2017-2018年上海市闵行区八年级下学期期末数学试卷〔精品解析版〕
2017--2018学年度第二学期沪科版(上海)八年级期末考试数学试卷

…………外………内…………○…………绝密★启用前 2017--2018学年度第二学期 沪科版(上海)八年级期末考试数学试卷 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.本卷25题,答卷时间100分钟,满分120分1.(本题3分)已知y 是x 的一次函数,下表中列出了部分对应值,则m 等 A. -1 B. 0 C. -2 D. -12 2.(本题3分)已知点()()1242y y -,,,都在直线23y x b =-+上,则1y 与2y 的大小关系是() A. 12y y > B. 12y y = C. 12y y < D. 不能确定 3.(本题3分)小李驾驶汽车以50千米/小时的速度匀速行驶1小时后,途中靠边停车接了半小时电话,然后继续匀速行驶.已知行驶路程(y 单位:千米)与行驶时间(t 单位:小时)的函数图象大致如图所示,则接电话后小李的行驶速度为() A. 43.5 B. 50 C. 56 D. 58………○…………○……※※在※※装※※订※※…○……线4.(本题3分)已知直线2y x =与y x b =-+的交点的坐标为(1, a ),则方程组2{ y xy x b ==-+的解是( )A. 1{ 2x y ==B. 2{ 1x y ==C. 2{ 3x y ==D. 1{ 3x y == 5.(本题3分)甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.如果设甲每小时做x 个零件,那么下面所列方程中正确的是( )A. 90606x x =-B. 90606x x =+C. 90606x x =+D. 90606x x =-6.(本题3分)若关于x 的分式方程2213m xx x +-=-无解,则m 的值为( )A. -1.5B. 1C. -1.5或2D. -0.5或-1.57.(本题3分)如图,正方形ABCD 中,E 是BD 上一点,BE=BC ,则∠BEC 的度数是( )A. 45°B. 60°C. 67.5°D. 82.5°8.(本题3分)若菱形两条对角线的长分别为6和8,则这个菱形的边长为()A. 5B. 10C. 20D. 149.(本题3分)如图是四个全等的直角三角形围成的,若两条直角边分别为3和4,斜边为5,则向图中随机抛掷一枚飞镖,飞镖落在阴影区域的概率是(不考虑在线上的情形)()A. 35 B. 45 C. 1625 D. 254910.(本题3分)如图,A .B 是边长为1的小正方形组成的网格上的两个格点,在格点中任意放置点C ,恰好能使△ABC 的面积为1的概率是( )…………外…………○…………装……○…………订…………○……学校:___________姓______班级:___________考号…内…………○…………装…………○…………订…………线…………○…………………装…………○… A. 625 B. 15 C. 425 D. 725 二、填空题(计32分) x+2y=5与直线x+y=3的交点坐标是________. 12.(本题4分)有甲、乙两个长方体的蓄水池,将甲池中的水匀速注入乙池,甲、乙两个蓄水池中水的高度y(米)与注水时间x(小时)之间的函数图象如图所示,若要使甲、乙两个蓄水池的蓄水深度相同,则注水的时间应为_______. 13.(本题4分)直线y=kx 过点(x 1,y 1),(x 2,y 2),若x 1-x 2=1,y 1-y 2=-2,则k 的值为______. 14.(本题4分)如图,将一张长方形纸片ABCD 折叠成如图所示的形状,∠EGC=26°,则∠DFG= . 15.(本题4分)如图,E 是正方形ABCD 内一点,如果△ABE 为等边三角形,那么∠DCE=____度. 16.(本题4分)如图,把一个圆形转盘按1∶2∶3∶4的比例分成A ,B ,C ,D 四个扇形区域,自由转动转盘,停止后指针落在C 区域的概率是………○…………17.(本题4分)在一个不透明的盒子中装12个白球,若干个黄球,它们除了颜色不同外,其余都相同,若从中随机摸出一个球是黄球的概率是13,则黄球的个数为________。
上海市2017—2018学年八年级下册期末数学试卷含答案解析

2017—2018学年八年级(下)期末数学试卷一、选择题:(本大题共6题,每题3分,满分18分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B铅笔正确填涂]1.下列函数中,是一次函数的是()A.B.y=x+2 C.y=x2+2 D.y=kx+b2.用换元法解分式方程,如果设,那么原方程可以化为()A.y2+y﹣5=0 B.y2﹣5y+1=0 C.5y2+y+1=0 D.5y2+y﹣1=0 3.下列四个方程中,有一个根是x=2的方程是()A.B.C.D.4.下列说法错误的是()A.确定事件的概率是1B.不可能事件的概率是0C.必然事件的概率是1D.随机事件的概率是大于0且小于1的一个数5.下列关于向量的等式中,正确的是()A.B.﹣=C.D.6.如图,四边形ABCD的对角线AC、BD互相垂直,则下列条件能判定四边形ABCD为菱形的是()A.BA=BC B.AC、BD互相平分C.AC=BD D.AB∥CD二、填空题(本大题共12题,每小题2分,满分24分)[在答题纸相应题号后的空格内直接填写答案]7.直线y=x﹣2的截距是.8.已知一次函数y=(m﹣1)x﹣2的函数值y随着自变量x的值的增大而增大,那么m的取值范围是.9.关于x的方程ax﹣4x﹣2=0(a≠4)的解是.10.方程2x3﹣16=0的根是.11.方程的根是.12.一个二元二次方程的一个解是,写出符合要求的方程(只需写一个即可).13.已知▱ABCD,设,,那么用向量、表示向量=.14.一个正多边形的每一个外角都是72°,那么这个多边形是边形.15.在▱ABCD中,如果∠A+∠C=200°,那么∠B的度数是度.16.矩形ABCD的两条对角线AC、BD相交于点O,已知AC=12,∠ACB=30°,那么△DOC 的周长是.17.如果菱形的两条对角线长分别为6和8,那么这个菱形一边上的高是.18.在▱ABCD中,AB=5,BC=7,对角线AC和BD相交于点O,如果将点A绕着点O顺时针旋转90°后,点A恰好落在平行四边形ABCD的边AD上,那么AC的长是.三、解答题(共8题,满分58分)[将下列各题的解答过程做在答题纸的相应位置上19.解方程:=﹣1.20.解方程组:.21.一个不透明的布袋中装了分别标有数字1、2、3、4的四个小球,这些小球除标记数字不同外其余均相同.(1)如果从中任意摸出两个小球,用树形图法或列表法展现所有等可能的结果;(2)如果从中任意摸出两个小球,求摸到的两个小球上的数字之和是5的概率.22.已知:如图,在梯形ABCD中,DC∥AB,AD=BC=2,∠A=60°,对角线BD平分∠ABC.(1)求对角线BD的长;(2)求梯形ABCD的面积.23.某项研究表明:人的眼睛疲劳系数y与睡眠时间t之间成函数关系,它们之间的关系如图2所示.其中,当睡眠时间不超过4小时(0≤t≤4)时,眼睛疲劳系数y是睡眠时间t 的反比例函数;当睡眠时间不少于4小时(4≤t≤6)时,眼睛疲劳系数y是睡眠时间t的一次函数,且当睡眠时间达到6小时后,眼睛疲劳系数为0.根据图象,回答下列问题:(1)求当睡眠时间不少于4小时(4≤t≤6)时,眼睛疲劳系数y关于睡眠时间t之间的函数关系式;(2)如果某人睡眠了t(1<t<3)小时后,再连续睡眠了3小时,此时他的眼睛疲劳系数恰好减少了3,求t的值.24.如图,在△ABC中,点D是BC边的中点,点E是AD的中点,过A点作AF∥BC,且交CE的延长线于点F,联结BF.(1)求证:四边形AFBD是平行四边形;(2)当AB=AC时,求证:四边形AFBD是矩形.25.如图,在平面直角坐标系xOy中,直线y=x﹣2与x轴、y轴分别相交于点A和点B,点C在y轴的正半轴上,且OC=2OB.(1)求线段BC的长度;(2)如果点D在直线AB上,且以B、C、D、E为顶点的四边形为菱形,请直接写出点E 的坐标.26.已知:在正方形ABCD中,AB=2,点P是射线AB上的一点,联结PC、PD,点E、F 分别是AB和PC的中点,联结EF交PD于点Q.(1)如图1,当点P与点B重合时,△QPE的形状是(2)如图2,当点P在AB的延长线上时,设BP=x,EF=y,求y关于x的函数关系式,并写出定义域;(3)当点Q在边BC上时,求BP的长.参考答案与试题解析一、选择题:(本大题共6题,每题3分,满分18分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B铅笔正确填涂]1.下列函数中,是一次函数的是()A.B.y=x+2 C.y=x2+2 D.y=kx+b【考点】一次函数的定义.【分析】直接利用一次函数的定义分析得出答案.【解答】解:A、y=+2,不符合一次函数的定义,故此选项错误;B、y=x+2,是一次函数,故此选项正确;C、y=x2+2,是二次函数,故此选项错误;D、y=kx+b(k≠0),故此选项错误;故选:B.2.用换元法解分式方程,如果设,那么原方程可以化为()A.y2+y﹣5=0 B.y2﹣5y+1=0 C.5y2+y+1=0 D.5y2+y﹣1=0【考点】换元法解分式方程.【分析】直接把化为y即可.【解答】解:设,则原方程化为5y﹣+1=0,去分母得,5y2+y﹣1=0.故选D.3.下列四个方程中,有一个根是x=2的方程是()A.B.C.D.【考点】无理方程;分式方程的解.【分析】可以先将各个选项的方程解出来,然后看看哪个方程的其中一个根是x=2,从而可以解答本题.【解答】解:当x=2时,方程中的分母x﹣2=0,故x=2不是方程的根,故选项A错误;,解得x=2,故的根是x=2,不符合题意,故选项B错误;=2,解得x=10,故选项C错误;,解得x=2或x=3,故方程,有一根是x=2,故选项D正确;故选D.4.下列说法错误的是()A.确定事件的概率是1B.不可能事件的概率是0C.必然事件的概率是1D.随机事件的概率是大于0且小于1的一个数【考点】概率的意义.【分析】确定事件包括必然事件和不可能事件,必然事件的概率为1,不可能事件的概率为0.不可能发生的事件就是一定不会发生的事件,因而概率为0.必然发生的事件就是一定发生的事件,因而概率是1.不确定事件就是随机事件,即可能发生也可能不发生的事件,发生的概率>0并且<1.【解答】解:A、确定事件包括必然事件和不可能事件,必然事件的概率为1,不可能事件的概率为0,选项正确;B、不可能发生的事件概率为0,选项错误;C、必然发生的事件发生的概率为1,选项错误;D、随机事件发生的概率介于0和1之间,选项正确.故选A.5.下列关于向量的等式中,正确的是()A.B.﹣=C.D.【考点】*平面向量.【分析】根据平面向量的平行四边形法则和三角形法则对各选项分析判断即可得解.【解答】解:A、+=,而不是等于0,故本选项错误;B、﹣=,故本选项错误;C、+=,故本选项错误;D、∵+=,∴++=,故本选正确.故选D.6.如图,四边形ABCD的对角线AC、BD互相垂直,则下列条件能判定四边形ABCD为菱形的是()A.BA=BC B.AC、BD互相平分C.AC=BD D.AB∥CD【考点】菱形的判定.【分析】已知四边形的对角线互相垂直,可依据“对角线互相垂直且平分的四边形是菱形”的判定方法,来选择条件.【解答】解:四边形ABCD中,AC、BD互相垂直,若四边形ABCD是菱形,需添加的条件是:AC、BD互相平分;(对角线互相垂直且平分的四边形是菱形)故选B.二、填空题(本大题共12题,每小题2分,满分24分)[在答题纸相应题号后的空格内直接填写答案]7.直线y=x﹣2的截距是﹣2.【考点】一次函数的性质.【分析】把x=0代入一次函数的解析式求出y即可.【解答】解:把x=0代入y=x﹣2得:y=﹣2,故答案为:﹣2.8.已知一次函数y=(m﹣1)x﹣2的函数值y随着自变量x的值的增大而增大,那么m的取值范围是m>1.【考点】一次函数图象与系数的关系.【分析】由题意y=(m﹣1)x﹣2,y随x的增大而增大,可得自变量系数大于0,进而可得出m的范围.【解答】解:∵y=(m﹣1)x﹣2中,y随x的增大而增大,∴m﹣1>0,∴m>1.故答案为:m>1;9.关于x的方程ax﹣4x﹣2=0(a≠4)的解是.【考点】一元一次方程的解.【分析】根据解一元一次方程的方法可以求得方程ax﹣4x﹣2=0(a≠4)的解,本题得以解决.【解答】解:ax﹣4x﹣2=0(a≠4)移项及合并同类项,得(a﹣4)x=2,系数化为1,得x=,故答案为:.10.方程2x3﹣16=0的根是x=2.【考点】高次方程.【分析】求出x3=8,两边开立方根,即可求出x.【解答】解:2x3﹣16=0,2x3=16,x3=8,x=2,故答案为:2.11.方程的根是x=3.【考点】无理方程.【分析】方程两边平方,转化为一元二次方程,解一元二次方程并检验.【解答】解:方程两边平方,得x2=2x+3,即x2﹣2x﹣3=0,解得x1=3,x2=﹣1,代入原方程检验可知x=3符合题意,x=﹣1舍去.故答案为:x=3.12.一个二元二次方程的一个解是,写出符合要求的方程xy=2(只需写一个即可).【考点】高次方程.【分析】分析:方程的解是二元二次方程有很多,如:xy=2;x2+y=5等等.【解答】解:xy=2等13.已知▱ABCD,设,,那么用向量、表示向量=﹣.【考点】*平面向量;平行四边形的性质.【分析】根据=+即可解决问题【解答】解:如图,∵四边形ABCD是平行四边形,∴==,∵=+=﹣+=﹣,故答案为﹣14.一个正多边形的每一个外角都是72°,那么这个多边形是5边形.【考点】多边形内角与外角.【分析】由一个多边形的外角为360°和每一个外角都是72°,可求得其边数.【解答】解:∵一个多边形的每一个外角都是72°,多边形的外角和等于360°,∴这个多边形的边数为:360÷72=5,故答案为:5.15.在▱ABCD中,如果∠A+∠C=200°,那么∠B的度数是80度.【考点】平行四边形的性质.【分析】由在▱ABCD中,如果∠A+∠C=200°,即可求得∠A的度数,又由平行四边形的邻角互补,求得答案.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∵∠A+∠C=200°,∴∠A=100°,∵AD∥BC,∴∠B=180°﹣∠A=80°.故答案为:80.16.矩形ABCD的两条对角线AC、BD相交于点O,已知AC=12,∠ACB=30°,那么△DOC 的周长是18.【考点】矩形的性质.【分析】直接利用矩形的性质得出∠OCD=60°,DO=CO=6,进而得出△OCD是等边三角形,即可得出答案.【解答】解:如图所示:∵矩形ABCD的两条对角线AC、BD相交于点O,AC=12,∠ACB=30°,∴∠OCD=60°,DO=CO=6,∴△OCD是等边三角形,∴△DOC的周长是:18.故答案为:18.17.如果菱形的两条对角线长分别为6和8,那么这个菱形一边上的高是.【考点】菱形的性质.【分析】根据对角线的长度即可计算菱形的面积,根据菱形对角线互相垂直平分的性质,可以求得△AOB为直角三角形,根据AO,BO可以求得AB的值,根据菱形的面积和边长即可解题.【解答】解:由题意知AC=6,BD=8,则菱形的面积S=×6×8=24,∵菱形对角线互相垂直平分,∴△AOB为直角三角形,AO=3,BO=4,∴AB==5,∴菱形的高h==.故答案为:.18.在▱ABCD中,AB=5,BC=7,对角线AC和BD相交于点O,如果将点A绕着点O顺时针旋转90°后,点A恰好落在平行四边形ABCD的边AD上,那么AC的长是或.【考点】旋转的性质;平行四边形的性质.【分析】如图,过O点作OE⊥AD于E,过C点作CF⊥AD于F,根据旋转的性质可得△AOA′是等腰直角三角形,△AA′C是等腰直角三角形,再根据勾股定理可求AA′,再根据等腰直角三角形的性质即可求解.【解答】解:如图,过O点作OE⊥AD于E,过C点作CF⊥AD于F,∵将点A绕着点O顺时针旋转90°后,点A恰好落在平行四边形ABCD的边AD上,∴△AOA′是等腰直角三角形,∴△AA′C是等腰直角三角形,设AA′=x,则CF=x,DF=7﹣x,在Rt△CDF中,x2+(7﹣x)2=52,解得x1=4,x2=3,在Rt△CFA中,AC=或.故答案为:或.三、解答题(共8题,满分58分)[将下列各题的解答过程做在答题纸的相应位置上19.解方程:=﹣1.【考点】解分式方程.【分析】观察可得最简公分母是(x+2)(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:去分母,得4=(x+2)﹣(x+2)(x﹣2),整理,得x2﹣x﹣2=0,解得x1=﹣1,x2=2.经检验:x1=﹣1是原方程的根,x2=2是增根.故原方程的根为x=﹣1.20.解方程组:.【考点】高次方程.【分析】先由①得:(x﹣2y)(x﹣3y)=0,求出x=2y或x=3y,再分别代入②,求出x,y的值即可.【解答】解:,由①得:(x﹣2y)(x﹣3y)=0,则x=2y或x=3y,将x=2y代入②得y=,x=,将x=3y代入②得y=,x=,则方程组的解是:,.21.一个不透明的布袋中装了分别标有数字1、2、3、4的四个小球,这些小球除标记数字不同外其余均相同.(1)如果从中任意摸出两个小球,用树形图法或列表法展现所有等可能的结果;(2)如果从中任意摸出两个小球,求摸到的两个小球上的数字之和是5的概率.【考点】列表法与树状图法.【分析】(1)画树状图展示所有12种等可能的情况;(2)找出摸到的两个小球上的数字之和为5的结果数,然后根据概率公式求解.【解答】解:(1)画树状图:共有12种等可能的情况;(2)摸到的两个小球上的数字之和为5的结果数为4,所以摸到摸到的两个小球上的数字之和为5的概率==.22.已知:如图,在梯形ABCD中,DC∥AB,AD=BC=2,∠A=60°,对角线BD平分∠ABC.(1)求对角线BD的长;(2)求梯形ABCD的面积.【考点】梯形.【分析】(1)根据等腰梯形的同一底上的两个底角相等,即可求得∠B的度数,根据三角形的内角和定理证明△ABD是直角三角形,利用直角三角形的性质以及勾股定理即可求解;(2)过点D、C分别作DH⊥AB,CG⊥AB,垂足为点H、G,在直角△ADB中求得DH 和AH的长,则AB即可求得,然后利用梯形的面积公式求解.【解答】解:(1)∵DC∥AB,AD=BC,∴∠A=∠ABC.∵BD平分∠ABC,∠A=60°,∴∠ABD=∠ABC=30°.∴∠ADB=90°.∵AD=2,∴AB=2AD=4.∴BD=.(2)过点D、C分别作DH⊥AB,CG⊥AB,垂足为点H、G.∵DC∥AB,BD平分∠ABC,∴∠CDB=∠ABD=∠CBD.∵BC=2,∴DC=BC=2.在RT△ADH和RT△BCG中,,∴RT△ADH≌RT△BCG.∴AH=BG.∵∠A=60°,∴∠ADH=30°.∴AH=AD=1,DH=.∵DC=HG=2,∴AB=4.∴.23.某项研究表明:人的眼睛疲劳系数y与睡眠时间t之间成函数关系,它们之间的关系如图2所示.其中,当睡眠时间不超过4小时(0≤t≤4)时,眼睛疲劳系数y是睡眠时间t 的反比例函数;当睡眠时间不少于4小时(4≤t≤6)时,眼睛疲劳系数y是睡眠时间t的一次函数,且当睡眠时间达到6小时后,眼睛疲劳系数为0.根据图象,回答下列问题:(1)求当睡眠时间不少于4小时(4≤t≤6)时,眼睛疲劳系数y关于睡眠时间t之间的函数关系式;(2)如果某人睡眠了t(1<t<3)小时后,再连续睡眠了3小时,此时他的眼睛疲劳系数恰好减少了3,求t的值.【考点】反比例函数的应用.【分析】(1)根据图象经过的两点利用待定系数法确定函数的解析式即可;(2)首先利用待定系数法确定反比例函数的解析式,根据“某人睡眠了t(1<t<3)小时后,再连续睡眠了3小时,此时眼睛疲劳系数恰好减少了3”列方程求解.【解答】解:(1)根据题意,设当4≤t≤6时,眼睛疲劳系数y关于睡眠时间t的函数关系式为:y=kt+b(k≠0).∵它经过点(4,2)和(6,0),∴,解得:.…(2分)∴当睡眠时间不少于4小时,眼疲劳系数y关于睡眠时间t的函数关系式是y=﹣t+6.当睡眠时间不超过4小时(0≤t≤4)时,眼睛疲劳系数y是睡眠时间t的反比例函数,设这个反比例函数为:,∵它经过点(4,2),∴,∵某人睡眠了t(1<t<3)小时后,再连续睡眠了3小时,此时眼睛疲劳系数恰好减少了3,∴,整理得:t2﹣6t+8=0.解得:t1=2,t2=4,经检验:t1=2,t2=4是原方程的解,t2=4不符合题意舍去,∴t的值是2.24.如图,在△ABC中,点D是BC边的中点,点E是AD的中点,过A点作AF∥BC,且交CE的延长线于点F,联结BF.(1)求证:四边形AFBD是平行四边形;(2)当AB=AC时,求证:四边形AFBD是矩形.【考点】矩形的判定;平行四边形的判定与性质.【分析】(1)首先证明△AEF≌△DEC(AAS),得出AF=DC,进而利用AF BD得出答案;(2)利用等腰三角形的性质,结合矩形的判定方法得出答案.【解答】证明:(1)∵AF∥BC,∴∠AFC=∠FCD.在△AFE和△DCE中,∴△AEF≌△DEC(AAS).∴AF=DC,∵BD=DC,∴AF=BD,∴四边形AFBD是平行四边形;(2)∵AB=AC,BD=DC,∴AD⊥BC.∴∠ADB=90°.∵四边形AFBD是平行四边形,∴四边形AFBD是矩形.25.如图,在平面直角坐标系xOy中,直线y=x﹣2与x轴、y轴分别相交于点A和点B,点C在y轴的正半轴上,且OC=2OB.(1)求线段BC的长度;(2)如果点D在直线AB上,且以B、C、D、E为顶点的四边形为菱形,请直接写出点E 的坐标.【考点】一次函数图象上点的坐标特征;菱形的性质.【分析】(1)可先求得B点坐标,再结合OC=2OB,可求得BC的长度;(2)分BC为边和对角线,①当BC为边时有两种情况,BD为边或BD为对角线,当BD 为边时,则BD=BC,可先求得D点坐标,再根据DE∥BC且DE=BC可求得E点坐标;当BD为对称线时,则四边形为正方形,可求得E点坐标;②当BC为对角线时,则DE为BC的垂直平分线,可先求得D点坐标,利用对称性可求得E点坐标【解答】解:(1)∵直线y=x﹣2与x轴、y轴分别相交于点A和点B,∴点A(2,0),点B(0,﹣2),∴OB=2,∵OC=2OB,∴OC=4,点C(0,4),∴BC的长度是6;(2)①当BC为边时,有两种情况,BD为边或BD为对称线,当BD为边时,则有BD=BC=6,设D点坐标为(x,x﹣2),则=6,解得x=3或x=﹣3,∴D点坐标为(3,3﹣2)或(﹣3,﹣3﹣2),∵DE=BC=6,且DE∥BC,∴E点坐标为(,3+4)或(,﹣3+4);当BD为对角线时,则∠CBD=∠EBD=45°,如图1,则∠EBC=90°,∴四边形BCDE为正方形,∴BE=BC=6,且BE∥x轴,∴E点坐标为(6,﹣2);②当BC为对角线时,则有DE⊥BC,如图2,设BC与DE交于点F,则F为BC的中点,∴F(0,1),∴D点纵坐标为1,代入直线AB解析式可得1=x﹣2,解得x=3,∴D点坐标为(3,1),又D、E关于BC对称,∴E点坐标为(﹣3,1);综上可知点E的坐标可以为(,3+4)或(,﹣3+4)或(6,﹣2)或(﹣3,1).26.已知:在正方形ABCD中,AB=2,点P是射线AB上的一点,联结PC、PD,点E、F 分别是AB和PC的中点,联结EF交PD于点Q.(1)如图1,当点P与点B重合时,△QPE的形状是等腰直角三角形(2)如图2,当点P在AB的延长线上时,设BP=x,EF=y,求y关于x的函数关系式,并写出定义域;(3)当点Q在边BC上时,求BP的长.【考点】相似形综合题.【分析】(1)根据正方形的性质得到AB=BC,∠ABC=90°,根据等式的性质得到PE=PF,即可得到结论;(2)延长BA到点M,使得AM=BP,连接CM,根据已知条件得到EM=EP,根据三角形的中位线的性质得到EF=MC,根据正方形的性质得到∠MBC=90°,AB=BC,由已知条件得到BM=2+x.根据勾股定理得到MC==,于是得到结论;(3)当点Q在边BC上时,根据平行线的性质得到∠M=∠QEB,根据全等三角形的性质得到∠M=∠APD,推出QE=QP,根据等腰三角形的性质即可得到结论.【解答】解:(1)△QPE的形状是等腰直角三角形,理由:在正方形ABCD中,∵AB=BC,∠ABC=90°,∵点P与点B重合,∴AP=PC,∠APC=90°,∵点E、F分别是AB和PC的中点,∴PE=AP,PF=PC,∴PE=PF,∴△QPE是等腰直角三角形;故答案为:等腰直角三角形;(2)延长BA到点M,使得AM=BP,连接CM,∵AE=BE,∴AE+AM=BE+BP,即EM=EP,∵PF=CF,∴EF=MC,∵四边形ABCD是正方形,∴∠MBC=90°,AB=BC,∵AB=2,BP=AM=x,∴BM=2+x.∴MC==,∴EF=,∴y=(x>0);(3)当点Q在边BC上时,由(2)可知EF∥MC,∴∠M=∠QEB,∵在△ADP和△BCM中,,∴△ADP≌△BCM,∴∠M=∠APD,∴∠QEB=∠APD,∴QE=QP,∵QB⊥PE,∴BP=BE=AB=1.。
2017-2018学年上海市奉贤区八年级下期末数学试卷((有答案))

2017-2018学年上海市奉贤区八年级(下)期末数学试卷一、选择题(本大题共6小题,共18.0分)1.下列函数中,一次函数是()A. B. C. D.2.下列判断中,错误的是()A. 方程是一元二次方程B. 方程是二元二次方程C. 方程是分式方程D. 方程是无理方程3.已知一元二次方程x2-2x-m=0有两个实数根,那么m的取值范围是()A. B. C. D.4.下列事件中,必然事件是()A. “奉贤人都爱吃鼎丰腐乳”B. “2018年上海中考,小明数学考试成绩是满分150分”C. “10只鸟关在3个笼子里,至少有一只笼子关的鸟超过3只”D. “在一副扑克牌中任意抽10张牌,其中有5张A”5.下列命题中,真命题是()A. 平行四边形的对角线相等B. 矩形的对角线平分对角C. 菱形的对角线互相平分D. 梯形的对角线互相垂直二、填空题(本大题共12小题,共24.0分)6.一次函数y=2x-1的图象在轴上的截距为______7.方程x4-8=0的根是______8.方程-x=1的根是______9.一次函数y=kx+3的图象不经过第3象限,那么k的取值范围是______10.用换元法解方程-=1时,如果设=y,那么原方程化成以“y”为元的方程是______11.化简:()-()=______.12.某商品经过两次连续涨价,每件售价由原来的100元涨到了179元,设平均每次涨价的百分比为x,那么可列方程:______13.如果n边形的每一个内角都相等,并且是它外角的3倍,那么n=______14.既是轴对称图形,又是中心对称图形的四边形是______.15.在四边形ABCD中,AB=AD,对角线AC平分∠BAD,AC=8,S四边形ABCD=16,那么对角线BD=______.16.在矩形ABCD中,∠BAD的角平分线交于BC点E,且将BC分成1:3的两部分,若AB=2,那么BC=______17.如图,在平行四边形ABCD中,AC与BD相交于点O∠AOB=60°,BD=4,将△ABC沿直线AC翻折后,点B落在点E处,那么S△AED=______三、解答题(本大题共8小题,共64.0分)18.解方程:-=219.解方程组:20.布袋中放有x只白球、y只黄球、2只红球,它们除颜色外其他都相同,如果从布袋中随机摸出一个球,恰好是红球的概率是.(1)试写出y与x的函数关系式;(2)当x=6时,求随机地取出一只黄球的概率P.21.如图,矩形ABCD中,对角线AC与BD相交于点O.(1)写出与相反的向量______;(2)填空:++=______;(3)求作:+(保留作图痕迹,不要求写作法).22.中国的高铁技术已经然走在了世界前列,2018年的“复兴号”高铁列车较“和谐号”速度增加每小时70公里.上海火车站到北京站铁路距离约为1400公里,如果选择“复兴号”高铁,全程可以少用1小时,求上海火车站到北京火车站的“复兴号”运行时间.23.已知:如图,在△ABC中,∠ACB=90°,点D是斜边AB的中点,DE∥BC,且CE=CD.(1)求证:∠B=∠DEC;(2)求证:四边形ADCE是菱形.24.如图,一次函数y=2x+4的图象与x,y轴分别相交于点A,B,以AB为边作正方形ABCD(点D落在第四象限).(1)求点A,B,D的坐标;(2)联结OC,设正方形的边CD与x相交于点E,点M在x轴上,如果△ADE与△COM全等,求点M的坐标.25.已知,梯形ABCD中,AD∥BC,∠ABC=90°,AB=3,BC=10,AD=5,M是BC边上的任意一点,联结DM,联结AM.(1)若AM平分∠BMD,求BM的长;(2)过点A作AE⊥DM,交DM所在直线于点E.①设BM=x,AE=y求y关于x的函数关系式;②联结BE,当△ABE是以AE为腰的等腰三角形时,请直接写出BM的长.答案和解析1.【答案】A【解析】解:A、y=x属于一次函数,故此选项正确;B、y=kx(k≠0),故此选项错误;C、y=+1,不符合一次函数的定义,故此选项错误;D、y=x2-2,不符合一次函数的定义,故此选项错误;故选:A.利用一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数,进而判断即可.此题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.2.【答案】D【解析】解:A、方程x(x-1)=0是一元二次方程,不符合题意;B、方程xy+5x=0是二元二次方程,不符合题意;C、方程-=2是分式方程,不符合题意;D、方程x2-x=0是一元二次方程,符合题意,故选:D.利用各自方程的定义判断即可.此题考查了无理方程,分式的定义,一元二次方程的定义,以及分式方程的定义,熟练掌握各自的定义是解本题的关键.3.【答案】B【解析】解:∵一元二次方程x2-2x-m=0有两个实数根,∴△=4+4m≥0,解得:m≥-1.故选:B.由方程有两个实数根,得到根的判别式的值大于等于0,列出关于m的不等式,求出不等式的解集即可得到m的范围.考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.4.【答案】C【解析】解:A、“奉贤人都爱吃鼎丰腐乳”,是随机事件,故此选项错误;B、“2018年上海中考,小明数学考试成绩是满分150分”,是随机事件,故此选项错误;C、“10只鸟关在3个笼子里,至少有一只笼子关的鸟超过3只”是必然事件,故此选项正确;D、“在一副扑克牌中任意抽10张牌,其中有5张A”,是不可能事件.故选:C.直接利用随机事件以及必然事件、不可能事件的定义分别分析得出答案.此题主要考查了随机事件以及必然事件、不可能事件的定义,正确区分各事件是解题关键.5.【答案】C【解析】解:A.平行四边形的对角线平分,错误;B.菱形的对角线平分对角,错误;C.菱形的对角线互相平分,正确;D.等腰梯形的对角线互相垂直,错误;故选:C.根据菱形、平行四边形、矩形、等腰梯形的性质分别判断得出即可.此题主要考查了菱形、平行四边形、矩形、等腰梯形的性质,熟练掌握相关定理是解题关键.6.【答案】-1【解析】解:一次函数y=2x-1的图象在y轴上的截距是-1,故答案为:-1,根据一次函数的图象与系数的关系即可得出结论.本题考查的是一次函数的性质,熟知一次函数的性质是解答此题的关键.7.【答案】±2【解析】解:x4-8=0,x4=8,x4=16,开方得:x2=4,开方得:x=±2,故答案为±2.移项,系数化成1,再开方即可.本题考查了解高次方程,能把高次方程转化成低次方程是解此题的关键.8.【答案】x=3【解析】解:-x=1,=1+x,2x+10=(1+x)2,x2=9,解得:x=±3,检验:把x=3代入方程-x=1得:左边=右边,所以x=3是原方程的解,把x=3代入方程-x=1得:左边≠右边,所以x=-3不是原方程的解,所以原方程的解为x=3,故答案为:x=3,移项后两边平方,即可得出整式方程,求出方程的解,再进行检验即可.本题考查了解无理方程,能把无理方程转化成有理方程是解此题的关键.9.【答案】k<0【解析】解:∵一次函数y=kx+3的图象不经过第3象限,一次函数y=kx+3的图象即经过第一、二、四象限,∴k<0.故答案为:k<0,先判断出一次函数图象经过第一、二、四象限,则说明x的系数不大于0,由此即可确定题目k的取值范围.本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.10.【答案】3y2-y-1=0【解析】解:-=1,设=y,原方程化为:3y-=1,即3y2-y-1=0,故答案为:3y2-y-1=0.设=y,原方程化为3y-=1,求出即可.本题考查了用换元法解分式方程,能够正确换元是解此题的关键.11.【答案】【解析】解:()-()=--+=(+)-(+)=-=.故答案为:.由去括号的法则可得:()-()=--+,然后由加法的交换律与结合律可得:(+)-(+),继而求得答案.此题考查了平面向量的知识.此题难度不大,注意掌握三角形法则的应用.12.【答案】100(1+x)2=179【解析】解:设平均每次涨价的百分比为x,那么可列方程:100(1+x)2=179.故答案为:100(1+x)2=179.设平均每次涨价的百分比为x,根据原价为100元,表示出第一次涨价后的价钱为100(1+x)元,然后再根据价钱为100(1+x)元,表示出第二次涨价的价钱为100(1+x)2元,根据两次涨价后的价钱为179元,列出关于x的方程此题考查了由实际问题抽象出一元二次方程,属于平均增长率问题,一般情况下,假设基数为a,平均增长率为x,增长的次数为n(一般情况下为2),增长后的量为b,则有表达式a(1+x)n=b,类似的还有平均降低率问题,注意区分“增”与“减”.13.【答案】8【解析】解:∵每个内角都相等,并且是它外角的3倍,设外角为x,可得:x+3x=180°,解得:x=45°,∴边数=360°÷45°=8.故答案为:8.根据正多边形的内角与外角是邻补角求出每一个外角的度数,再根据多边形的边数等于360°除以每一个外角的度数列式计算即可得到边数.本题考查了多边形的内角与外角,熟练掌握多边形的外角和、多边形的每一个外角的度数、多边形的边数三者之间的关系是解题的关键.14.【答案】矩形(答案不唯一)【解析】解:矩形(答案不唯一).根据轴对称图形与中心对称图形的概念,写一个则可.掌握中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.15.【答案】4【解析】解:∵对角线AC平分∠BAD,∴∠BAO=∠DAO,在△BAO与△DAO中,,∴△BAO≌△DAO(SAS),∴∠BOA=∠DOA,∴AC⊥BD,∵AC=8,S四边形ABCD =16,∴BD=16×2÷8=4.故答案为:4.根据角平分线的定义可得∠BAO=∠DAO,根据SAS可证△BAO≌△DAO,再根据全等三角形的性质可得∠BOA=∠DOA,可得AC⊥BD,再根据对角线互相垂直的四边形面积公式计算即可求解.考查了多边形的对角线,角平分线,全等三角形的判定与性质,四边形面积,关键是根据SAS证明△BAO≌△DAO.16.【答案】8或【解析】解:①如图1中,∵四边形ABCD是矩形,AE平分∠BAD,∴∠BAE=∠AEB=45°,∴AB=BE=2,当EC=3BE时,EC=6,∴BC=8.②如图2中,当BE=3EC时,EC=,∴BC=BE+EC=.故答案为8或分两种情形画出图形分别求解即可解决问题;本题考查矩形的性质、等腰直角三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.17.【答案】【解析】解:如图连接EO.∵∠AOB=∠EOA=60°,∴∠EOD=60°,∵OB=OE=OD,∴△EOD是等边三角形,∴∠EDO=∠AOB=60°,∴DE∥AC,2=.∴S故答案为如图连接EO.首先证明△EOD是等边三角形,推出∠EDO=∠AOB=60°,推出DE∥AC,推出S△ADE=S△EOD即可解决问题;此题考查了折叠的性质,平行四边形的性质以及勾股定理的应用等知识.此题难度适中,解题的关键是准确作出辅助线,利用数形结合思想求解.18.【答案】解:方程两边都乘以(x+2)(x-2)得:(x-1)(x+2)-4=2(x+2)(x-2),即x2-x-2=0,解得:x=-1或2,检验:当x=-1时,(x+2)(x-2)≠0,所以x=-1是原方程的解,当x=2时,(x+2)(x-2)=0,所以x=2不是原方程的解,所以原方程组的解为:x=-1【解析】先去分母,把分式方程转化成整式方程,求出整数方程的解,再进行检验即可.本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.19.【答案】解:由①得:x=4+y③,把③代入②得:(4+y)2-2y2=(4+y)y,解得:y1=4,y2=-2,代入③得:当y1=4时,x1=8,当y2=-2时,x2=2,所以原方程组的解为:,.【解析】由①得出x=4+y③,把③代入②求出y,把y的值代入③求出x即可.本题考查了解高次方程组,能把高次方程组转化成一元二次方程是解此题的关键.20.【答案】解:(1)因为布袋中放有x只白球、y只黄球、2只红球,且红球的概率是.所以可得:y=14-x(2)把x=6,代入y=14-6=8,所以随机地取出一只黄球的概率P==【解析】(1)让红球的个数除以球的总个数即为从布袋中随机摸出一个球是红球的概率,进而得出函数解析式.(2)让黄球的个数除以球的总个数即为从布袋中随机摸出一个球是黄球的概率.此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.21.【答案】,【解析】解:(1)与相反的向量有,,故答案为有,.(2)∵+=,+=,∴++=故答案为.(3)如图,作平行四边形OBEC,连接AE,即为所求;(1)根据相反的向量的定义即可解决问题;(2)利用三角形加法法则计算即可;(3)如图,作平行四边形OBEC,连接AE,即为所求;本题考查平面向量、作图-复杂作图、矩形的性质等知识,解题的关键是熟练掌握向量的加法法则,属于中考常考题型.22.【答案】解:设复兴号用时x小时,则和谐号用时(x+1)小时,根据题意得:=70+,解得:x=4或x=-5(舍去)答:上海火车站到北京火车站的“复兴号”运行时间为4小时.【解析】复兴号用时x小时,则和谐号用时(x+1)小时,然后依据“复兴号”高铁列车较“和谐号”速度增加每小时70公里列方程求解即可.此题考查了分式方程的应用,关键是分析题意,找到合适的数量关系列出方程,解分式方程时要注意检验.23.【答案】(1)证明:在△ABC 中,∵∠ACB =90°,点D 是斜边AB 的中点, ∴CD =DB ,∴∠B =∠DCB , ∵DE ∥BC ,∴∠DCB =∠CDE , ∵CD =CE ,∴∠CDE =∠CED , ∴∠B =∠CED .(2)证明:∵DE ∥BC , ∴∠ADE =∠B , ∵∠B =∠DEC , ∴∠ADE =∠DEC , ∴AD ∥EC ,∵EC =CD =AD ,∴四边形ADCE 是平行四边形, ∵CD =CE ,∴四边形ADCE 是菱形. 【解析】(1)利用等腰三角形的性质、直角三角形斜边中线定理证明即可;(2)首先证明AD=EC ,AD ∥EC ,可得四边形ADCE 是平行四边形,再根据CD=CE 可得四边形是菱形;本题考查菱形的判定和性质、平行四边形的性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.【答案】解:(1)∵一次函数y =2x +4的图象与x ,y 轴分别相交于点A ,B ,∴A (-2,0),B (0,4), ∴OA =2,OB =4,如图1,过点D 作DF ⊥x 轴于F , ∴∠DAF +∠ADF =90°,∵四边形ABCD 是正方形, ∴AD =AB ,∠BAD =90°, ∴∠DAF +∠BAO =90°, ∴∠ADF =∠BAO ,在△ADF 和△BAO 中, ∠ ∠∠ ∠,∴△ADF ≌△BAO (AAS ), ∴DF =OA =2,AF =OB =4, ∴OF =AF -OA =2,∵点D 落在第四象限, ∴D (2,-2);(2)如图2,过点C 作CG ⊥y 轴于G ,连接OC ,作CM ⊥OC 交x 轴于M , 同(1)求点D 的方法得,C (4,2), ∴OC = =2 ,∵A (-2,0),B (0,4), ∴AB =2 ,∵四边形ABCD 是正方形, ∴AD =AB =2 =OC ,∵△ADE与△COM全等,且点M在x轴上,∴△ADE≌△OCM,∴OM=AE,∵OM=OE+EM,AE=OE+OA,∴EM=OA=2,∵C(4,2),D(2,-2),∴直线CD的解析式为y=2x-6,令y=0,∴2x-6=0,∴x=3,∴E(3,0),∴OM=5,∴M(5,0).【解析】(1)先利用坐标轴上点的特点求出点A,B的坐标,再构造全等三角形即可求出点D坐标;(2)先求出点C坐标,进而求出OC,判断出AD=OC,再用待定系数法求出直线CD解析式,即可求出点E坐标,即可得出结论.此题是一次函数综合题,主要考查了待定系数法,正方形的性质,全等三角形的判定和性质,构造全等三角形求出点D坐标是解本题的关键.25.【答案】解:(1)如图1中,作DH⊥BC于H.则四边形ABHD是矩形,AD=BH=5,AB=DH=3.当MA平分∠DMB时,易证∠AMB=∠AMD=∠DAM,可得DA=DM=5,在Rt△DMH中,DM=AD=5,DH=3,∴MH===4,∴BM=BH-MH=1,当AM′平分∠BM′D时,同法可证:DA=DM′,HM′=4,∴BM′=BH+HM′=9.综上所述,满足条件的BM的值为1或9.(2)①如图2中,作MH⊥AD于H.在Rt△DMH中,DM==,∵S△ADM=•AD•MH=•DM•AE,∴5×3=y•∴y=.②如图3中,当AB=AE时,y=3,此时5×3=3,解得x=1或9.如图4中,当EA=EB时,DE=EM,∵AE⊥DM,∴DA=AM=5,在Rt△ABM中,BM==4.综上所述,满足条件的BM的值为1或9或4.【解析】(1)如图1中,作DH⊥BC于H.则四边形ABHD是矩形,AD=BH=5,AB=DH=3.分两种情形求解即可解决问题;(2)①如图2中,作MH⊥AD于H.利用面积法构建函数关系式即可;②分两种情形:如图3中,当AB=AE时,y=3,此时5×3=3,解方程即可;如图4中,当EA=EB时,DE=EM,利用勾股定理求解即可;本题考查四边形综合题、等腰三角形的判定和性质、勾股定理、三角形的面积等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.11。
上海市2017学年第二学期初二年级数学期末考试试卷

上海市闵行区2017学年第二学期期末质量抽查初二数学试卷(测试时间90分钟,满分100分)题号 一二三四总分得分一、填空题(本大题共15题,每题2分,满分30分) 1.直线y =2x -1平行于直线y = k x -3,则k =_________.2.若一次函数y =(1-m )x +2,函数值y 随x 的增大而减小,则m 的取值范围 是 .3.在直角坐标系内,直线y=-x+2在x 轴上方的点的横坐标的取值范围是 . 4.方程x 3-x = 0的解为 . 5.方程x x =+32的解为 .6.“太阳每天从东方升起”,这是一个 事件(填“确定”或“随机”). 7.右图是一个被等分成6个扇形可自由转动的转盘,转动转盘, 当转盘停止后,指针指向红色区域的概率是 . 8.从1,2,3,4四个数中任意取出2个数做加法,其和为偶数的 概率是_________.9.甲乙两人加工同一种玩具,甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相等.已知甲乙两人每天共加工35个玩具.若设甲每天加工x 个玩具,则根据题意列出方程为: . 10.五边形的内角和是 _ _度.11.在□ABCD 中,若110A =∠,则∠B = 度. 12.在矩形ABCD 中,12AB BC ==,,则_______AC =.13.若一梯形的中位线和高的长均为6cm ,则该梯形的面积为__________cm 2. 14.已知菱形的边长和一条对角线的长均为2cm ,则菱形的面积为__________ cm 2. 15.要使平行四边形ABCD 为正方形,须再添加一定的条件,添加的条件可以是 .(填上一组符合题目要求的条件即可)(第7题)二、选择题(本大题共4题,每题2分,满分8分)16.下列直线中,经过第一、二、三象限的是 ……………………………………( ) (A) 直线y = x -1 ; (B) 直线y = -x +1; (C) 直线y =x +1; (D) 直线y =-x -1 . 17.气象台预报“本市明天降水概率是80%”.对此信息,下面的几种说法正确的是………………………………………………………………………………………( ) (A ) 本市明天将有80%的地区降水; (B )本市明天将有80%的时间降水; (C ) 明天肯定下雨; (D )明天降水的可能性比较大. 18.在□ABCD 中,对角线AC BD ,交于点O ,下列式子中一定成立的是 …( ) (A )AC BD ⊥; (B )OA OC =; (C )AC BD =; (D )AO OD =19.正方形、矩形、菱形都具有的特征是 ………………………………………( )(A )对角线互相平分; (B )对角线相等;(C )对角线互相垂直; (D )对角线平分一组对角. 三、(本大题共6题,每题7分,满分42分)20.解方程:213221x xx x --=-.解:21.解方程组: ⎩⎨⎧=-+=-052122y x y x解:22.已知□ABCD ,点E 是 BC 边的中点,请回答下列问题: (1)在图中求作..AD 与DC 的和向量:AD+DC = ;(2)在图中求作..AD 与DC 的差向量:AD -DC = ;(3)如果把图中线段都画成有向线段.......,那么在这些有向线段所表示的向量中,所有与BE 互为相反向量的向量是 ; (4) AB+BE+EA = 。
上海市2017-2018学年八年级数学下学期期末模拟试卷及答案(一)

上海市2017-2018学年八年级数学下学期期末模拟试卷及答案(一)加而增加,则m的取值范围是▲.10.已知等差数列{an}的公差为d,首项为a1,末项为an,且a1+an=20,d=2,则a5=▲.11.已知函数f(x)=2x²+bx+c的图像过点(1,3),且在点(2,8)处的切线斜率为4,则b=▲,c=▲.12.如图,矩形ABCD中,AE=3cm,BF=4cm,且AE⊥BF,那么矩形ABCD的面积为▲平方厘米.13.如图,在三角形ABC中,DE//BC,AD=4cm,BD=5cm,CE=6cm,则AE=▲cm.14.如图,在平行四边形ABCD中,E、F分别是AB、CD的中点,则三角形EFC的面积为▲平方厘米.15.已知函数f(x)=2x³-3x²-kx+1在x=1处有极值,则k=▲.16.已知函数f(x)=x²-2x+3,点P(x,y)在f(x)的图像上,则点P到直线y=x的距离为▲.17.如图,在正方形ABCD中,点E、F分别在AB、BC 边上,且AE=CF,则EF的长度为▲厘米.18.如图,在直角三角形ABC中,AB=3,AC=4,AD是BC上的高,则AD的长度为▲厘米.三、解答题(本大题共8题,共58分)19.(6分)解方程:3x-2=4x+1-2x20.(6分)解不等式:2x-5<3x+2≤4x-121.(6分)已知函数f(x)=2x-1,g(x)=x²,求复合函数(fog)(x)和(gof)(x).22.(8分)如图,在△ABC中,D、E、F分别是BC、AC、AB上的点,且AD⊥BC,BE⊥AC,CF⊥AB.若AD=6,BE=8,CF=10,求△XXX的面积.23.(8分)如图,在长方形ABCD中,E、F分别是BC、CD上的点,且AE=2,BF=3,CE=4,求长方形ABCD的面积.24.(8分)如图,在平行四边形ABCD中,点E、F分别是BC、CD的中点,EF与AB交于点P,连接AP、DP,求证:AP=DP.25.(10分)如图,在△ABC中,D、E、F分别是BC、AC、AB上的点,且AD⊥BC,BE⊥AC,CF⊥AB.若AD=8,BE=6,CF=10,求△XXX的面积.26.(6分)如图,在平行四边形ABCD中,E、F分别是AB、CD的中点,连接AC、BD相交于点P,求证:AP=CP.1.大而增大,那么m的取值范围是多少?2.解方程a^2x+x=1的解是什么?3.解方程2x+3=x的解是多少?4.如图,一次函数y=kx+b的图像与x轴、y轴分别相交于A、B两点,那么当y<0时,自变量x的取值范围是多少?5.2名男生和2名女生抓阄分派2张电影票,恰好2名女生得到电影票的概率是多少?6.如果一个八边形的每一个内角都相等,那么它的一个内角的度数等于多少度?7.在□ABCD中,如果∠A+∠C=140º,那么∠B是多少度?8.在△ABC中,D、E分别是边AB、AC的中点,且DE=6,那么BC是多少?9.在梯形ABCD中,AD//BC,AB=CD,AC⊥BD.如果AD=4,BC=10,那么梯形ABCD的面积等于多少?10.如图,在△ABC中,AB=AC,点M、N分别在边AB、AC上,且XXX⊥AC.将四边形BCNM沿直线MN翻折,点B、C的对应点分别是点B′、C′,如果四边形XXX′C′是平行四边形,那么∠BAC是多少度?三、计算题(本大题共8题,满分58分)11.解方程:x^2(x-1)/(x-1)=1.12.解方程组:{x+2y=1.x-4xy+4y-9=0.13.已知:如图,在△ABC中,设BA=a,BC=b.(1)填空:CA=?(用a、b的式子表示);(2)在图中求作a+b.14.已知直线y=kx+b经过点A(-3,-8),且与直线y=x的公共点B的横坐标为6.(1)求直线y=kx+b的表达式;(2)设直线y=kx+b与y轴的公共点为点C,求△BOC的面积。
2017-2018年第二学期八年级数学期末试卷(参考答案)

∴ BC AC 2 AB 2 32 42 5 ……8 分
作 AH⊥BC
则 1 BC AH 1 AC AB
2
2
∴5AH=3×4
八年级数学 第 3 页(共 8 页)
∴AH= 12 ……9 分 5
∴ S菱形ADCF
DC AH
5 12 25
6
答:菱形 ADCF 的面积是 6.……10 分
∴点 D’在直线 y=x-3 上运动,当 OD’⊥直线 y=x-3 时,OD’最小,此时∆OBD’是等腰直
角三角形,……9 分
作 D’H⊥x 轴,垂足为 H,则 OH=HD’=HB= 3 ……10 分 2
∴4-m= 3 , m 5 ……11 分
2
2
∴D 点坐标( 5 , 1 )……12 分 22
∵四边形 ABCD 是正方形,
∴∠ABK=∠ABC=∠ADC=∠BAD=90°,AB=AD
在∆AKB 和∆AFD 中
BE
C
图2
AB AD ABK ADF KB DF
∴∆AKB≌∆AFD……1 分 ∴AK=AF,∠KAB=∠FAD ∵2∠EAF=∠ADC=90° ∴∠EAF=45° ∴∠BAK+∠BAE=∠DAF+∠BAE=45° 即∠KAE=∠FAE 在∆AKE 和∆AFE 中
说明:此题可用平行线等积变换,即△ABF 的面积与△ACF 的面积相等,或连接 DF 等。
五.解答题(本题共 3 小题,其中 24 题 11 分,25、26 题各 12 分,共 35 分)
24.(1)1,16;……2 分
(2)∵四边形 ABCD 是正方形
D
C
∴AB=AD,∠ADB=∠ABD=45°
上海市闵行区2017-2018学年八年级下学期期末数学试题(含答案)

上海市闵行区2017-2018学年八年级下学期期末数学试题(含答案)上海市闵行区2017-2018学年八年级(下)期末数学试卷一、选择题:(本大题共6题,每题3分,满分18分)下列各题的四个选项中,有且只有一个选项是正确的1.一次函数y =3x -2的图象不经过().A. 第一象限B. 第二象限C. 第三象限D. 第四象限 2.已知直线y =kx +b 与直线y =﹣2x +5平行,那么下列结论正确的是()A. k =﹣2,b =5B. k ≠﹣2,b =5C. k =﹣2,b ≠5D. k ≠﹣2,b =5 3.下列方程没有实数根的是()A. x 3+2=0B. x 2+2x +2=0C. =x ﹣1D. 211x x x ---=0 4.下列等式正确的是()A. AB u u u r +BC u u u r =CB u u u r +BA u u u rB. AB u u u r ﹣BC u u u r =AC u u u rC AB u u u r +BC u u u r +CD u u u r =DA u u u rD. AB u u u r +BC u u u r ﹣AC u u u r =0r 5. 用两个全等的直角三角形拼下列图形:(1)平行四边形(不包含菱形、矩形、正方形);(2)矩形;(3)正方形;(4)等腰三角形,一定可以拼成的图形是()A. (1)(2)(4)B. (2)(3)(4)C. (1)(3)(4)D. (1)(2)(3) 6. 下列命题中,真命题是()A. 对角线相等的四边形是矩形B. 对角线互相垂直的四边形是菱形C. 对角线互相平分的四边形是平行四边形D. 对角线互相垂直平分的四边形是正方形二、填空题(本大题共12题,每题2分,满分24分)7.已知一次函数y =2(x ﹣2)+b 的图象在y 轴上的截距为5,那么b =_____.8.已知一次函数y kx k 3=+-的图像经过点(2,3),则k 的值为▲9.方程x 3+8=0根是_____.10.已知方程22131x x x x +-+=2,如果设21x x +=y ,那么原方程可以变形为关于y 的整式方程是_____.11.x =-的解是_____.12.一个不透明的布袋中放有大小、质地都相同四个红球和五个白球,小敏第一次从布袋中摸出一个红球后放回布袋中,接看第二次从布袋中摸球,那么小敏第二次还是摸出红球的可能性为_____.13.一辆汽车,新车购买价20万元,第一年使用后折旧20%,以后该车的年折旧率有所变化,但它在第二,三年的年折旧率相同.已知在第三年年末,这辆车折旧后价值1156万元,如果设这辆车第二、三年的年折旧率为x ,那么根据题意,列出的方程为_____.14.一个七边形的内角和为______.15.已知?ABCD 的周长为40,如果AB :BC =2:3,那么AB =_____.16.已知AB u u u r =a r ,AC u u u r =b r ,那么BC u u u r =_____(用向量a r 、b r 的式子表示)17.在梯形ABCD 中,AD ∥BC ,如果AD =4,BC =10,E 、F 分别是边AB 、CD 的中点,那么EF =_____. 18.如图,在Rt △ABC 中,∠C =90°,AC =6,BC =8.D ,E 分别为边BC ,AC 上一点,将△ADE 沿着直线AD 翻折,点E 落在点F 处,如果DF ⊥BC ,△AEF 是等边三角形,那么AE =_____.三、解答题(本大题共8题,满分58分)19.解方程:22161242x x x x +-=--+ 20.解方程组:222449{0x xy y x xy ++=+=. 21.已知:如图,在?ABCD 中,设BA u u u r =a r ,BC u u u r =b r.(1)填空:CA u u u r =(用a r 、b r 式子表示)(2)在图中求作a r +b r.(不要求写出作法,只需写出结论即可)22.已知直线y =kx +b 经过点A (﹣20,5)、B (10,20)两点.(1)求直线y =kx +b 的表达式;(2)当x 取何值时,y >5.23.如图,在菱形ABCD 中,DE AB ⊥,垂足为点E ,且E 为边AB 的中点.∠的度数;(1)求AAB=,求对角线AC的长.(2)如果424.某市为了美化环境,计划在一定时间内完成绿化面积200万亩的任务,后来市政府调整了原定计划,不但绿化面积要在原计划的基础上增加20%,而且要提前1年完成任务,经测算要完成新的计划,平均每年的绿化面积必须比原计划多20万亩,求原计划平均每年的绿化面积.25.如图,在△ABC中,∠C=90°,D为边BC上一点,E为边AB 的中点,过点A作AF∥BC,交DE的延长线于点F,连结BF.(1)求证:四边形ADBF是平行四边形;(2)当D为边BC的中点,且BC=2AC时,求证:四边形ACDF 为正方形.26.如图,在梯形ABCD中,AD∥BC,AB=CD,BC=10,对角线AC、BD相交于点O,且AC⊥BD,设AD=x,△AOB的面积为y.(1)求∠DBC的度数;(2)求y关于x的函数解析式,并写出自变量x的取值范围;(3)如图1,设点P、Q分别是边BC、AB的中点,分别联结OP,OQ,PQ.如果△OPQ是等腰三角形,求AD的长.上海市闵行区2017-2018学年八年级(下)期末数学试卷一、选择题:(本大题共6题,每题3分,满分18分)下列各题的四个选项中,有且只有一个选项是正确的1.一次函数y=3x-2的图象不经过().A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【分析】因为k=3>0,b= -2<0,根据一次函数y=kx+b(k≠0)的性质得到图象经过第一、三象限,图象与y轴的交点在x轴下方,于是可判断一次函数y=3x-2的图象不经过第二象限.【详解】对于一次函数y=3x-2,∵k=3>0,∴图象经过第一、三象限;又∵b=-2<0,∴一次函数的图象与y轴的交点在x轴下方,即函数图象还经过第四象限,∴一次函数y=3x-2的图象不经过第二象限.故选B.【点睛】本题考查了一次函数y=kx+b(k≠0)的性质:当k<0,图象经过第二、四象限,y随x的增大而减小;当k>0,经图象第一、三象限,y随x的增大而增大;当b>0,一次函数的图象与y轴的交点在x轴上方;当b<0,一次函数的图象与y轴的交点在x轴下方.2.已知直线y=kx+b与直线y=﹣2x+5平行,那么下列结论正确的是()A. k=﹣2,b=5B. k≠﹣2,b=5C. k=﹣2,b≠5D. k≠﹣2,b=5【答案】C【解析】【分析】利用两直线平行问题得到k=-2,b≠5即可求解.【详解】∵直线y=kx+b与直线y=﹣2x+5平行,∴k=﹣2,b≠5.故选C.【点睛】本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.若两条直线是平行的关系,那么它们的自变量系数相同,即k值相同.3.下列方程没有实数根的是()A. x3+2=0B. x2+2x+2=0=x﹣1 D.211xx x---=0【答案】B【解析】【分析】根据立方根的定义即可判断A;根据根的判别式即可判断B;求出方程x2-3=(x-1)2的解,即可判断C;求出x-2=0的解,即可判断D.【详解】A、x3+2=0,x3=﹣2,x,即此方程有实数根,故本选项不符合题意;B、x2+2x+2=0,△=22﹣4×1×2=﹣4<0,所以此方程无实数根,故本选项符合题意;C x﹣1,两边平方得:x2﹣3=(x﹣1)2,解得:x=2,经检验x=2是原方程的解,即原方程有实数根,故本选项不符合题意;D、211xx x---=0,去分母得:x﹣2=0,解得:x=2,经检验x=2是原方程的解,即原方程有实数根,故本选项不符合题意;故选B.【点睛】本题考查了解无理方程、解分式方程、解一元二次方程、根的判别式等知识点,能求出每个方程的解是解此题的关键.4.下列等式正确的是()A. AB u u u r +BC u u u r =CB u u u r +BA u u u rB. AB u u u r ﹣BC u u u r =AC u u u rC. AB u u u r +BC u u u r +CD u u u r =DA u u u rD. AB u u u r +BC u u u r ﹣AC u u u r =0r 【答案】D【解析】【分析】根据三角形法则即可判断.【详解】∵AB BC AC +=u u u r u u u r u u u r ,∴0AB BC AC AC AC +-=-=u u u u r u u u r u u u r u u u r u u u r r ,故选D .【点睛】本题考查平面向量的三角形法则,解题的关键是熟练掌握三角形法则.5. 用两个全等的直角三角形拼下列图形:(1)平行四边形(不包含菱形、矩形、正方形);(2)矩形;(3)正方形;(4)等腰三角形,一定可以拼成的图形是()A. (1)(2)(4)B. (2)(3)(4)C. (1)(3)(4)D. (1)(2)(3)【答案】A【解析】试题分析:根据全等的直角三角形的性质依次分析各小题即可判断.用两个全等的直角三角形一定可以拼成平行四边形、矩形、等腰三角形故选A.考点:图形的拼接点评:图形的拼接是初中数学平面图形中比较基础的知识,,在中考中比较常见,一般以选择题、填空题形式出现,难度一般.6. 下列命题中,真命题是()A. 对角线相等的四边形是矩形B. 对角线互相垂直的四边形是菱形C. 对角线互相平分的四边形是平行四边形D. 对角线互相垂直平分的四边形是正方形【答案】C【解析】试题分析:A、两条对角线相等且相互平分的四边形为矩形;故本选项错误;B、对角线互相垂直的平行四边形是菱形;故本选项错误;C、对角线互相平分的四边形是平行四边形;故本选项正确;D、对角线互相垂直平分且相等的四边形是正方形;故本选项错误.故选C.二、填空题(本大题共12题,每题2分,满分24分)7.已知一次函数y=2(x﹣2)+b的图象在y轴上的截距为5,那么b=_____.【答案】9.【解析】【分析】将原函数解析式变形为一般式,结合一次函数图象在y轴上的截距,即可得出关于b的一元一次方程,解之即可得出结论.【详解】∵y=2(x﹣2)+b=2x+b﹣4,且一次函数y=2(x﹣2)+b的图象在y轴上的截距为5,∴b﹣4=5,解得:b=9.故答案为9.【点睛】本题考查了一次函数图象上点的坐标特征,牢记截距的定义是解题的关键.=+-的图像经过点(2,3),则k的值为▲8.已知一次函数y kx k3【答案】2.【解析】【分析】将点(2,3)代入y=kx+k-3可得关于k的方程,解方程求出k 的值即可.【详解】将点(2,3)代入一次函数y=kx+k?3,可得:3=2k+k?3,解得:k=2.故答案为2.【点睛】本题考查了一次函数的性质.9.方程x 3+8=0的根是_____.【答案】x =﹣2【解析】【分析】把方程变形为形为x 3=?8,利用立方根求解即可【详解】解:方程可变形为x 3=﹣8,因为(﹣2)3=﹣8,所以方程的解为x =﹣2.故答案为x =﹣2【点睛】此题考查立方根,解题关键在于掌握运算法则10.已知方程22131x x x x +-+=2,如果设21x x +=y ,那么原方程可以变形为关于y 的整式方程是_____.【答案】3y 2+6y ﹣1=0.【解析】【分析】根据21x x +=y ,把原方程变形,再化为整式方程即可.【详解】设21x x +=y ,原方程变形为:13y﹣y =2,化为整式方程为:3y 2+6y ﹣1=0,故答案为3y 2+6y ﹣1=0.【点睛】本题考查了用换元法解分式方程,掌握整体思想是解题的关键.11.x =-的解是_____.【答案】x =﹣1.【解析】【分析】把方程两边平方后求解,注意检验.【详解】把方程两边平方得x +2=x 2,整理得(x ﹣2)(x +1)=0,解得:x =2或﹣1,经检验,x=﹣1是原方程的解.故本题答案为:x=﹣1.【点睛】本题考查无理方程的求法,注意无理方程需验根.12.一个不透明的布袋中放有大小、质地都相同四个红球和五个白球,小敏第一次从布袋中摸出一个红球后放回布袋中,接看第二次从布袋中摸球,那么小敏第二次还是摸出红球的可能性为_____.【答案】16 81.【解析】【分析】小敏第一次从布袋中摸出一个红球概率为49,第二次从布袋中摸出一个红球的概率为49,据此可得两次摸出的球都是红球的概率.【详解】∵小敏第一次从布袋中摸出一个红球的概率为49,第二次从布袋中摸出一个红球的概率为49,∴两次摸出的球都是红球的概率为:49×49=1681.故答案为16 81.【点睛】本题主要考查了概率的计算,用到的知识点为:概率=所求情况数与总情况数之比.13.一辆汽车,新车购买价20万元,第一年使用后折旧20%,以后该车的年折旧率有所变化,但它在第二,三年的年折旧率相同.已知在第三年年末,这辆车折旧后价值11.56万元,如果设这辆车第二、三年的年折旧率为x,那么根据题意,列出的方程为_____.【答案】20(1﹣20%)(1﹣x)2=11.56.【解析】【分析】设这辆车第二、三年的年折旧率为x,则第二年这就后的价格为20(1-20%)(1-x)元,第三年折旧后的而价格为20(1-20%)(1-x)2元,与第三年折旧后的价格为11.56万元建立方程.【详解】设这辆车第二、三年的年折旧率为x,有题意,得20(1﹣20%)(1﹣x)2=11.56.故答案是:20(1﹣20%)(1﹣x)2=11.56.【点睛】一道折旧率问题,考查了列一元二次方程解实际问题的运用,解答本题时设出折旧率,表示出第三年的折旧后价格并运用价格为11.56万元建立方程是关键.14.一个七边形的内角和为______.【答案】900o【解析】【分析】根据多边形的内角和公式求解即可.【详解】(7-2) ×180°=900°.故答案900°.【点睛】本题考查了多边形的内角和公式,熟记多边形的内角和公式为(n -2) ×180°是解答本题的关键. 15.已知?ABCD 的周长为40,如果AB :BC =2:3,那么AB =_____.【答案】8.【解析】根据平行四边形的性质推出AB=CD ,AD=BC ,设AB=2a ,BC=3a ,代入得出方程2(2a+3a )=40,求出a 的值即可.【详解】∵平行四边形ABCD 的周长为40cm ,AB :BC =2:3,可以设AB =2a ,BC =3a ,∴AB =CD ,AD =BC ,AB +BC +CD +AD =40,∴2(2a +3a )=40,解得:a =4,∴AB =2a =8,故答案为8.【点睛】本题考查了平行四边形性质和解一元一次方程等知识点的应用,关键是根据题意得出方程2(2a+3a )=40,用的数学思想是方程思想,题目比较典型,难度也适当.16.已知AB u u u r =a r ,AC u u u r =b r ,那么BC u u u r =_____(用向量a r 、b r 的式子表示)【答案】b r a r .【解析】【分析】根据AB BC AC +=u u u r u u u r u u u r,即可解决问题.【详解】∵AB BC AC +=u u u r u u u r u u u r ,∴BC b a =-u u u r r r .故答案为b r a -r .【点睛】本题考查向量的定义以及性质,解题的关键是理解向量的定义,记住:AB BC AC +=u u u r u u u r u u u r ,这个关系式.17.在梯形ABCD 中,AD ∥BC ,如果AD =4,BC =10,E 、F 分别是边AB 、CD 的中点,那么EF =_____.【答案】7.【解析】根据梯形中位线定理得到EF=12(AD+BC ),然后把AD=4,BC=10代入可求出EF 的长.【详解】∵E ,F 分别是边AB ,CD 的中点,∴EF 为梯形ABCD 的中位线,∴EF =12(AD +BC )=12(4+10)=7.故答案为7.【点睛】本题考查了梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.18.如图,在Rt △ABC 中,∠C =90°,AC =6,BC =8.D ,E 分别为边BC ,AC 上一点,将△ADE 沿着直线AD 翻折,点E 落在点F 处,如果DF ⊥BC ,△AEF 是等边三角形,那么AE =_____.【答案】4.【解析】【分析】由题意可得∠CAD=30°,∠AEF=60°,根据勾股定理可求,由AC ∥DF ,则∠AEF=∠EFD=60°,且DE=DF ,可得∠DEF=∠DFE=60°,可得∠DEC=60°.根据勾股定理可求EC 的长,即可求AE 的长.【详解】如图:∵折叠,∴∠EAD =∠FAD ,DE =DF ,∴∠DFE =∠DEF ;∵△AEF 是等边三角形,∴∠EAF =∠AEF =60°,∴∠EAD =∠FAD =30°;在Rt △ACD 中,AC =6,∠CAD =30°,∴CD =;∵FD ⊥BC ,AC ⊥BC ,∴AC ∥DF ,∴∠AEF =∠EFD =60°,∴∠FED =60°;∵∠AEF +∠DEC +∠DEF =180°,∴∠DEC =60°;∵在Rt △DEC 中,∠DEC =60°,CD =,∴EC =2;∵AE =AC ﹣EC ,∴AE =6﹣2=4;故答案为4.【点睛】本题考查了翻折问题,等边三角形的性质,勾股定理,求∠CED 度数是本题的关键.三、解答题(本大题共8题,满分58分)19.解方程:22161242x x x x +-=--+ 【答案】5x =-【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】()22162x x +-=- 23100x x +-=解得15x =-,22x =经检验:2x =不符合题意.原方程的解为: 5.x =-【点睛】考查分式方程的解法,掌握分式方程的解题的步骤是解题的关键.注意检验.20.解方程组:222449{0x xy y x xy ++=+=. 【答案】0{ 1.5x y ==,33x y =-=,0{ 1.5x y ==-,33x y ==-. 【解析】【分析】先把原方程组的每个方程化简,这样原方程组转化成四个方程组,求出每个方程组的解即可.【详解】2224490x xy y x xy ?++=?+=?①② 由①得:(x+2y )2=9,x +2y =±3,由②得:x (x+y )=0,x =0,x +y =0,即原方程组化为:230x y x +=??=?,230x y x y +=??+=?,230x y x +=-??=?,230x y x y +=-??+=?,解得:01.5x y =??=?,33x y =-??=?,01.5x y =??=-?,33x y =??=-?,所以原方程组的解为:01.5x y =??=?,33x y =-??=?,01.5x y =??=-?,33x y =??=-?.【点睛】本题考查了解二元一次方程组和解高次方程组,能把高次方程组转化成二元一次方程组是解此题的关键.21.已知:如图,?ABCD 中,设BA u u u r =a r ,BC u u u r =b r .(1)填空:CA u u u r =(用a r 、b r的式子表示)(2)在图中求作a r +b r.(不要求写出作法,只需写出结论即可)【答案】(1) a r -b r ;(2) BD u u u r【解析】【分析】(1)根据三角形法则可知:,CA CB BA =+u u u v u u u v u u uv 延长即可解决问题;(2)连接BD .因,BD BA AD =+u u u v u u u v u u u v ,AD BC =u u u v u u u v 即可推出.BD a b =+r u u u v r【详解】解:(1)∵,CA CB BA =+u u u v u u u v u u u v BA u u u v =a r ,BC u u u v =b r∴.CA a b =-r u u u v r故答案为a r -b r.(2)连接BD .∵,BD BA AD =+u u u v u u u v u u u v ,AD BC =u u u v u u u v∴.BD a b =+r u u u v r∴BD u u u v 即为所求;【点睛】本题考查作图﹣复杂作图、平行四边形的性质、平面向量等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.已知直线y =kx +b 经过点A (﹣20,5)、B (10,20)两点.(1)求直线y =kx +b 的表达式;(2)当x 取何值时,y >5.【答案】(1)y =12x +15;(2)x >﹣20时,y >5.【解析】【分析】(1)利用待定系数法求一次函数解析式;(2)解不等式12x+15>5即可.【详解】(1)根据题意得2051020k b k b -+=??+=?,解得1k 2b 15==?,所以直线解析式为y =12x +15;(2)解不等式12x +15>5得x >﹣20,即x >﹣20时,y >5.【点睛】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b ;再将自变量x 的值及与它对应的函数值y 的值代入所设的解析式,得到关于待定系数的方程或方程组;然后解方程或方程组,求出待定系数的值,进而写出函数解析式.23.如图,在菱形ABCD 中,DE AB ⊥,垂足为点E ,且E 为边AB 的中点.(1)求A ∠的度数;(2)如果4AB =,求对角线AC 的长.【答案】(1)60A ∠=o ;(2)AC =【解析】【分析】(1)根据线段垂直平分线的性质可得DB=AD ,即可证△ADB 是等边三角形,可得∠A=60°(2)由题意可得∠DAC=30°,AC ⊥BD ,可得DO=2,,即可求AC 的长.【详解】连接AC ,BD(1)∵四边形ABCD 是菱形∴AD AB =∵E 是AB 中点,DE AB ⊥ ∴AD DB = ∴AD DB AB ==∴ADB ?是等边三角形∴60A o ∠=.(2)∵四边形ABCD 是菱形∴AC BD ⊥,1302DAC DAB ∠=∠=o ,AO CO =,DO BO = ∵4AD BA ==∴2DO =,AO ==∴AC =【点睛】本题考查了菱形的性质,熟练运用菱形性质解决问题是本题的关键.24.某市为了美化环境,计划在一定的时间内完成绿化面积200万亩的任务,后来市政府调整了原定计划,不但绿化面积要在原计划的基础上增加20%,而且要提前1年完成任务,经测算要完成新的计划,平均每年的绿化面积必须比原计划多20万亩,求原计划平均每年的绿化面积.【答案】原计划平均每年完成绿化面积40万亩.【解析】【分析】本题的相等关系是:原计划完成绿化时间?实际完成绿化实际=1.设原计划平均每年完成绿化面积x 万亩,则原计划完成绿化完成时间200x 年,实际完成绿化完成时间:200(120%)20x ++年,列出分式方程求解【详解】解:设原计划平均每年完成绿化面积x 万亩. 根据题意可列方程:200200(120%)120x x +-=+ 去分母整理得:26040000x x +-=解得:140x =,2100x =-经检验:140x =,2100x =-都是原分式方程的根,因为绿化面积不能为负,所以取40x =.答:原计划平均每年完成绿化面积40万亩.【点睛】本题考查了分式方程的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.列分式方程解应用题的检验要分两步:第一步检验它是否是原方程的根,第二步检验它是否符合实际问题.25.如图,在△ABC 中,∠C =90°,D 为边BC 上一点,E 为边AB 的中点,过点A 作AF ∥BC ,交DE 的延长线于点F ,连结BF .(1)求证:四边形ADBF 是平行四边形;(2)当D 为边BC 的中点,且BC =2AC 时,求证:四边形ACDF 为正方形.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)根据平行线的性质得到∠AFE=∠BDE ,根据全等三角形的性质得到AF=BD ,于是得到结论;(2)首先证明四边形ACDF 是矩形,再证明CA=CD 即可解决问题;【详解】(1)证明:∵AF ∥BC ,∴∠AFE =∠BDE ,在△AEF 与△BED 中,AFE BDE AEF BED AE BE ∠∠??∠=∠??=?,∴△AEF ≌△BED ,∴AF =BD ,∵AF ∥BD ,∴四边形ADBF 是平行四边形;(2)解:∵CD =DB ,AE =BE ,∴DE ∥AC ,∴∠FDB =∠C =90°,∵AF ∥BC ,∴∠AFD =∠FDB =90°,∴∠C =∠CDF =∠AFD =90°,∴四边形ACDF 是矩形,∵BC =2AC ,CD =BD ,∴CA =CD ,∴四边形ACDF 是正方形.【点睛】本题考查了全等三角形的判定和性质,平行四边形的判定,矩形的判定和性质,正方形的判定,三角形中位线定理等知识,解题的关键是灵活运用所学知识解决问题.26.如图,在梯形ABCD 中,AD ∥BC ,AB =CD ,BC =10,对角线AC 、BD 相交于点O ,且AC ⊥BD ,设AD =x ,△AOB 的面积为y .(1)求∠DBC 的度数;(2)求y 关于x 的函数解析式,并写出自变量x 的取值范围;(3)如图1,设点P 、Q 分别是边BC 、AB 的中点,分别联结OP ,OQ ,PQ .如果△OPQ 是等腰三角形,求AD 的长.【答案】(1)∠DBC =45;(2)y =52x (x >0);(3)满足条件的AD 的值为﹣10.【解析】【分析】(1)过点D 作AC 的平行线DE ,与BC 的延长线交于E 点,只要证明△BDE 是等腰直角三角形即可解决问题;(2)由(1)可知:△BOC ,△AOD 都是等腰直角三角形,由题意x ,,根据y=12?OA?OB 计算即可;(3)分三种情形讨论即可解决问题;【详解】(1)过点D 作AC 的平行线DE ,与BC 的延长线交于E 点.。
2018-2019学年上海市闵行区第二学期八年级期末试卷(含答案)

闵行区2018学年第二学期八年级质量调研考试数学试卷(考试时间90分钟,满分100分)考生注意:1.本试卷含三个大题,共26题.2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.4.本次考试可使用科学计算器.一、选择题:(本大题共6题,每题3分,满分18分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.一次函数()32y k x =-+的图像不经过第四象限,那么k 的取值范围是()A .3k >B .3k <C .3k ≥D .3k ≤2.下列方程中,判断中错误的是()A .方程20316x x x +-=+是分式方程;B .方程3210xy x ++=是二元二次方程;C 20+=是无理方程;D .方程()()226x x +-=-是一元二次方程.3.如果直线()0y kx b k =+≠经过第一、二、四象限,且与x 轴的交点为()6,0,那么当0kx b +>时x 的取值范围是()A .6x >B .6x <C .6x ≥D .6x ≤4.在矩形ABCD 中,下列结论中正确的是()A .AB CD = B .AC BD= C .AO OD = D .BO OD =- 5.下列事件中,确定事件是()A .向量BC 与向量CD 是平行向量;B 40+=有实数根;C .直线()20y ax a =+≠与直线23y x =+相交;D .一组对边平行,另一组对边相等的四边形是等腰梯形.6.在四边形ABCD 中,对角线AC 和BD 交于点O ,下列条件能判定这个四边形是菱形的是()A .AD BC ∥,A C∠=∠B .AC BD =,AB CD ∥,AB CD =C .AB CD ∥,AC BD =,AC BD ⊥D .AO CO =,BO DO =,AB BC =二、填空题(本大题共12题,每题2分,满分24分)7.如果将一次函数132y x =+的图像沿y 轴向上平移3个单位,那么平移后所得图像的函数解析式为__________.8.已知一次函数()2y m x m =++的图像经过点()1,8,那么这个一次函数在y 轴上的截距为__________.9.如果一次函数的图像经过点()4,6--和()2,30,那么函数值y 随着自变量x 的增大而__________.(填“增大”或“不变”或“减小”)10.方程611604x -=的解是__________.112x =的解是__________.12.将分别写有“绿色闵行”、“垃圾分类”、“要先行”的三张大小、质地相同的卡片随机排列,那么恰好排列成“绿色闵行垃圾分类要先行”的概率是__________.13.如果乘坐出租车所付款金额y (元)与乘坐距离x (千米)之间的函数图像由线段AB 、线段BC 和射线CD 组成(如图所示),那么乘坐该出租车8(千米)需要支付的金额为__________元.14.如果一个多边形的每个外角都等于45,那么这个多边形的边数是__________.15.已知ABCD □的面积为27,如果:2:3AB BC =,30ABC ∠=︒,那么ABCD □的周长为__________.16.在菱形ABCD 中,已知AB a = ,AC b = ,那么AD = __________(结果用向量a ,b 的式子表示).17.在直角梯形ABCD 中,AD BC ∥,如果3AD =,7BC =,60BCD ∠=︒,那么对角线BD =__________.18.在ABC △中,12AB AC ==,30A ∠=︒,点E 是AB 中点,点D 在AC 上,DE =将ADE △沿着DE 翻折,点A 的对应点是点F ,直线EF 与AC 交于点G ,那么DGF △的面积=__________.三、解答题(本大题共8题,满分58分)19.解方程:315122x x x x -+=-.20.解方程组:22235,230.x y x xy y +=⎧⎨+-=⎩.21.已知:如图,在等腰梯形ABCD 中,AD BC ∥,2BC AD =,E 为BC 的中点,设AB a = ,AD b = .(1)填空:BD = ________;DC = ________;AC = ________;(用a ,b 的式子表示)(2)在图中求作BE DC + .(不要求写出作法,只需写出结论即可)22.如图,在平面直角坐标系xOy 中,已知直线1l ,2l 都经过点()3,0A ,它们分别与y 轴交于点B 和点C ,点B 、C 均在y 轴的正半轴上,点C 在点B 的上方.(1)如果34OA OB =,求直线1l 的表达式;(2)在(1)的条件下,如果ABC △的面积为3,求直线2l 的表达式.23.如图,在ABC △中,AB BC =,点D 、E 分别在边AB 、BC 上,且DE AC ∥,AD DE =,点F 在边AC 上,且CE CF =,联结FD .(1)求证:四边形DECF 是菱形;(2)如果30A ∠=,4CE =,求四边形DECF 的面积.24.今年上海市政府计划年内改造1.8万个分类垃圾箱房,把原有的分类垃圾箱房改造成可以投放“干垃圾、湿垃圾、可回收垃圾、有害垃圾”四类垃圾的新型环保垃圾箱房.环卫局原定每月改造相同数量的分类垃圾箱房,为确保在年底前顺利完成改造任务,环卫局决定每月多改造250个分类垃圾箱房,提前一个月完成任务.求环卫局每个月实际改造分类垃圾箱房的数量.25.如图,在ABC △中,O 为边AC 的中点,过点A 作AD BC ∥,与BO 的延长线相交于点D ,E 为AD 延长上的任一点,联结CE 、CD .(1)求证:四边形ABCD 是平行四边形;(2)当D 为边AE 的中点,且2CE CO =时,求证:四边形ABCD 为矩形.26.梯形ABCD 中,AD BC ∥,4AD =,10BC =,60ABC ∠=︒,M 、N 在BC 上,AN 平分BAD ∠,DM 平分ADC ∠,E 、F 分别为AB 、CD 的中点,AN 和DM 分别与EF 交于G 和H ,AN 和DM 交于点P .(1)求证:12HF CD =;(2)当点P 在四边形EBCF 内部时,设EG x =,HF y =,求y 关于x 的函数关系式,并写出自变量x 的取值范围;(3)当1GH =时,求EG 的长.闵行区2018学年第二学期八年级期末质量调研试卷参考答案及评分标准一、选择题(本大题共6题,每题3分,满分18分)1.A ;2.C ;3.B ;4.C ;5.B ;6.D .二、填空题(本大题共12题,每题2分,满分24分):7.162y x =+;8.6;9.增大;10.2x =±;11.1x =;12.16;13.26;14.8;15.30;16.b a - ;17;18.9或9;19.【法1】解:()()226151x x x x +-=-;22310x x ++=;()()1210x x ++=解得,1x =-或12x =-;经检验,1x =-,12x =-是原方程的根;所以,原方程的根为1211,2x x =-=-.【法2】设:1x t x =-,得15322t t +=,26510t t -+=,12t =或13t =,112x x =-或113x x =-,经检验,1x =-,12x =-是原方程的根;所以,原方程的根为1211,2x x =-=-.20.解:由②得:()()30x y x y -+=;所以,0x y -=或30x y +=;整理得:2350x y x y +=⎧⎨-=⎩或23530x y x y +=⎧⎨+=⎩;解得:11x y =⎧⎨=⎩或553x y =⎧⎪⎨=-⎪⎩;所以,原方程组的解为1111x y =⎧⎨=⎩,22553x y =⎧⎪⎨=-⎪⎩;21.解:(1)b a - ;a b + ;2a b + (或a b b ++ )(2)作图略,作图正确1分,结论正确1分.22.解:(1)()3,0A ,33OA ∴==.34OA OB = 4OB ∴= 点B 在y 轴正半轴;()0,4B ∴.设1l 的函数解析式为()1110y k x b k =+≠,把()3,0,()0,4代入得111304k b b +=⎧⎨=⎩,解得:11434k b ⎧=-⎪⎨⎪=⎩.443y x ∴=-+.(2)3ABC S = △,132BC OA ∴⋅=,2BC ∴=.设()0,c C y ,则42c BC y =-=, 点C 在点B 上方,6c y ∴=,()0,6C ∴.设2l 的函数解析式为()2220y k x b k =+≠,把()3,0,()0,6代入得,222306k b b +=⎧⎨=⎩解得:2226k b =-⎧⎨=⎩,26y x ∴=-+.23.解:(1)AB BC = ,A C ∴∠=∠.DE AC ∥,BDE A ∴∠=∠,BED C ∠=∠.BDE BED ∴∠=∠BD BE ∴=.BA BD BC BE ∴-=-,AD EC ∴=.AD DE = ,DE EC ∴=,又CE CF = DE CF ∴=.又DE FC ∥,∴四边形DECF 是平行四边形.又CE CF = ,∴四边形DECF 是菱形.(2)过点F 作FG BC ⊥交BC 于点G .四边形DECF 是菱形,且4CE =,4FC ∴=.AB BC = ,A C ∴∠=∠.又30A ∠=︒ ,30C ∴∠=︒.在Rt FGC △中,90FGC ∠=︒,30C ∠=︒,122FG FC ∴==.428DECF S EC FG ∴=⋅=⨯=.24.设:原计划每个月改造垃圾房x 万个,则实际每月改造()0.025x +万个.1.8 1.810.025x x -=+.化简得:2200590x x +-=.解得:115x =,2940x =-.经检验:115x =,2940x =-是原方程的解.其中115x =符合题意,2940x =-不符合题意舍去.10.0250.2255+=万个,即:2250个.答:环卫局每个月实际改造类垃圾箱房2250个.25.证明:(1)AD BC ∥,DAO BCO ∴∠=∠,ADO CBO ∠=∠.O 是AC 的中点,AO CO ∴=.在AOD △与COB △中ADO COB DAO BCO AO CO ∠=∠∠=∠=⎧⎪⎨⎪⎩,AOD COB ∴△≌△,AD BC ∴=.又AD BC∥∴四边形ABCD 是平行四边形.(2) 四边形ABCD 是平行四边形12AO CO AC ∴==.2CE CO = ,CE CA∴=又D 是AE 中点,CD AE ∴⊥.即90ADC ∠=︒.又 四边形ABCD 是平行四边形.∴四边形ABCD 是矩形.26.解:(1)在梯形ABCD 中,AD BC ∥.E 、F 分别是AB 、CD 的中点,EF AD ∴∥.DM 平分ADC ∠,ADM CDM ∴∠=∠.又AD EF ∥,ADM DHF ∴∠=∠.CDM DHF ∴∠=∠.HF DF ∴=.点F 是DC 的中点,12DF DC ∴=.12HF DC ∴=.(2)过A 、D 作AP BC ⊥,DQ BC ⊥交BC 于点P 、Q ,得矩形APQD .AP DQ ∴=,4PQ AD ==.12HF CD = ,HF y =,2CD y ∴=,同理:2AB x =.在Rt ABP △中,60B ∠=︒ ,BP x ∴=,AP =,DQ ∴=.10BC = ,6QC BC BP PQ x ∴=--=-.在Rt CDQ △中,90DQC ∠=︒.222DC DQ QC ∴=+,即())()22226y x =+-.y ∴=1640711x ⎛⎫<< ⎪⎝⎭.(3)①点P 在梯形EBCF 内部.QEF 是梯形ABCD 的中位线,()()11410722EF AD BC ∴=+=⨯+=,即17x y ++=.解得:3x =,即3EG =.②点P 在梯形AEFD 内部.同理:17x y +-=.解得:5513x=,即5513EG=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
现时,可 先跳过 去,到 最后攻 它或放 弃它。 先把容 易得到 的分数 拿到手 ,不要 “一条 胡同走 到黑”,总的 原则是 先易后 难,先 选择、 填空题 ,后解 答题。2 .规范 答题, 分分计 较。数 学分 I 、II 卷 ,第 I 卷客观 性试题 ,用计 算机阅 读,一 要严格 按规定 涂卡, 二要认 真选择 答案。 第 II 卷为主观 性试题 ,一般 情况下 ,除填 空题外 ,大多 解答题 一题设 若干小 题,通 常独立 给分。 解答时 要分步 骤(层 次)解 答,争 取步步 得分。 解题中 遇到困 难时, 能做几 步做几 步,一 分地争 取,也 可以跳 过某一 小
.
10.(2 分)已知方程
﹣
=2,如果设
=y,那么原方程可以变形为关于 y
的整式方程是
.
第 1 页(共 17 页)
11.(2 分)方程
的解是
.
12.(2 分)一个不透明的布袋中放有大小、质地都相同四个红球和五个白球,小敏第一次
从布袋中摸出一个红球后放回布袋中,接看第二次从布袋中摸球,那么小敏第二次还是
方形);(2)矩形;(3)正方形;(4)等腰三角形,一定可以拼成的图形是( )(1)(3)(4) D.(1)(2)(3)
6.(3 分)下列命题中,真命题是( )
A.对角线相等的四边形是矩形
B.对角线互相垂直的四边形是菱形
C.对角线互相平分的四边形是平行四边形
2017-2018 学年上海市闵行区八年级下学期期末数学试卷
一、选择题:(本大题共 6 题,每题 3 分,满分 18 分)下列各题的四个选项中,有且只有 一个选项是正确的
1.(3 分)一次函数 y=3x﹣2 的图象不经过( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
2.(3 分)已知直线 y=kx+b 与直线 y=﹣2x+5 平行,那么下列结论正确的是( )
(用 、 的式子表示)
( 2 ) 在 图 中 求 作 + .( 不 要 求 写 出 作 法 , 只 需 写 出 结 论 即 可 )
第 2 页(共 17 页)
22.(6 分)已知直线 y=kx+b 经过点 A(﹣20,5)、B(10,20)两点. (1)求直线 y=kx+b 的表达式; (2)当 x 取何值时,y>5.
A.k=﹣2,b=5 B.k≠﹣2,b=5 C.k=﹣2,b≠5 D.k≠﹣2,b=5
3.(3 分)下列方程没有实数根的是( )
A.x3+2=0
B.x2+2x+2=0
C.
=x﹣1
D. ﹣ =0
4.(3 分)下列等式正确的是( )
A. + = +
B. ﹣ =
C. + + =
D. + ﹣ =
5.(3 分)用两个全等的直角三角形拼下列图形:(1)平行四边形(不包含菱形,矩形,正
25.(8 分)如图,在△ABC 中,∠C=90°,D 为边 BC 上一点,E 为边 AB 的中点,过点 A 作 AF∥BC,交 DE 的延长线于点 F,连结 BF. (1)求证:四边形 ADBF 是平行四边形; (2)当 D 为边 BC 的中点,且 BC=2AC 时,求证:四边形 ACDF 为正方形.
摸出红球的可能性为
.
13.(2 分)一辆汽车,新车购买价 20 万元,第一年使用后折旧 20%,以后该车的年折旧率
有所变化,但它在第二,三年的年折旧率相同.已知在第三年年末,这辆车折旧后价值
11.56 万元,如果设这辆车第二、三年的年折旧率为 x,那么根据题意,列出的方程
为
.
14.(2 分)七边形的内角和等于
度.
15.(2 分)已知▱ ABCD 的周长为 40,如果 AB:BC=2:3,那么 AB=
.
16.(2 分)已知 = , = ,那么 =
(用向量 、 的式子表示)
17.(2 分)在梯形 ABCD 中,AD∥BC,如果 AD=4,BC=10,E、F 分别是边 AB、CD 的
中点,那么 EF=
.
18.(2 分)如图,在 Rt△ABC 中,∠C=90°,AC=6,BC=8.D,E 分别为边 BC,AC
23.(8 分)如图,在菱形 ABCD 中,DE⊥AB,垂足为点 E,且 E 为边 AB 的中点. (1)求∠A 的度数; (2)如果 AB=4,求对角线 AC 的长.
24.(8 分)某市为了美化环境,计划在一定的时间内完成绿化面积 200 万亩的任务,后来 市政府调整了原定计划,不但绿化面积在原计划的基础上增加 20%,而且要提前 1 年完 成任务.经测算,要完成新的计划,平均每年的绿化面积必须比原计划多 20 万亩,求原 计划平均每年的绿化面积.
D.对角线互相垂直平分的四边形是正方形
二、填空题(本大题共 12 题,每题 2 分,满分 24 分)
7.(2 分)已知一次函数 y=2(x﹣2)+b 的图象在 y 轴上的截距为 5,那么 b=
.
8.(2 分)已知一次函数 y=kx+k﹣3 的图象经过点(2,3),则 k 的值为
.
9.(2 分)方程 x3+8=0 的根是
26.(10 分)如图,在梯形 ABCD 中,AD∥BC,AB=CD,BC=10,对角线 AC、BD 相交
于点
O,且
AC⊥BD,设
AD=x,△AOB
的面积为
y. 大家拿到考卷后, 先看是 不是本科 考试的 试卷, 再清点 试卷页 码是否 齐全, 检查试 卷有无 破 损 或 漏 印 、 重 印 、 字 迹 模 糊 不 清 等 情 况 。 如 果 发 现 问 题 , 要 及 时 报 告 监 考 老 师 处 理 。: 1 . 从 前 向 后 , 先 易 后 难 。 通 常 试 题 的 难 易 分 布 是 按 每 一 类 题 型 从 前 向 后 , 由 易 到 难 。 因 此 , 解 题 顺 序 也 宜 按 试 卷 题 号 从 小 到 大 , 从 前 至 后 依 次 解 答 。 当 然 , 有 时 但 也 不 能 机 械 地 按 部 就 班 。 中 间 有 难 题 出
上一点,将△ADE 沿着直线 AD 翻折,点 E 落在点 F 处,如果 DF⊥BC,△AEF 是等边
三角形,那么 AE=
.
三、解答题(本大题共 8 题,满分 58 分)
19.(6 分)解分式方程:
.
20.(6 分)解方程组:
21.(6 分)已知:如图,在▱ ABCD 中,设 = , = .
(1)填空: =