=b(k+1)+a(k+1)*c(k);
d(k+1)=d(k+1)+a(k+1)*d(k);
end
u(i+1,m)=d(m-1)/b(m-1); %回代过程%
for(k=m-2:-1:1)
u(i+1,k+1)=(d(k)-c(k)*u(i+1,k+2))/b(k);
end
end
for(i=1:n+1)
for(j=1:m+1)
p(i,j)=exp(x(j)+t(i)); %p为精确解
e(i,j)=abs(u(i,j)-p(i,j));%e为误差
end
end
[u p e x t]=CN(0.1,0.005,10,200);surf(x,t,e); shading interp;
>> xlabel('x');ylabel('t');zlabel('e');
>> title('误差曲面')
plot(x,e) plot(t,e)
误差较向前欧拉法减小一半
但是运行时间较长,约39秒,而前两次运行只需l秒左右;
[u p e x t]=CN(0.01,0.01,100,100);运行需三分钟左右,误差比前次提高五倍,运算量也提高五倍
[u p e x t]=CN(0.1,0.1,10,10);surf(x,t,e) 运行需要2秒;精度还是挺高的;[u p e x t]=CN(0.1,0.2,10,5);surf(x,t,e)
误差还可以接受
此种方法精度高,计算量较大
二:用迭代法解线性方程组:
Matlab程序如下:
function [u e p x t k]=CN1(h1,h2,m,n,kmax,ep) % 解抛物线型一维方程 C-N格式(Ut-aUxx=f(x,t),a>0) %用g-s(高斯-赛德尔)迭代法解
%kmax为最大迭代次数
%m,n为x,t方向的网格数,例如(2-0)/0.01=200;
%e为误差,p为精确解
syms temp;
u=zeros(n+1,m+1);
x=0+(0:m)*h1;
t=0+(0:n)*h2;
for(i=1:n+1)
u(i,1)=exp(t(i));
u(i,m+1)=exp(1+t(i));
end
for(i=1:m+1)
u(1,i)=exp(x(i));
end
for(i=1:n+1)
for(j=1:m+1)
f(i,j)=0;
end
end
a=zeros(n,m-1);
r=h2/(h1*h1); %此处r=a*h2/(h1*h1);a=1
for(k=1:kmax)
for(i=1:n)
for(j=2:m)
temp=((r/2*u(i,j-1)+(1-r)*u(i,j)+r/2*u(i,...
j+1)+h2*f(i,j)+r/2*u(i+1,j-1)+r/2*u(i+1,j+1))/(1+r));
a(i+1,j)=(temp-u(i+1,j))*(temp-u(i+1,j));
u(i+1,j)=temp;%此处注意是u(i+1,j),,而不是u(i+1,j+1)% end
end
a(i+1,j)=sqrt(a(i+1,j));
if(k>kmax)
break;
end
if(max(max(a))<ep)
break;
end
end
for(i=1:n+1)
for(j=1:m+1)
p(i,j)=exp(x(j)+t(i));
e(i,j)=abs(u(i,j)-p(i,j));
end
end
[u e p x t k]=CN1(0.1,0.005,10,200,10000,1e-10);运行速度:1秒
迭代次数k =
81
surf(x,t,e)
第二幅图为三角追赶法解方程作出的图,两者几乎一样;
由于迭代法速度很快,所以可以将区间分得更小
[u e p x t k]=CN1(0.01,0.01,100,100,10000,1e-12);surf(x,t,e);shading interp; k=6903。