传感器技术及应用第2讲传感器的输入输出特性

合集下载

传感器技术及实训习题答案

传感器技术及实训习题答案

1.什么是传感器?(传感器定义)传感器是接收信号或刺激并反应的器件,以测量为目的,以一定精度把被测量转换为与之有确定关系的、易于处理的电量信号输出的装置。

2.传感器由哪几个部分组成?分别起到什么作用?传感器一般由敏感元件、转换元件、转换电路三部分组成:1)敏感元件:直接感受被测量,并输出与被测量成确定关系的某一物理量的元件。

2)转换元件:以敏感元件的输出为输入,把输入转换成电路参数。

3)转换电路:上述电路参数接入转换电路,便可转换成电量输出。

3. 传感器特性在检测系统中起到什么作用?作为信息采集系统的前端单元,传感器的作用越来越重要。

目前传感器已成为自动化系统和机器人技术中的关键部件,作为系统中的一个结构组成,其重要性变得越来越明显。

而传感器性能质量直接影响到检测系统的结果。

4.传感器的性能参数反映了传感器的什么关系?传感器的特性是指传感器的输入量和输出量之间的对应关系5.静态参数有哪些?各种参数代表什么意义?1)灵敏度灵敏度是指仪表、传感器等装置或系统的输出量增量与输入量增量之比。

2)分辨力分辨力是指传感器能检出被测信号的最小变化量,是有量纲的数。

3)线性度人们总是希望传感器的输入与输出的关系成正比,即线性关系。

4)迟滞迟滞是指传感器正向特性和反向特性的不一致程度。

5)稳定性稳定性包含稳定度和环境影响量两个方面。

稳定度指的是仪表在所有条件都恒定不变的情况下,在规定的时间内能维持其示值不变的能力. 环境影响量是指由于外界环境变化而引起的示值变化量。

6.动态参数有那些?应如何选择?动态特性是指传感器输出对随时间变化的输入量的响应特性,传感器的动态特性是传感器的输出值能够真实地再现变化着的输入量能力的反映。

传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真的测量条件,实际上传感器的响应总有—定延迟,希望延迟时间越短越好。

一般来讲,利用光电效应,光电型传感器响应较快,工作频率范围宽。

传感器技术应用

传感器技术应用

6.2.6 硅谐振式压力微传感器 差动输出的微结构谐振式压力传感器
梁谐振子1 梁谐振子2
环形膜 真空罩
边界结构
仪器科学与光电工程学院
School of Instru. Sci. & Opto-electro. Eng.
6.3 智能化传感器
6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 传感器技术智能化的含义 基本传感器 智能化传感器中的软件 典型应用 发展前景
School of Instru. Sci. & Opto-electro. Eng.
6.3.4 典型应用 智能化流量传感器系统
批控罐装 流体入 科氏效应 解算 谐振特性 解算 f
闭环 放大器
f
ห้องสมุดไป่ตู้
基本传感器 流体出 设定双组分 密度 信息处理单元 双组份流 体解算 双组分信息
仪器科学与光电工程学院
School of Instru. Sci. & Opto-electro. Eng.
仪器科学与光电工程学院
School of Instru. Sci. & Opto-electro. Eng.
传感器技术及应用
仪器科学与光电工程学院
School of Instru. Sci. & Opto-electro. Eng.
传感器技术及应用
主讲教师: 主讲教师:樊尚春 教授 北京航空航天大学
6.2 微机械传感器
6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 概 述 硅电容式集成压力传感器 硅电容式微机械加速度传感器 硅电容式表面微机械陀螺 微机械科氏质量流量传感器 硅谐振式压力微传感器
仪器科学与光电工程学院

传感器原理及应用第2章

传感器原理及应用第2章

第2章 传 感 器 概 述 2.2.2 传感器的动态特性 传感器的动态特性是指输入量随时间变化时传感器的响应 特性。 由于传感器的惯性和滞后,当被测量随时间变化时,传 感器的输出往往来不及达到平衡状态,处于动态过渡过程之中, 所以传感器的输出量也是时间的函数,其间的关系要用动态特 性来表示。一个动态特性好的传感器,其输出将再现输入量的 变化规律,即具有相同的时间函数。实际的传感器,输出信号
2) 一阶系统
若在方程式(2-8)中的系数除了a0、a1与b0之外,其它的 系数均为零,则微分方程为
dy(t ) a1 a0 y (t ) b0 x(t ) dt
上式通常改写成为
dy(t ) y (t ) kx(t ) dt
(2-10)
第2章 传 感 器 概 述 式中:τ——传感器的时间常数,τ=a1/a0; k——传感器的静态灵敏度或放大系数,k=b0/a0。 时间常数τ具有时间的量纲,它反映传感器的惯性的大小, 静态灵敏度则说明其静态特性。用方程式(2-10)描述其动态特 性的传感器就称为一阶系统,一阶系统又称为惯性系统。 如前面提到的不带套管热电偶测温系统、电路中常用的阻
入量变化范围较小时,可用一条直线(切线或割线)近似地代
表实际曲线的一段,使传感器输入输出特性线性化,所采用的 直线称为拟合直线。
第2章 传 感 器 概 述 传感器的线性度是指在全量程范围内实际特性曲线与拟合 直线之间的最大偏差值ΔLmax 与满量程输出值YFS 之比。线性度
也称为非线性误差,用γL表示,即
第2章 传 感 器 概 述
第2章 传 感 器 概 述
2.1 传感器的组成和分类 2.2 传感器的基本特性
第2章 传 感 器 概 述
2.1 传感器的组成和分类

传感器技术及应用 教学大纲

传感器技术及应用  教学大纲

传感器技术及应用——教学大纲一、课程基本信息课程编号:17z8315课程名称:传感器技术及应用Sensor Technology and Application学分/学时:3/42先修课程:主要有:物理、材料力学(工程力学)、电工基础、电子技术基础、自动控制元件、自动控制理论。

二、课程教学目的本课程是仪器科学与光电工程学院测控技术与仪器专业本科生的专业课。

其目标是:提供了解、使用、分析和初步设计常用传感器的敏感元件及系统的理论与实践基础,为后续其他专业课打下较坚实的基础。

三、课程教学任务通过本课程的学习,让学生了解传感器技术的发展现状、特点,在信息技术中的重要地位、作用;掌握信息获取范畴的广义理解;掌握常用传感器的基本工作原理,实现方式与结构;了解传感器技术在国防工业和一般工业领域中的典型应用;同时使学生能够在自动化系统、智能化系统中正确应用常用的传感器技术。

四、教学内容及基本要求本课程理论与实践紧密结合。

主要讲授传感器的性能评估,目前在工业领域中常用的几种典型的、有代表性的传感器的敏感元件的物理效应、变换原理、工作特性、主要结构、信号转换电路、误差及其补偿、合理应用等。

同时本课程也重视对新型传感器技术及应用的介绍。

传感器结构设计、工艺及所用材料只作一般介绍。

本课程主要内容可以分为三部分。

第一部分是关于传感器技术的基础理论与知识,共15个学时;第二部分是关于典型传感器的讨论,这是课程的重点,共21个学时;第三部分是关于近年来出现的新型传感器、应用示例的讨论,共6个学时。

教学的基本知识模块顺序及对应的单元教学任务。

五、教学安排及方式第1章绪论(6学时,基本掌握,讲授为主)1.1 传感器的作用与功能1.2 传感器的分类1.3 传感器技术的特点1.4 传感器技术的发展1.5 与传感器技术相关的一些基本概念1.6 本教材的特点及主要内容第2章传感器的特性(5学时,掌握,讲授为主,讨论为辅)2.1 传感器静态特性的一般描述2.2 传感器的静态标定2.3 传感器的主要静态性能指标及其计算第3章基本弹性敏感元件的力学特性(4学时,掌握,讲授为主)3.1 概述3.2 弹性敏感元件的基本特性3.3 基本弹性敏感元件的力学特性3.4 弹性敏感元件的材料第4章电位器式传感器(1学时,掌握,讨论为主,讲授为辅)4.1 概述4.2 线绕式电位器的特性4.3 非线性电位器4.4 电位器的负载特性及负载误差4.5 非线绕式电位器4.6 典型的电位器式传感器第5章应变式传感器(5学时,掌握,讲授为主,讨论为辅)5.1 应变式变换原理5.2 金属应变片5.3 应变片的动态响应特性5.4 应变片的温度误差及其补偿5.5 电桥原理5.6 典型的应变式传感器第6章压阻式传感器(2.5学时,掌握,讲授为主)6.1 压阻式变换原理6.2 典型的压阻式传感器第7章热电式传感器(2.5学时,掌握,讲授为主,讨论为辅) 7.1 概述7.2 热电阻测温传感器7.3 热电偶测温7.4 半导体P-N结测温传感器7.5 其他测温系统第8章电容式传感器(1学时,掌握,讲授为主,讨论为辅)8.1 基本电容式敏感元件8.2 电容式敏感元件的主要特性8.3 电容式变换元件的信号转换电路8.4 典型的电容式传感器8.5 电容式传感器的结构及抗干扰问题第9章变磁路式传感器(2学时,掌握,讨论为主,讲授为辅)9.1 电感式变换原理9.2 差动变压器式变换元件9.3 电涡流式变换原理9.4 霍尔效应及元件9.5 典型的变磁路式传感器第10章压电式传感器(1学时,基本掌握,讲授为主)10.1 石英晶体10.2 压电陶瓷10.3 聚偏二氟乙烯10.4 压电换能元件的等效电路10.5 压电换能元件的信号转换电路10.6 压电式传感器的抗干扰问题10.7 典型的压电式传感器第11章谐振式传感器(6学时,基本掌握,讲授为主)11.1 谐振状态及其评估11.2 闭环自激系统的实现11.3 振动筒压力传感器11.4 谐振膜式压力传感器11.5 石英谐振梁式压力传感器11.6 谐振式科里奥利直接质量流量传感器第12章微机械与智能化传感器技术(5时,基本掌握,讲授为主,讨论为辅)12.1 概述12.2 几种典型的微硅机械传感器12.3 几种典型的智能化传感器12.4 若干新型传感器应用实例分析课程总结(1学时,讲授为主,讨论为辅)六、教学的基本思路“传感器技术及应用”教学以“一条主线、二个基础、三个重点、多个独立模块”的基本原则来进行。

传感器原理及应用第二版课后习题答案(吴建平机械工业出版)

传感器原理及应用第二版课后习题答案(吴建平机械工业出版)

G j
2 n 2 s 2 2n s n
s j

1 1 2 j n n
1 400 2 2 400 [1 ( ) ] [2 0.4 ] 2200 2200
2
| G ( jw) |
1
[1 ( ) 2 ] 2 [2 ] n n

2
0.940
2
相对误差为(1-0.940)× 100%=6.0%
400 ) 2 0.4 2200 8 33' n tg 1 tg 1 2 400 2 1 ( ) 1 ( ) 2200
2 (
故相位滞后 8°33′。
第 3 章 电阻应变式传感器
2.7 解:所求幅值误差为 0.947,相位滞后 52°70′
2 n G j 2 2 s 2n s n s j

1 1 2 j n n
1 600 2 2 600 2 [1 ( ) ] [2 0.7 ] 1000 1000
当 n 为常数时响应特性取决于阻尼比 , 阻尼系数 越大, 过冲现象减弱, 1 时无过冲, 不存在振荡,阻尼比直接影响过冲量和振荡次数。 2.4 答: (略) 2.5 解: 对微分方程两边进行拉氏变换,Y(s)(30s+3)=0.15X(s) 则该传感器系统的传递函数为:
H (s)

①说明是一种什么形式的梁。在梁式测力弹性元件距梁端 l0 处画出四个应变片粘贴位 置,并画出相应的测量桥路原理图;②求出各应变片电阻相对变化量;③当桥路电源 电压为 6V 时,负载电阻为无穷大,求桥路输出电压 U0 是多少?
图 3-30
3.9 图 3-31 为一直流电桥,负载电阻 RL 趋于无穷。 图中 E=4V, R1=R2=R3=R4=120Ω,试求: ① R1 为金属应变片, 其余为外接电阻, 当 R1 的增量为 ΔR1=1.2Ω 时, 电桥输出电压 U0=? ② R 1、 R2 为金属应变片, 感应应变大小变化相同, 其余为外接电阻, 电桥输出电压 U0=? ③ R1、R2 为金属应变片,如果感应应变大小相反,且 ΔR1=ΔR2 =1.2Ω,电桥输出电压 U0=?

2012_0221_北航_传感器技术及应用_001_to.

2012_0221_北航_传感器技术及应用_001_to.
信息技术
信息获取→信息传输→信息处理 信息技术的源头
仪器科学与光电工程学院
School of Instru. Sci. & Opto-electro. Eng.
第1讲:绪 论
1.1 课程简要介绍
1.2 课程的教学方法与方式
1.3 课程的设置背景(重要性) 1.4 课程的主要内容 1.5 课程教学的基本要求 1.6 课程的考核
仪器科学与光电工程学院
School of Instru. Sci. & Opto-electro. Eng.
传感器技术及应用
仪器科学与光电工程学院
School of Instru. Sci. & Opto-electro. Eng.
传感器技术及应用
主讲教师:樊尚春 教授 助 教:郭占社 副教授
李 成 副教授 邢维巍 副教授 …
1.1 课程简要介绍
什么是传感器?
弹簧
如何获取信息?
真空膜盒
输入
压力→膜盒位移→杠杆位移 →电刷位移→电位器电压
输出
电刷 电位器 引线
p 壳体
p
p
仪器科学与光电工程学院
School of Instru. Sci. & Opto-electro. Eng.
1.1 课程简要介绍
什么是传感器?
弹簧
如何获取信息?
1.3 课程的设置背景(重要性):例子2
应变片
膜片
F16
激振电 磁线圈
参考腔
放大器
P
输出频率
仪器科学与光电工程学院
School of Instru. Sci. & Opto-electro. Eng.
1.3 课程的设置背景(重要性):例子3

传感器技术与应用第2版-部分习题答案

传感器技术与应用第2版-部分习题答案

第1章传感器特性习题答案:5.答:静特性是当输入量为常数或变化极慢时,传感器的输入输出特性,其主要指标有线性度、迟滞、重复性、分辨力、稳定性、温度稳定性、各种抗干扰稳定性。

传感器的静特性由静特性曲线反映出来,静特性曲线由实际测绘中获得。

人们根据传感器的静特性来选择合适的传感器。

9.解:10. 解:11.解:带入数据拟合直线灵敏度 0.68,线性度±7% 。

,,,,,,13.解:此题与炉温实验的测试曲线类似:14.解:15.解:所求幅值误差为1.109,相位滞后33042,所求幅值误差为1.109,相位滞后33042,16.答:dy/dx=1-0.00014x。

微分值在x<7143Pa时为正,x>7143Pa时为负,故不能使用。

17.答:⑴20。

C时,0~100ppm对应得电阻变化为250~350 kΩ。

V0在48.78~67.63mV之间变化。

⑵如果R2=10 MΩ,R3=250 kΩ,20。

C时,V0在0~18.85mV之间变化。

30。

C时V0在46.46mV(0ppm)~64.43mV(100ppm)之间变化。

⑶20。

C时,V0为0~18.85mV,30。

C时V0为0~17.79mV,如果零点不随温度变化,灵敏度约降低4.9%。

但相对(2)得情况来说有很大的改善。

18.答:感应电压=2πfCRSVN,以f=50/60Hz, RS=1kΩ, VN=100代入,并保证单位一致,得:感应电压=2π*60*500*10-12*1000*100[V]=1.8*10-2V第3章应变式传感器概述习题答案9. 答:(1).全桥电路如下图所示(2).圆桶截面积应变片1、2、3、4感受纵向应变;应变片5、6、7、8感受纵向应变;满量程时:(3)10.答:敏感元件与弹性元件温度误差不同产生虚假误差,可采用自补偿和线路补偿。

11.解:12.解:13.解:①是ΔR/R=2(Δl/l)。

因为电阻变化率是ΔR/R=0.001,所以Δl/l(应变)=0.0005=5*10-4。

传感器技术及应用(第二版)思考题与习题参考答案

传感器技术及应用(第二版)思考题与习题参考答案

思考题与习题参考答案第1章1-1 什么叫传感器?它由哪几部分组成?它们的相互作用及相互关系如何? 答:传感器是把被测量转换成电化学量的装置,由敏感元件和转换元件组成。

其中,敏感元件是指传感器中能直接感受或响应被测量的部分;转换元件是指传感器中能将敏感元件感受或响应的被测量转换成适于传输或测量的电信号部分。

由于传感器输出信号一般都很微弱,需要信号调理与转换电路进行放大、运算调制等,此外信号调理转换电路以及传感器的工作必须有辅助电源,因此信号调理转换电路以及所需的电源都应作为传感器组成的一部分。

1-2 什么是传感器的静态特性?它有哪些性能指标?分别说明这些指标的含义?答:传感器的静态特性是指被测量的值处于稳定状态时的输入与输出的关系。

衡量静态特性的重要指标是线性度、 灵敏度,迟滞和重复性等。

灵敏度是输入量∆y 与引起输入量增量∆y 的相应输入量增量∆x 之比。

传感器的线性度是指传感器的输出与输入之间数量关系的线性程度。

迟滞是指传感器在输入量由小到大(正行程)及输入量由大到小(反行程)变化期间其输入输出特性曲线不重合的现象。

重复性是指传感器在输入量按同一方向作全量程连续多次变化时,所得特性曲线不一致的程度。

漂移是指在输入量不变的情况下,传感器输出量随时间变化的现象。

精度是用来评价系统的优良程度。

1-3 某线性位移测量仪,当被测位移X 由3.0mm 变到4.0mm 时,位移测量仪的输出电压V 由3.0V 减至2.0V ,求该仪器的灵敏度。

解:该仪器的灵敏度为10.30.40.30.2X V -=--=∆∆=S (V/mm ) 1-4 用测量范围为-50~150KPa 的压力传感器测量140KPa 压力时,传感器测得示值为142KPa ,求该示值的绝对误差、实际相对误差、标称相对误差和引用误差。

解:绝对误差:X L ∆=-=142-140=2 相对误差100%L δ∆=⨯=2100% 1.4285%140⨯= 标称相对误差即%100⨯∆=x ξ=2100% 1.4084%142⨯= 引用误差100%-γ∆=⨯测量范围上限测量范围下限 =22100%1%150(50)200=⨯=--1-5 某传感器给定精度为2%F·S ,满度值为50mV ,零位值为10mV ,求可能出现的最大误差δ(以mV 计)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课 程 内 容

第1讲:绪 论 第2讲:传感器的输入输出特性 第3讲:传感器敏感结构的力学特性 第4讲:几种典型的模拟式传感器 第5讲:谐振式传感器 第6讲:发展中的传感器新技术 第7讲:总 结
第2讲:传感器的输入输出特性 思考题(第2讲)
1. 如何获得传感器的静态特性? 2. 怎样评价其静态性能指标?
3. 传感器静态校准的条件是什么?
4. 实验——数据处理——指标
第2讲:传感器的输入输出特性
2.1 传感器静态特性的一般描述
2.2 传感器的静态标定
2.3 传感器的主要静态性能指标及其计算
2.4 非线性传感器静态性能指标计算的讨论
2.1 传感器静态特性的一般描述
y f x ai x
xi, yi
第2讲:传感器的输入输出特性
2.1 传感器静态特性的一般描述 2.2 传感器的静态标定
2.3 传感器的主要静态性能指标及其计算
2.4 非线性传感器静态性能指标计算的讨论
2.3 传感器的主要静态性能指标及其计算
2.3.1 测量范围 2.3.2 量 程 2.3.3 静态灵敏度
2.3.4 分辨力与分辨率
2.4.8 综合误差的计算
第2讲:传感器的输入输出特性(小结)
2.1 传感器静态特性的一般描述 2.2 传感器的静态标定 2.3 传感器的主要静态性能指标及其计算 2.4 非线性传感器静态性能指标计算的讨论
静态标定(Calibration)或静态校准
在一定的标准条件下,利用一定等级的标定设备 对传感器进行多次往复测试的过程
2.2 传感器的静态标定
2.2.1 静பைடு நூலகம்标定条件 1. 对标定环境的要求
(1) (2) (3) (4) 无加速度,无振动,无冲击; 温度在15~25℃; 湿度不大于85%RH; 大气压力为0.1MPa。
第2讲:传感器的输入输出特性
2.1 传感器静态特性的一般描述 2.2 传感器的静态标定 2.3 传感器的主要静态性能指标及其计算
2.4 非线性传感器静态性能指标计算的讨论
2.4 传感器的主要静态性能指标及其计算
2.4.1 问题的提出 2.4.2 数据的基本处理 2.4.3 误差的描述
2.4.4 符合度的计算 2.4.5 迟滞的计算 2.4.6 符合性迟滞的计算 2.4.7 重复性的计算
2.3.5 漂 移 2.3.6 温 漂
2.3 传感器的主要静态性能指标及其计算
2.3.7 传感器的测量误差 2.3.8 线性度 2.3.9 符合度 2.3.10 迟 滞 2.3.11 非线性迟滞 极限点法 2.3.12 重复性 2.3.13 综合误差
2.3 传感器的主要静态性能指标及其计算
2.3.7 传感器的测量误差 2.3.8 线性度 2.3.9 符合度 2.3.10 迟 滞 2.3.11 非线性迟滞 2.3.12 重复性 2.3.13 综合误差 2.3.14 计算实例
2.3 传感器的主要静态性能指标及其计算
2.3.14 计算实例
2.3.7 传感器的测量误差 2.3.1 测量范围 2.3.8 线性度 2.3.2 量 程 2.3.9 符合度 2.3.3 静态灵敏度 2.3.10 迟 滞 2.3.4 分辨力与分辨率 2.3.11 非线性迟滞 2.3.5 漂 移 2.3.12 重复性 2.3.6 温 漂 2.3.13 综合误差
i 0
n
i
y a0 a1 x
y a1 x
第2讲:传感器的输入输出特性
2.1 传感器静态特性的一般描述
2.2 传感器的静态标定
2.3 传感器的主要静态性能指标及其计算
2.4 非线性传感器静态性能指标计算的讨论
2.2 传感器的静态标定
y f x ai x
i 0
n
i
传感器的静态特性
2. 对所用的标定设备的要求
1 1 ; s m s m 10 3
3. 标定过程的要求
x
i
yuij ; xi
ydij
2.2 传感器的静态标定
2.2.2 传感器的静态特性
x
i
yuij ; xi
ydij
1 m yuij ydij yi 2m j 1
相关文档
最新文档