sbr工艺计算
经典SBR设计计算(全)

2433.71 m3/h=
最大空气用量Qmax=
(7)所需空气压力p
(相对压力)
供风管
h1:
道沿程
阻力
供风管
H2:
道局部
阻力
p=h1+h2+h3 +h4+Δh
4112.97 m3/h= 0.001 MPa
0.001 MPa
40.56 m3/mi n
68.5 m3/mi n
h3:
h4:
Δh: p= (8)曝气器数量计 算 A、按供氧能力计算
冬季硝化菌比增长速 度μN(10)=1/θc+bN =
出水氨氮为:Ne(10)
K N (10) N (10)
m(10)
N (10)
(
4 4 q
m b
v v
Q 2 Q g 1 4 )
2
/ 3
6、设计需氧量AOR=
碳化需氧量+硝化需
氧量-反硝化脱氮产
氧量
有机物氧化需氧系数
a'=
污泥需氧系数b'=
冬季μm(10)=μ m(15)e0.098(T-15)× DO/(K0+DO)×[10.833×(7.2-pH)]=
99.20%
计算,湿污 泥量为
99.20%
计算,湿污 泥量为
0.018 16.66 mg/L
274.7 m3/d 296.5 m3/d
7.98 mg/L 17.02 mg/L 1.72 mg/L 23.28 mg/L
0.5 d-1
2 mg/L 1.3 7.2
0.19
(2)标准水温(15 ℃)时硝化菌半速度 常数KN(15)=
冬季KN(10)=KN(15)× e0.118(T-15)=
SBR工艺计算

SBR⼯艺计算⼀、灵捷微电解池采⽤4组并联运⾏,每个池进⽔30min,反应1h,出⽔30min。
1.池体⼤⼩污⽔流量Q=1000 m3/d=42 m3/h单组微电解池⽔量Q1=Q/4=14 m3/h每组微电解池停留时间为1h,则⽔量V1=14 m3取⽔料⽐为2:1,单组微电解池需要微电解材料量为V2= V1/2=7 m3单组微电解池有效容积为V’= V1+ V2=21 m3因体积过⼩,钢砼池体施⼯不便,采⽤Q235的反应罐,取反应罐有效⾼度为3⽶,则可得直径为3⽶。
灵捷微电解池为4组并联的?3*3.5m的罐体。
2、布⽓管道布置(1)管道选择因灵捷微电解池需要⽓量较⼩,根据以往⼯程经验,空⽓管道主管采⽤?63PVC管道,4根⽀管采⽤?32PVC管道,⽀管上均安装⼿动阀门和⽓动(电动)阀门,以达到接⼊⾃控系统⽬的。
(2)管道开孔为使布⽓均匀,罐内采⽤“⽇”字形布置,布⽓管道中⼼线为?1.5m的圆周,圆周上每隔300mm开两个45。
斜向下的?6圆孔,整个圆周均布;布⽓管道中间横管上每隔200mm开两个45。
斜向下的?6圆孔,详见图纸。
3、布⽔管道布置(1)管道选择灵捷微电解池进⽔采⽤⽔泵送⽔,⽔泵流量选⽤42m3/h(扬程根据现场具体情况⽽定),根据Q=πr2v/4,取流速为v= 2.5m3/h,则r=77,取进⽔管道DN80,PVC管道为?90。
主管与4根⽀管均采⽤?90PVC管道,⽀管上均安装⼿动阀门和⽓动(电动)阀门,以达到接⼊⾃控系统⽬的。
(2)管道开孔为使布⽔均匀,罐内采⽤环形布置,布⽓管道中⼼线在布⽓管道的外围,靠近罐体⼀侧,两管道中⼼线间隔150mm,环形管道上每隔100mm开两个45。
斜向下的?20圆孔,整个圆周均布。
⼆、SBR池的设计1、⽔质:2.参数选取2.1 运⾏参数⽣物池中活性污泥浓度:X VSS=2800mgMLVSS/l挥发性组分⽐例:f VSS=0.7 (⼀般0.7~0.8)2.2 碳氧化⼯艺污泥理论产泥系数:Y=0.6 mgVSS/mgBOD5 20℃时污泥⾃⾝氧化系数:K d(20)=0.06 1/d2.3 硝化⼯艺参数硝化菌在15℃时的最⼤⽐⽣长速率:µm(15) =0.47 1/d好氧池中溶解氧浓度:DO=2.0 mg/lNH4-N的饱和常数(T=T min=12℃):K N=10(0.051×T-1.158)=0.28 mg/l硝化菌的理论产率系数:Y N=0.15 mgVSS/mgNH4-N20℃时硝化菌⾃⾝氧化系数:K dN(20)=0.04 1/d安全系数:F S=2.5氧的饱和常数:K O=1.0 mg/l⼆. 好氧池⼯艺设计计算1、参数修正K d (T min)=K d(20)×1.05(Tmin-20)=0.041 1/dµm=µm(15)×e0.098(Tmin-15)×[1-0.833×(7.2-pH)]×[D O/(D O+K O)] =0.331 1/d K dN (T min)=K dN(20)×1.05(Tmin-20)=0.027 1/d2、计算设计泥龄最⼤基质利⽤率:k’=µm/Y N=2.21 mgBOD5/(mgVSS﹒d)最⼩硝化泥龄:tc min=1/(Y N×k’-K dN)=3.29 d设计泥龄:tc=Fs×tc min=14.8 d3、污泥负荷硝化污泥负荷:Un=(1/tc+K dN)/Y N=0.63 mgNH4-N/(mgVSS﹒d)出⽔氨氮浓度:由U N=k’×[N e/(K N+N e)]得N e=U N×K N/(k’-U N)=0.11mg/l碳氧化污泥负荷:U S=(1/tc+K d)/Y=0.18 mgBOD5/(mgVSS﹒d)4、好氧池容积计算BOD氧化要求⽔⼒停留时间:T b=(So-Se)/ (U S×X VSS)= 1.02d=24.5 hBOD5表观产率系数:Y obs=Y/(1+K d×tc)=0.37 mgVSS/mgBOD5硝化细菌在微⽣物中占的百分⽐:硝化的氨氮量N d=TN-0.122Y obs(So-Se)-Ne-0.016 Y obs K d tc(So-Se)=38.6mg/l硝化菌百分⽐fnfn=Yn*N d/ Y obs (So-Se) + Yn*Nd +0.016Y obs K d tc(So-Se)=0.11硝化⽔⼒停留时间TnTn = N d / ( Un*X VSS *fn )= 0.38 d = 9.18 hTb>Tn,取好氧池⽔⼒停留时间为Tb,即49h。
sbr工艺设计计算课件

计算机模拟水处理工艺
城建环工0302 魏海宁 阎小路
sbr工艺设计计算
相关内容
• 数据要求 • 条件要求 • 工艺选择 • 工艺操作过程 • 工艺流程图1 • 设计计算书
• 出水应用 • 污泥应用 • 相关图纸
sbr工艺设计计算
活性污泥法(Activated Sludge Process)首先 于20 世纪初在英国出现,迄今已有近百年历史,是 当前应用最广泛的污水处理技术之一,该方法自 1914年在英国曼切斯特市建成污水试验厂以来,已 有80多年的历史。目前,它已成为有机废水生物处 理的主体,但是仍存在一些不容忽视的缺点:对冲 击负荷适应能力差,易发生污泥膨胀,处理构筑物 占地面积大、基建投资和运行费用高、管理复杂等。 近几十年来,国内外学者准对以上这些问题进行了 不懈地探索和研究,在供氧方式、运转条件、反应 器形式等方面进行了革新、开发了多种活性污泥法 新工艺,使得活性污泥法朝着高效、节能的方面发 展。
项目 单位
BOD5 mg/l
COD mg/l
SS mg/l
进水水质 260
600
320
出水水质 ≤15
≤50
≤15
sbr工艺设计计算
条件要求
• 1 设计满足环境保护的各项规定,污水处理后达到中水水质量标准。
• 2 充分考虑二次污染的防治,设备噪声低,尽量减少对周围环境的 影响。污水处理设施的设计和建设必须结合小区的整体规划和建 筑特点,既外观设计上要与小区的建筑环境相协调,以求美观。
sbr工艺设计计算
CASS反应器由3个区域组成:生物选择 区、兼氧区和主反应器,每个区的容积比为 1:5:30。污水首先进入选择区,与来自主 反应器的混合液(20%~30%)混合,经过 厌氧反应后进入主反应区,如下图所示 。
SBR法处理屠宰废水工艺计算

每格池污泥所需容积:V‵= 7.
污泥斗底采用 500×500mm, 上口采用 5000×5000mm, 污泥斗斜 壁
与水平面的夹角为 60°,则污泥斗高度:
h ''4 5 0.5 5 0.5 tg 1.73 3.89m 3 2 2 1 3
污泥斗容积 V1 h4(f1 f 2 f1 f 2 ) 3.89 (52 0.52 52 0.52 ) 35.98m3 8. 污泥斗以上梯形部分污泥容积 V2
V
3
Qmax (c0 c) 86400 T 100 0.0442 (2400 1200) 86400 2 100 = 160m3 6 6 K Z (100 0 ) 10 1.911 (100 97) 10
V 160 3 40 m n 4
1 3
设池底坡度为 0.01,则: 梯形部分高度: h4 ' (17.28 0.3 5) 0.01 0.126m 梯形上底边长: L1 17.28 0.5 0.3 18.08m 梯形下底边长:L2=5m 梯形部分污泥容积: V2 ( 9.
L1 L2 18.08 5 )h '4 0.9=( ) 0.126 5=7.27m3 2 2
Qmax hV 1
=
0.0442
0.3×0.4
=0.37m
渠渐宽部分展开角α1 =20° l1=
B −B1 2 tan α 1
≈1.28
l1 2
4.格栅与出水槽连接处的渐窄部分长度l2 = 5.过栅水头损失 h1: 取 k=3,β =1.79,V=0.8m/s 阻力系数ε = β
S 3 b
SBR各工序所需时间的计算

SBR 各工序所需时间的计算SBR 法的一个运行周期所需的时间就是上述工序所需时间的总和。
各工序所需的时间必须满足下列条件:T》T A + T S+ T DT F = T / NT S + T D <T- T F式中:T—一个周期的所需时间T F -进水时间T A—曝气时间T S-沉淀时间T D—排水时间N -每一个系列的反应池数量1 、进水时间T F根据每一系列的反应池数、总进水量、最大变化系数和反应池的有效容积等因素确定。
2、曝气时间T A根据MLSS浓度、BOD - SS负荷、排出比、进水BOD浓度来确定。
因为:BOD-SS 负荷=Q S X%/e>C A 沁(kgBOD/kgSS.d)式中:Q S-污水进水量(m3/d)C S—进水平均BOD (mg/1)C A—反应池内平均MLSS浓度(mg/1)V -反应池容积(m3)e—曝气时间比e= n 共T A / 24n —周期数T A—1 个周期的曝气时间由于Q s=VX1/m^n1/m —排出比贝S BOD —SS负荷(LS) = nXC/e>m^C A (kgBOD/kgSS.d)将e= n* T A/ 24代人T A = 24 XC s/ Ls C A3、沉淀时间T s 根据活性污泥界面的沉降速度、排出比确定。
活性污泥界面的沉降速度和MLSS 浓度有关。
由经验公式得出:当MLS& 3000mg/1 时V m ax= 7.4 X04X >C A1.7当MLSS > 3000mg/1 时V max= 4.6 X04XC A1.26式中V max —活性污泥界面的沉降速度(m/h)t—水温cCA —开始沉降时的MLSS浓度(mg/1)沉淀时间T s= HX (1/m) + /V max式中:H —反应池水深(m)1/m —排出比—活性污泥界面上的最小水深(m)V max —活性污泥界面的初期沉降速度(m/ h)T A与污泥的沉降性能及反应池的表面积有关,由于SBR系统污泥沉降性能良好(根据运行经验SVI 一般在100mg/l 左右),且为静止沉淀,沉淀时间一般为1—2小时。
经典SBR计算

一、经典SBR工艺设计计算(一)设计条件:污水厂海拔高度950m设计处理水量Q=12000m3/d=500.00m3/h=0.14m3/s 总变化系数Kz= 1.57进水水质:出水水质:进水COD Cr=450mg/L COD Cr=60mg/L BOD5=S0=250mg/L BOD5=S z=20mg/L TN=45mg/L TN=20mg/L NH4+-N=35mg/L NH4+-N=15mg/L TP0=6mg/L Tp e=0.5mg/L 碱度S ALK=280mg/L pH=7.2SS=300mg/L SS=C e=20mg/L VSS=210mg/Lf b=VSS/SS=0.7曝气池出水溶解氧2mg/L夏季平均温度T1=25℃硝化反应安全系数3冬季平均温度T2=10℃活性污泥自身氧化系数K d(20)=0.06污泥龄θc=25d 活性污泥产率系数Y=0.6混合液浓度MLSS,X=4000mgMLSS/L出水VSS/SS=f=0.7520℃时反硝化速率常数q dn,20=0.12kgNO3--N/kgMLVSS若生物污泥中约含12.40%的氮用于细胞合成(二)设计计算1、运行周期反应器个数n1=4,周期时间t=6h,周期数n2=4每周期处理水量:750m3每周期分进水、曝气、沉淀、排水4个阶段进水时间t e=24/n1n2= 1.5h根据滗水顺设备性能,排水时间t d=0.5h污泥界面沉降速度u=46000X -1.26= 1.33m曝气池滗水高度h 1= 1.2m安全水深ε=0.5m沉淀时间t s =(h 1+ε)/u=1.3h 曝气时间t a =t-t e -t s -t d =2.7h 反应时间比e=t a /t=0.452、曝气池体积V计算(1)估算出水溶解性BOD 5(Se)13.6mg/L(2)曝气池体积V12502m 3(3)复核滗水高度h1:有效水深H=5m h 1=HQ/(n 2V)=1.2m(4)复核污泥负荷0.13kgBOD 5/kgM LSS3、剩余污泥量(1)生物污泥产量T=10℃时0.04d -1681kg/d T=10℃时,ΔX V(10)=1012kg/d(2)剩余非生物污泥量ΔX S1596kg/d(3)剩余污泥量ΔX ΔX=ΔX V +ΔX s =2277kg/d T=10℃时剩余污泥量ΔX=2608kg/d=-=e d z e fC K S S 1.7=+-=)1()(0c d e c K eXf S S Q Y V θθ==eXV QS N s 0=--=∆100010000VfXeK S S YQX d e V ==-)20()20()10(04.1T d d K K =-⨯-=∆1000)1(0eb s C C f f Q X设剩余污泥含水率按99.20%计算,湿污泥量为284.6m 3/d T=10℃时设剩余污泥含水率按99.20%计算,湿污泥量为326.0m 3/d4、复核出水BOD 5K 2=0.0189.80mg/L5、复核出水氨氮浓度微生物合成去除的氨氮N w =0.12ΔX V /Q 冬季微生物合成去除的氨氮ΔN w(10)=10.12mg/L 冬季出水氨氮为N e(10)=N 0-ΔN W(10)=24.88mg/L 夏季微生物合成去除的氨氮ΔN (20)= 3.27mg/L 夏季出水氨氮为N e(20)=N 0-ΔN W(20)=31.73mg/L复核结果表明无论冬季或夏季,仅靠生物合成不能使出水氨氮低于设计标准。
SBR计算

4.5.3 反应池运行周期各工序计算 (1)曝气时间(T A )0A s 24S 24400T =3L mX 0.244000⨯==⨯⨯(h ) (2)沉淀时间(T S ) 初期沉降速度4 1.264 1.26max 4.610 4.6104000 1.33AV C --=⨯⨯=⨯⨯=(m 3/h )则max 11() 3.50.54 1.031.33S H m T V ε+⨯+===(h ) (3)排出时间(T D )本设计拟定排除多余的活性污泥、撇水时间为0.5h ,则沉淀与排出时间合计为1.5h 。
(4)进水时间(T F ) 本设计拟定缺氧进水1.5h[23]。
则一个周期所需要的时间为:T c = T A + T S + T D + T F =3 + 1.5 + 1.5 = 6(h )4.5.4 反应池池体平面尺寸计算周期数242446n Tc ===池个数641.5F T N T === 反应池有效池容4250062544m V Q n N =⨯=⨯=⨯⨯(m 3) 由进水时间和进水量的变动理论,求得一个循环周期的最大流量变动比max1.5Q r Q ==平均超过一个周期,进水量△Q 与V 的对比为△Q/v 1 1.510.1254r m --=== 考虑流量比,反应池的修正容量为V’=V (1+△Q/v )625(10.125)703.125=⨯+=(m 3)取反应池水深为3.5m ,则所需水面积'703.125200.8953.5V A H ===(m 2)取200(m 2) 取反应器长L=20(m ),则宽为b=10 (m) SBR 反应池设计运行水位如图3所示。
排水结束时水位h 2=H/(1+△Q/v)1133.5 2.310.1254m m -⨯=⨯⨯=+(m ) 基准水位h 3=H/(1+△Q/v)13.5 3.110.125=⨯=+(m )高峰水位4h =3.5(m )警报溢流水位540.5 3.50.54h h =+=+=(m )污泥界面120.5 2.30.5 1.8h h =-=-=(m )4.5.5 进出水系统(1)SBR 池进水设计调节池的来水通过DN180mm 的管道送入SBR 反应池,管道内的水流最大流速为0.88m/s 。
SBR法污水处理工艺设计计算书

SBR法污水处理工艺设计计算书一、课程设计目的和要求本课程设计是水污染操纵工程教学的重要实践环节,要求综合运用所学的有关知识,在设计中熟悉并把握污水处理工艺设计的要紧环节,把握水处理工艺选择和工艺运算的方法,把握平面布置图、高程图及要紧构筑物的绘制,把握设计说明书的写作规范。
通过课程设计使学生具备初步的独立设计能力,提高综合运用所学的理论知识独立分析和解决问题的能力,训练设计与制图的差不多技能。
二、课程设计内容1、污水水量、水质(1)设计规模设计日平均污水流量Q=学号1-25*8000学号26-48*3000 m3/d;设计最大小时流量Qmax=设计日平均污水流量/12-学号*100m3/h(2)进水水质CODCr =600mg/L,BOD5=300mg/L,SS = 300mg/L,NH3-N = 35mg/L2、污水处理要求污水通过二级处理后应符合以下具体要求:CODCr ≤ 100mg/L,BOD5≤20mg/L,SS≤20mg/L,NH3-N≤15mg/L。
3、处理工艺流程污水拟采纳学号1-10活性污泥法学号26-48生物膜法工艺处理。
4、气象资料该市地处内陆中纬度地带,属暖温带大陆性季风气候。
年平均气温9~13.2℃,最热月平均气温21.2~26.5℃,最冷月−5.0~−0.9℃。
极端最高气温42℃,极端最低气温−24.9℃。
年日照时数2045 小时。
多年平均降雨量577 毫米,集中于7、8、9 月,占总量的50~60%,受季风环流阻碍,冬季多北风和西北风,夏季多南风或东南风,市区全年主导风向为东北风,频率为18%,年平均风速2.55米/秒。
5、污水排水接纳河流资料:该污水厂的出水直截了当排入厂区外部的河流,其最高洪水位(50 年一遇)为380.0m,常水位为378.0m,枯水位为375.0m。
6、厂址及场地现状该镇以平原为主,污水处理厂拟用场地较为平坦,交通便利。
厂址面积为35000m2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
sbr工艺计算
日平均流量:Q=10000m3/d
水质:
参数选取
3.1 运行参数
生物池中活性污泥浓度:
XVSS=1400mgMLVSS/l
挥发性组分比例:
fVSS=0.7(一样0.7~0.8)
3.2 碳氧化工艺
污泥理论产泥系数:
Y=0.6 mgVSS/mgBOD5 (范畴0.4~0.8,一样取0.6)
20℃时污泥自身氧化系数:
Kd(20)=0.06 1/d (范畴0.04~0.075,一样取0.06)
3.3 硝化工艺参数
硝化菌在15℃时的最大比生长速率:
μm(15) =0.47 1/d (范畴0.4~0.5,一样取0.47或0.45) 好氧池中溶解氧浓度:
DO=2.0 mg/l
NH4-N的饱和常数(T=Tmin=12℃):
KN=10(0.051×T-1.158)=0.28 mg/l
硝化菌的理论产率系数:
YN=0.15 mgVSS/mgNH4-N (范畴0.04~0.29,一样取0.15)
20℃时硝化菌自身氧化系数:
KdN(20)=0.04 1/d (范畴0.03~0.06,一样取0.04)
安全系数:
FS=2.5 (范畴1.5~4,一样取2.5)
氧的饱和常数:
KO=1.0 mg/l (范畴0.25~2.46,一样取1.0)
二. 好氧池工艺设计运算
1. 参数修正
Kd (Tmin)=Kd(20)×1.05(Tmin-20)=0.041 1/d
μm=μm(15)×e0.098(Tmin-15)×[1-0.833×(7.2-pH)]×[DO/(DO+KO)] =0.331 1/d
KdN (Tmin)=KdN(20)×1.05(Tmin-20)=0.027 1/d
2.运算设计泥龄
最大基质利用率:
k’=μm/YN=2.21 mgBOD5/(mgVSS﹒d)
最小硝化泥龄:
tcmin=1/(YN×k’-KdN)=3.29 d
设计泥龄:
tc=Fs×tcmin=14.8 d
污泥负荷
硝化污泥负荷:
Un=(1/tc+KdN)/YN=0.63 mgNH4-N/(mgVSS﹒d)
出水氨氮浓度:
由UN=k’×[Ne/(KN+Ne)]
得Ne=UN×KN/(k’-UN)=0.11mg/l
碳氧化污泥负荷:
US=(1/tc+Kd)/Y=0.18 mgBOD5/(mgVSS﹒d)
好氧池容积运算
BOD氧化要求水力停留时刻:
Tb=(So-Se)/ (US×XVSS)= 0.48d=11.43 h
BOD5表观产率系数:
Yobs=Y/(1+Kd×tc)=0.37 mgVSS/mgBOD5
硝化细菌在微生物中占的百分比:
硝化的氨氮量Nd=TN-0.122Yobs(So-Se)-Ne-0.016 Yobs Kdtc(So-Se) =38.6mg/l
硝化菌百分比fn
fn=Yn*Nd/ Yobs (So-Se) + Yn*Nd +0.016Yobs Kdtc(So-Se)=0.11
硝化水力停留时刻Tn
Tn = Nd / ( Un*XVSS *fn )= 0.38 d = 9.18 h
Tb>Tn,取好氧池水力停留时刻为Tb,即11.43h。
生物池容积:V= Q*T/24 =47625 m3
5 排泥量运算
污泥有机部分产量
W1 = Yobs * ( So - Se ) * Q / 1000 = 444 kg / d
污泥惰性部分产量
W2 = ηss * SSo * Q / 1000 =825 kg / d
总悬浮物TSS惰性组份比例ηss 取55%
污泥硝化部分产量
W3 = Yn * (NHo-NHe) * Q / 1000(1+tc*KdN) =21.43 kg / d
活性污泥总产量W '=W1/fvss+W2+W3-SSe*Q/1000=1280.72 kg / d 污泥的综合产率W ' / [(So - Se) * Q / 1000] =1.07kgDS/kgBO D。