数字图像处理实验三:图像的频域处理
数字图像处理实验报告

数字图像处理实验报告实验一数字图像处理编程基础一、实验目的1. 了解MATLAB图像处理工具箱;2. 掌握MATLAB的基本应用方法;3. 掌握MATLAB图像存储/图像数据类型/图像类型;4. 掌握图像文件的读/写/信息查询;5. 掌握图像显示--显示多幅图像、4种图像类型的显示方法;6. 编程实现图像类型间的转换。
二、实验内容1. 实现对图像文件的读/写/信息查询,图像显示--显示多幅图像、4种图像类型的显示方法、图像类型间的转换。
2. 运行图像处理程序,并保存处理结果图像。
三、源代码I=imread('cameraman.tif')imshow(I);subplot(221),title('图像1');imwrite('cameraman.tif')M=imread('pout.tif')imview(M)subplot(222),imshow(M);title('图像2');imread('pout.bmp')N=imread('eight.tif')imview(N)subplot(223),imshow(N);title('图像3');V=imread('circuit.tif')imview(V)subplot(224),imshow(V);title('图像4');N=imread('C:\Users\Administrator\Desktop\1.jpg')imshow(N);I=rgb2gary(GRB)[X.map]=gary2ind(N,2)RGB=ind2 rgb(X,map)[X.map]=gary2ind(I,2)I=ind2 gary(X,map)I=imread('C:\Users\dell\Desktop\111.jpg');subplot(231),imshow(I);title('原图');M=rgb2gray(I);subplot(232),imshow(M);[X,map]=gray2ind(M,100);subplot(233),imshow(X);RGB=ind2rgb(X,map);subplot(234),imshow(X);[X,map]=rbg2ind(I);subplot(235),imshow(X);四、实验效果实验二 图像几何变换实验一、实验目的1.学习几种常见的图像几何变换,并通过实验体会几何变换的效果;2.掌握图像平移、剪切、缩放、旋转、镜像等几何变换的算法原理及编程实现;3.掌握matlab 编程环境中基本的图像处理函数。
数字图像处理中的频域滤波数学原理探索

数字图像处理中的频域滤波数学原理探索数字图像处理是一门涉及图像获取、图像处理和图像分析的学科,其中频域滤波是其中一个重要的技术。
频域滤波通过将图像从空域转换到频域,利用频域的特性对图像进行处理。
本文将探索数字图像处理中的频域滤波的数学原理。
一、傅里叶变换傅里叶变换是频域滤波的基础,它将一个函数表示为正弦和余弦函数的和。
对于一维信号,傅里叶变换可以表示为以下公式:F(u) = ∫[f(x)e^(-i2πux)]dx其中F(u)表示信号f(x)在频率域的表示,u表示频率,x表示空间位置。
对于二维图像,傅里叶变换可以表示为以下公式:F(u,v) = ∬[f(x,y)e^(-i2π(ux+vy))]dxdy其中F(u,v)表示图像f(x,y)在频率域的表示,u和v表示频率,x和y表示图像的空间位置。
二、频域滤波在频域中,对图像进行滤波意味着对图像的频率分量进行操作。
常见的频域滤波操作包括低通滤波和高通滤波。
1. 低通滤波低通滤波器允许通过低频分量,并抑制高频分量。
在图像中,低频分量通常表示图像的平滑部分,而高频分量则表示图像的细节部分。
低通滤波器可以用于去除图像中的噪声和细节,使图像变得更加平滑。
2. 高通滤波高通滤波器允许通过高频分量,并抑制低频分量。
在图像中,高频分量通常表示图像的边缘和纹理部分,而低频分量则表示图像的整体亮度分布。
高通滤波器可以用于增强图像的边缘和纹理特征。
三、频域滤波的步骤频域滤波的一般步骤包括图像的傅里叶变换、滤波器的设计、滤波器与图像的乘积、逆傅里叶变换。
1. 图像的傅里叶变换首先,将原始图像转换为频域表示。
通过对图像进行傅里叶变换,可以得到图像在频率域中的表示。
2. 滤波器的设计根据需要进行滤波器的设计。
滤波器可以是低通滤波器或高通滤波器,具体设计方法可以根据应用需求选择。
3. 滤波器与图像的乘积将滤波器与图像在频域中的表示进行乘积操作。
乘积的结果是滤波后的频域图像。
4. 逆傅里叶变换对滤波后的频域图像进行逆傅里叶变换,将其转换回空域表示。
matlab数字图像处理实验报告

《数字图像处理实验报告》实验一图像的增强一.实验目的1.熟悉图像在MATLAB下的读写、输出;2.熟悉直方图;3.熟悉图像的线性指数等;4.熟悉图像的算术运算和几何变换。
二.实验仪器计算机、MATLAB软件三.实验原理图像增强是指根据特定的需要突出图像中的重要信息,同时减弱或去除不需要的信息。
从不同的途径获取的图像,通过进行适当的增强处理,可以将原本模糊不清甚至根本无法分辨的原始图像处理成清晰的富含大量有用信息的可使用图像。
其基本原理是:对一幅图像的灰度直方图,经过一定的变换之后,使其成为均匀或基本均匀的,即使得分布在每一个灰度等级上的像素个数.f=H等或基本相等。
此方法是典刑的图像空间域技术处理,但是由于灰度直方图只是近似的概率密度函数,因此,当用离散的灰度等级做变换时,很难得到完全平坦均匀的结果。
频率域增强技术频率域增强是首先将图像从空间与变换到频域,然后进行各种各样的处理,再将所得到的结果进行反变换,从而达到图像处理的目的。
常用的变换方法有傅里叶变换、DCT变换、沃尔什-哈达玛变换、小波变换等。
假定原图像为f(x,y),经傅立叶变换为F(u,v)。
频率域增强就是选择合适的滤波器H(u,v)对F(u,v)的频谱成分进行处理,然后经逆傅立叶变换得到增强的图像。
四.实验内容及步骤1.图像在MATLAB下的读写、输出;实验过程:>> I = imread('F:\image\');figure;imshow(I);title('Original Image');text(size(I,2),size(I,1)+15, ...'', ...'FontSize',7,'HorizontalAlignment','right');Warning: Image is too big to fit on screen; displaying at 25% > In imuitools\private\initSize at 86In imshow at 1962.给定函数的累积直方图。
用matlab数字图像处理四个实验

数字图像处理实验指导书目录实验一MATLAB数字图像处理初步实验二图像的代数运算实验三图像增强-空间滤波实验四图像分割3实验一 MATLAB数字图像处理初步一、实验目的与要求1.熟悉及掌握在MATLAB中能够处理哪些格式图像。
2.熟练掌握在MATLAB中如何读取图像。
3.掌握如何利用MATLAB来获取图像的大小、颜色、高度、宽度等等相关信息。
4.掌握如何在MATLAB中按照指定要求存储一幅图像的方法。
5.图像间如何转化。
二、实验原理及知识点1、数字图像的表示和类别一幅图像可以被定义为一个二维函数f(x,y),其中x和y是空间(平面)坐标,f 在任何坐标处(x,y)处的振幅称为图像在该点的亮度。
灰度是用来表示黑白图像亮度的一个术语,而彩色图像是由单个二维图像组合形成的。
例如,在RGB彩色系统中,一幅彩色图像是由三幅独立的分量图像(红、绿、蓝)组成的。
因此,许多为黑白图像处理开发的技术适用于彩色图像处理,方法是分别处理三副独立的分量图像即可。
图像关于x和y坐标以及振幅连续。
要将这样的一幅图像转化为数字形式,就要求数字化坐标和振幅。
将坐标值数字化成为取样;将振幅数字化成为量化。
采样和量化的过程如图1所示。
因此,当f的x、y分量和振幅都是有限且离散的量时,称该图像为数字图像。
作为MATLAB基本数据类型的数值数组本身十分适于表达图像,矩阵的元素和图像的像素之间有着十分自然的对应关系。
图1 图像的采样和量化根据图像数据矩阵解释方法的不同,MA TLAB把其处理为4类:➢亮度图像(Intensity images)➢二值图像(Binary images)➢索引图像(Indexed images)➢RGB图像(RGB images)(1) 亮度图像一幅亮度图像是一个数据矩阵,其归一化的取值表示亮度。
若亮度图像的像素都是uint8类或uint16类,则它们的整数值范围分别是[0,255]和[0,65536]。
若图像是double类,则像素取值就是浮点数。
频域滤波器设计(数字图像处理实验报告)

数字图像处理作业——频域滤波器设计摘要在图像处理的过程中,消除图像的噪声干扰是一个非常重要的问题。
本文利用matlab软件,采用频域滤波的方式,对图像进行低通和高通滤波处理。
低通滤波是要保留图像中的低频分量而除去高频分量,由于图像中的边缘和噪声都对应图像傅里叶频谱中的高频部分,所以低通滤波可以除去或消弱噪声的影响并模糊边缘轮廓;高通滤波是要保留图像中的高频分量而除去低频分量,所以高通滤波可以保留较多的边缘轮廓信息。
本文使用的低通滤波器有巴特沃斯滤波器和高斯滤波器,使用的高通滤波器有巴特沃斯滤波器、高斯滤波器、Laplacian高通滤波器以及Unmask高通滤波器。
实际应用中应该根据实际图像中包含的噪声情况灵活地选取适当的滤波算法。
1、频域低通滤波器:设计低通滤波器包括 butterworth and Gaussian (选择合适的半径,计算功率谱比),平滑测试图像test1和2。
实验原理分析根据卷积定理,两个空间函数的卷积可以通过计算两个傅立叶变换函数的乘积的逆变换得到,如果f(x, y)和h(x, y)分别代表图像与空间滤波器,F(u, v)和H(u, v)分别为响应的傅立叶变换(H(u, v)又称为传递函数),那么我们可以利用卷积定理来进行频域滤波。
在频域空间,图像的信息表现为不同频率分量的组合。
如果能让某个范围内的分量或某些频率的分量受到抑制,而让其他分量不受影响,就可以改变输出图的频率分布,达到不同的增强目的。
频域空间的增强方法的步骤:(1)将图像从图像空间转换到频域空间;(2)在频域空间对图像进行增强;(3)将增强后的图像再从频域空间转换到图像空间。
低通滤波是要保留图像中的低频分量而除去高频分量。
图像中的边缘和噪声都对应图像傅里叶频谱中的高频部分,所以低通滤波可以除去或消弱噪声的影响并模糊边缘轮廓。
理想低通滤波器具有传递函数:其中D0为制定的非负数,D(u,v)为点(u,v)到滤波器中心的距离。
数字图像处理实验报告

目录实验一:数字图像的基本处理操作 (4):实验目的 (4):实验任务和要求 (4):实验步骤和结果 (5):结果分析 (8)实验二:图像的灰度变换和直方图变换 (9):实验目的 (9):实验任务和要求 (9):实验步骤和结果 (9):结果分析 (13)实验三:图像的平滑处理 (14):实验目的 (14):实验任务和要求 (14):实验步骤和结果 (14):结果分析 (18)实验四:图像的锐化处理 (19):实验目的 (19):实验任务和要求 (19):实验步骤和结果 (19):结果分析 (21)实验一:数字图像的基本处理操作:实验目的1、熟悉并掌握MATLAB、PHOTOSHOP等工具的使用;2、实现图像的读取、显示、代数运算和简单变换。
3、熟悉及掌握图像的傅里叶变换原理及性质,实现图像的傅里叶变换。
:实验任务和要求1.读入一幅RGB图像,变换为灰度图像和二值图像,并在同一个窗口内分成三个子窗口来分别显示RGB图像和灰度图像,注上文字标题。
2.对两幅不同图像执行加、减、乘、除操作,在同一个窗口内分成五个子窗口来分别显示,注上文字标题。
3.对一幅图像进行平移,显示原始图像与处理后图像,分别对其进行傅里叶变换,显示变换后结果,分析原图的傅里叶谱与平移后傅里叶频谱的对应关系。
4.对一幅图像进行旋转,显示原始图像与处理后图像,分别对其进行傅里叶变换,显示变换后结果,分析原图的傅里叶谱与旋转后傅里叶频谱的对应关系。
:实验步骤和结果1.对实验任务1的实现代码如下:a=imread('d:\');i=rgb2gray(a);I=im2bw(a,;subplot(1,3,1);imshow(a);title('原图像');subplot(1,3,2);imshow(i);title('灰度图像');subplot(1,3,3);imshow(I);title('二值图像');subplot(1,3,1);imshow(a);title('原图像');结果如图所示:图原图及其灰度图像,二值图像2.对实验任务2的实现代码如下:a=imread('d:\');A=imresize(a,[800 800]);b=imread('d:\');B=imresize(b,[800 800]);Z1=imadd(A,B);Z2=imsubtract(A,B);Z3=immultiply(A,B);Z4=imdivide(A,B);subplot(3,2,1);imshow(A);title('原图像 A'); subplot(3,2,2);imshow(B);title('原图像 B'); subplot(3,2,3);imshow(Z1);title('加法图像'); subplot(3,2,4);imshow(Z2);title('减法图像'); subplot(3,2,5);imshow(Z3);title('乘法图像'); subplot(3,2,6);imshow(Z2);title('除法图像');结果如图所示:3.对实验任务3的实现代码如下:s=imread('d:\');i=rgb2gray(s);i=double(i);j=fft2(i);k=fftshift(j); %直流分量移到频谱中心I=log(abs(k)); %对数变换m=fftshift(j); %直流分量移到频谱中心RR=real(m); %取傅里叶变换的实部II=imag(m); %取傅里叶变换的虚部A=sqrt(RR.^2+II.^2);A=(A-min(min(A)))/(max(max(A)))*255;b=circshift(s,[800 450]);b=rgb2gray(b);b=double(b);c=fft2(b);e=fftshift(c);I=log(abs(e));f=fftshift(c);WW=real(f);ZZ=imag(f);B=sqrt(WW.^2+ZZ.^2);B=(B-min(min(B)))/(max(max(B)))*255;subplot(2,2,1);imshow(s);title('原图像');subplot(2,2,2);imshow(uint8(b));title('平移图像');subplot(2,2,3);imshow(A);title('离散傅里叶变换频谱');subplot(2,2,4);imshow(B);title('平移图像离散傅里叶变换频谱');结果如图所示:4.对实验任务4的实现代码如下:s=imread('d:\');i=rgb2gray(s);i=double(i);j=fft2(i);k=fftshift(j);I=log(abs(k));m=fftshift(j);RR=real(m);II=imag(m);A=sqrt(RR.^2+II.^2);A=(A-min(min(A)))/(max(max(A)))*255;b=imrotate(s,-90);b=rgb2gray(b);b=double(b);c=fft2(b);e=fftshift(c);I=log(abs(e));f=fftshift(c);WW=real(f);ZZ=imag(f);B=sqrt(WW.^2+ZZ.^2);B=(B-min(min(B)))/(max(max(B)))*255;subplot(2,2,1);imshow(s);title('原图像');subplot(2,2,2);imshow(uint8(b));title('平移图像');subplot(2,2,3);imshow(A);title('离散傅里叶频谱');subplot(2,2,4);imshow(B);title('平移图像离散傅里叶频谱');结果如图所示::结果分析对MATLAB软件的操作开始时不太熟悉,许多语法和函数都不会使用,写出程序后,调试运行,最开始无法显示图像,检查原因,是有些标点符号没有在英文状态下输入和一些其他的细节,学会了imread(),imshow(),rgb2gray()等函数。
数字图像处理_图像的频域变换处理

图像的频域变换处理1 实验目的 1. 掌握Fourier ,DCT 和Radon 变换与反变换的原理及算法实现,并初步理解Fourier 、Radon和DCT 变换的物理意义。
2、 利用傅里叶变换、离散余弦变换等处理图像,理解图像变换系数的特点。
3、 掌握图像的频谱分析方法。
4、 掌握图像频域压缩的方法。
5、 掌握二维数字滤波器处理图像的方法。
2 实验原理1、傅里叶变换 fft2函数:F=fft2(A);fftshift 函数:F1=fftshift(F);ifft2函数:M=ifft2(F);2、离散余弦变换:dct2函数 :F=dct2(f2);idct2函数:M=idct2(F);3、 小波变换对静态二维数字图像,可先对其进行若干次二维DWT 变换, 将图像信息分解为高频成分H 、V 和D 和低频成分A 。
对低频部分A ,由于它对压缩的结果影响很大,因此可采用无损编码方法, 如Huffman 、 DPCM 等;对H 、V 和D 部分,可对不同的层次采用不同策略的向量量化编码方法,这样便可大大减少数据量,而图像的解码过程刚好相反。
(1)dwt2[CA,CH,CV,CD]=dwt2(X,’wname’)[CA,CH,CV,CD]=dwt2(X,LO_D,HI_D’)()()⎰⎥⎦⎤⎢⎣⎡-ψ=dt a b t t Rf a 1b ,a W *()⎪⎭⎫ ⎝⎛-ψ=ψa b t a 1t b ,a 112()00(,)[(,)](,)ux vy M N j M N x y f x y eF f x y F u v π---+====∑∑1100(21)(21)(,)(,)()()cos cos 22M N x y x u y v F u v f x y C u C v M Nππ--==++=∑∑CA 图像分解的近似分量,CH 水平分量,CV 垂直分量,CD 细节分量; dwt2(X,’wname ’) 使用小波基wname 对X 进行小波分解。
图像处理-第十三讲图像频域处理

F u C u
2 x 1u 2 N 1 f xcos 2N N x 0
f x
2、一维离散DCT的逆变换
2 x 1u 2 N 1 Cu F u cos 2N N u 0
一维离散DCT的逆变换核和正变换核是相同的。
图像频域处理
3、二维离散余弦变换: f(x,y)的数字图像矩阵为M×N
2 F u, v MN
M 1 N 1 x 0 y 0
2 x 1u cos 2 y 1v f x, y Cu Cvcos
2M 2N
图像频域处理
一维离散傅里叶变换频谱分布
频谱分量的幅值具有对称特征(例:8点离散付离叶变换)
0
1
2
3
4
3 2
1
0 频谱的直流分量 1 频谱的一次谐波分量 2 频谱的二次谐波分量
以此类推
二维离散傅里叶变换:
ux vy F f x, y F u, v f x, y exp j 2 M N x 0 y 0
数字图像处理
第三部分:图像处理算法
图像频域处理
在此之前对图像的处理都是空间域法,另一种情况是频域分析法(或称 为变换域法)。把信号从空间域变换到频域可以从另一个角度分析信号的特 性。图像的频域处理有快速算法,于是可以用快速算法将图像变换到频域, 用二维数字滤波器的技术对图像进行处理。 一、傅里叶变换: 1D离散傅里叶变换:
图像频域处理
二维DCT的逆变换核与正变换核相同,且是可分离的。
2 x 1u 2 C v cos 2 y 1v 2 C u cos 2M 2N M N
g x, y, u, v g1 x, u g 2 y, v
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字图像处理实验报告
实验三、图像的频域处理
一、实验类型:综合性实验
二、实验目的
1. 掌握二维傅里叶变换的原理。
2. 掌握二维傅里叶变换的性质。
三、实验设备:安装有MATLAB 软件的计算机
四、实验原理
傅里叶变换在图像增强、图像分析、图像恢复和图像压缩等方面扮演
着重要的角色。
在计算机上使用傅里叶变换常常涉及到该变换的另一种形
式——离散傅里叶变换(DFT )。
使用这种形式的傅里叶变换主要有以下两
方面的理由:
·DFT 的输入和输出都是离散的,这使得计算机处理更加方便;
·求解DFT 问题有快速算法,即快速傅里叶变换(FFT )。
MATLAB 函数fft,fft2 和fftn 可以实现傅里叶变换算法,分别用来计算
1 维DFT、
2 维DFT 和n 维DFT。
函数ifft,ifft2 和ifftn 用来计算逆DFT。
下面结合一个例子进行演示。
(1)创建一个矩阵f,代表一个二值图像。
f=zeros(30,30);
f(5:24,13:17)=1;
imshow(f,’notruesize’)
(2 )用以下命令计算f 的DFT 并可视化。
F=fft2(f);
F2=log(abs(F));
imshow(F2,[-1 5],’notruesize’);colormap(jet);colorbar
(3)为了获取傅里叶变换的更佳的取样数据,计算F 的DFT 时给它进行0 填充。
0 填充和DFT 计算可以用下面的命令一步完成。
F=fft2(f,256,256);
上面的命令在计算DFT 之前将F 的大小填充为256 ×256。
imshow(log(abs(F)),[-1 5]);colormap(jet);colorbar
(4 )但是,0 频率系数仍然显示在左上角而不是中心位置。
可以用
fftshift 函数解决这个问题,该函数交换F 的象限,使得0 频率系数位于中
心位置上。
F=fft2(f,256,256)
F2=fftshift(F);
imshow(log(abs(F2)),[-1 5]);colormap(jet);colorbar
五、实验内容
选择一幅图像,对其进行离散傅立叶变换,观察离散傅立叶频谱,并
演示二维离散傅立叶变换的主要性质(如平移性、旋转性)。
六、实验步骤与结果
(1)创建一个矩阵f,代表一个二值图像。
f=zeros(60,60);
f(10:48,26:34)=1;
imshow(f,'notruesize')
得到二值图像f,如图所示:
(2 )用以下命令计算f 的DFT 并可视化。
F=fft2(f);
F2=log(abs(F));
imshow(F2,[-1 5],’notruesize’);colormap(jet);colorbar 得到没有0 填充的离散傅里叶变换,如图所示:
(3)为了获取傅里叶变换的更佳的取样数据,计算F 的DFT 时给它进行0 填充。
0 填充和DFT 计算可以用下面的命令一步完成。
F=fft2(f,256,256);
上面的命令在计算DFT 之前将F 的大小填充为256 ×256。
imshow(log(abs(F)),[-1 5]);colormap(jet);colorbar
得到有0 填充的离散傅里叶变换,如图所示:
(4 )用fftshift 函数交换F 的象限,使得0 频率系数位于中
心位置上。
F=fft2(f,256,256)
F2=fftshift(F);
imshow(log(abs(F2)),[-1 5]);colormap(jet);colorbar
得到用fftshift 函数处理后的图像,如图所示:。