大学物理(北邮第三版)

合集下载

大学物理学答案(北京邮电大学第3版)赵近芳等编著

大学物理学答案(北京邮电大学第3版)赵近芳等编著

大学物理学(北邮第三版) 习题及解答(全)习题一1-1 |r ∆|与r ∆有无不同?t d d r 和t d d r 有无不同? t d d v 和t d d v有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r -=∆; (2)t d d r 是速度的模,即t d d r ==v tsd d . t rd d 只是速度在径向上的分量.∵有r r ˆr =(式中r ˆ叫做单位矢),则t ˆrˆt r t d d d d d d r r r += 式中t rd d 就是速度径向上的分量,∴t r td d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即t v a d d =,t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢),所以 t v t v t v d d d d d d ττ +=式中dt dv就是加速度的切向分量.(t tr d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t rd d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=,jt y i t x t r a jt y i t x t r v222222d d d d d d d d d d d d +==+==∴故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x yx而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d t r a trv ==其二,可能是将22d d d d t r tr 与误作速度与加速度的模。

大学物理学_(第3版.修订版)_北京邮电大学出版社_下册__第十一章_习题11_答案

大学物理学_(第3版.修订版)_北京邮电大学出版社_下册__第十一章_习题11_答案

习题1111.1选择题(1)一圆形线圈在磁场中作下列运动时,那些情况会产生感应电流() (A )沿垂直磁场方向平移;(B )以直径为轴转动,轴跟磁场垂直; (C )沿平行磁场方向平移;(D )以直径为轴转动,轴跟磁场平行。

[答案:B](2)下列哪些矢量场为保守力场() (A ) 静电场;(B )稳恒磁场;(C )感生电场;(D )变化的磁场。

[答案:A](3) 用线圈的自感系数 L 来表示载流线圈磁场能量的公式221LI W m=()( A )只适用于无限长密绕线管; ( B ) 只适用于一个匝数很多,且密绕的螺线环; ( C ) 只适用于单匝圆线圈; ( D )适用于自感系数L 一定的任意线圈。

[答案:D](4)对于涡旋电场,下列说法不正确的是():(A )涡旋电场对电荷有作用力; (B )涡旋电场由变化的磁场产生; (C )涡旋场由电荷激发; (D )涡旋电场的电力线闭合的。

[答案:C]11.2 填空题(1)将金属圆环从磁极间沿与磁感应强度垂直的方向抽出时,圆环将受到 。

[答案:磁力](2)产生动生电动势的非静电场力是 ,产生感生电动势的非静电场力是 ,激发感生电场的场源是 。

[答案:洛伦兹力,涡旋电场力,变化的磁场](3)长为l 的金属直导线在垂直于均匀的平面内以角速度ω转动,如果转轴的位置在 ,这个导线上的电动势最大,数值为 ;如果转轴的位置在 ,整个导线上的电动势最小,数值为 。

[答案:端点,221l B ω;中点,0]11.3一半径r =10cm B =0.8T 的均匀磁场中.回路平面与B垂直.当回路半径以恒定速率tr d d =80cm ·s -1收缩时,求回路中感应电动势的大小. 解: 回路磁通 2πr B BS m ==Φ感应电动势大小40.0d d π2)π(d d d d 2====trr B r B t t m Φε V11.4 一对互相垂直的相等的半圆形导线构成回路,半径R =5cm ,如题11.4图所示.均匀磁场B =80×10-3T ,B 的方向与两半圆的公共直径(在Oz 轴上)垂直,且与两个半圆构成相等的角α当磁场在5ms 内均匀降为零时,求回路中的感应电动势的大小及方向.解: 取半圆形cba 法向为i, 题11.4图则 αΦcos 2π21B R m =同理,半圆形adc 法向为j,则αΦcos 2π22B R m=∵ B 与i 夹角和B 与j 夹角相等,∴ ︒=45α 则 αΦcos π2R B m =221089.8d d cos πd d -⨯-=-=Φ-=tBR t m αεV 方向与cbadc 相反,即顺时针方向.题11.5图 11.5 如题11.5图所示,载有电流I 的长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a .设半圆环以速度v 平行导线平移.求半圆环内感应电动势的大小和方向及MN 两端的电压N M U U -.解: 作辅助线MN ,则在MeNM 回路中,沿v方向运动时0d =m Φ∴ 0=MeNM ε 即 MN MeN εε= 又∵ ⎰+-<+-==ba ba MN ba ba Iv l vB 0ln 2d cos 0πμπε 所以MeN ε沿NeM 方向,大小为ba ba Iv -+ln 20πμ M 点电势高于N 点电势,即b a ba Iv U U N M -+=-ln 20πμ题11.6图11.6如题11.6所示,在两平行载流的无限长直导线的平面内有一矩形线圈.两导线中的电流方向相反、大小相等,且电流以tId d 的变化率增大,求: (1)(2)解: 以向外磁通为正则 (1) ]ln [lnπ2d π2d π2000dad b a b Ilr l r Ir l r I ab b ad d m +-+=-=⎰⎰++μμμΦ (2) tIb a b d a d l t d d ]ln [ln π2d d 0+-+=-=μΦε11.7 如题11.7图所示,用一根硬导线弯成半径为r 的一个半圆.令这半圆形导线在磁场中以频率f 绕图中半圆的直径旋转.整个电路的电阻为R .求:感应电流的最大值.题11.7图解: )cos(2π02ϕωΦ+=⋅=t r B S B m∴ Bfr f r B r B t r B t m m i 222202ππ22π2π)sin(2πd d ===+=-=ωεϕωωΦε∴ RBfr R I m22π==ε11.8 如题11.8图所示,长直导线通以电流I =5A ,在其右方放一长方形线圈,两者共面.线圈长b =0.06m ,宽a =0.04m ,线圈以速度v =0.03m ·s-1d =0.05m 时线圈中感应电动势的大小和方向.题11.8图解: AB 、CD 运动速度v方向与磁力线平行,不产生感应电动势. DA 产生电动势⎰==⋅⨯=ADIvbvBb l B v d2d )(01πμεBC 产生电动势)(π2d )(02d a Ivbl B v CB+-=⋅⨯=⎰με∴回路中总感应电动势8021106.1)11(π2-⨯=+-=+=ad d Ibv μεεε V 方向沿顺时针.11.9 长度为l 的金属杆ab 以速率v 在导电轨道abcd 上平行移动.已知导轨处于均匀磁场B中,B 的方向与回路的法线成60°角(如题11.9图所示),B的大小为B =kt (k 为正常).设t =0时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向.解: ⎰==︒=⋅=22212160cos d klvt lv kt Blvt S B m Φ∴ klvt tm-=-=d d Φε 即沿abcd 方向顺时针方向.题11.9图11.10 一矩形导线框以恒定的加速度向右穿过一均匀磁场区,B的方向如题11.10图所示.取逆时针方向为电流正方向,画出线框中电流与时间的关系(设导线框刚进入磁场区时t =0). 解: 如图逆时针为矩形导线框正向,则进入时0d d <Φt,0>ε; 题11.10图(a)题11.10图(b)在磁场中时0d d =tΦ,0=ε; 出场时0d d >tΦ,0<ε,故t I -曲线如题10-9图(b)所示. 题11.11图11.11 导线ab 长为l ,绕过O 点的垂直轴以匀角速ω转动,aO =3l磁感应强度B 平行于转轴,如图11.11所示.试求: (1)ab 两端的电势差; (2)b a ,两端哪一点电势高? 解: (1)在Ob 上取dr r r +→一小段 则 ⎰==320292d l Ob l B r rB ωωε 同理 ⎰==302181d l Oa l B r rB ωωε ∴ 2261)92181(l B l B Ob aO ab ωωεεε=+-=+= (2)∵ 0>ab ε 即0<-b a U U∴b 点电势高.题11.12图11.12 如题11.12图所示,长度为b 2的金属杆位于两无限长直导线所在平面的正中间,并以速度v平行于两直导线运动.两直导线通以大小相等、方向相反的电流I ,两导线相距2a .试求:金属杆两端的电势差及其方向.解:在金属杆上取r d 距左边直导线为r ,则 ba b a Iv r r a r Iv l B v b a b a BA AB-+-=-+-=⋅⨯=⎰⎰+-ln d )211(2d )(00πμπμε∵ 0<AB ε ∴实际上感应电动势方向从A B →,即从图中从右向左, ∴ ba ba Iv U AB -+=ln 0πμ题11.13图11.13 磁感应强度为B的均匀磁场充满一半径为R 的圆柱形空间,一金属杆放在题11.13图中位置,杆长为2R ,其中一半位于磁场内、另一半在磁场外.当tBd d >0时,求:杆两端的感应电动势的大小和方向.解: ∵ bc ab ac εεε+=tBR B R t t ab d d 43]43[d d d d 21=--=-=Φε =-=t abd d 2ΦεtBR B R t d d 12π]12π[d d 22=--∴ tBR R acd d ]12π43[22+=ε∵0d d >tB∴ 0>ac ε即ε从c a →11.14 半径为R 的直螺线管中,有dtdB>0的磁场,一任意闭合导线abca ,一部分在螺线管内绷直成ab 弦,a ,b 两点与螺线管绝缘,如题10-13图所示.设ab =R ,试求:闭合导线中的感应电动势.解:如图,闭合导线abca 内磁通量)436π(22R R B S B m -=⋅= Φ∴ tB R R i d d )436π(22--=ε ∵0d d >tB∴0<i ε,即感应电动势沿acba ,逆时针方向.题11.14图题11.15图11.15 如题11.15图所示,在垂直于直螺线管管轴的平面上放置导体ab 于直径位置,另一导体cd 在一弦上,导体均与螺线管绝缘.当螺线管接通电源的一瞬间管内磁场如题11.15图示(1)ab(2)cd解: 由⎰⎰⋅-=⋅l S tB l Ed d d d 旋知,此时旋E 以O 为中心沿逆时针方向. (1)∵ab 是直径,在ab 上处处旋E与ab 垂直 ∴ ⎰=⋅ll 0d旋∴0=ab ε,有b a U U =(2)同理, 0d >⋅=⎰l E cddc旋ε∴ 0<-c d U U 即d c U U >题11.16图11.16 一无限长的直导线和一正方形的线圈如题11.16图所示放置(导线与线圈接触处绝缘).求:线圈与导线间的互感系数.解: 设长直电流为I ,其磁场通过正方形线圈的互感磁通为⎰==32300122ln π2d π2a a Iar rIaμμΦ∴ 2ln π2012aIM μΦ==11.17两线圈顺串联后总自感为1.0H ,在它们的形状和位置都不变的情况下,反串联后总自感为0.4H .试求:它们之间的互感. 解: ∵顺串时 M L L L 221++= 反串联时M L L L 221-+='∴ M L L 4='-15.04='-=L L M H题11.18图11.18 一矩形截面的螺绕环如题11.18图所示,共有N(1)(2)若导线内通有电流I ,环内磁能为多少? 解:如题11.18图示 (1)通过横截面的磁通为 ⎰==baab NIhr h r NIln π2d π200μμΦ 磁链 ab IhN N ln π220μΦψ==∴ abhN IL ln π220μψ==(2)∵ 221LI W m = ∴ ab hI N W m ln π4220μ=11.19 一无限长圆柱形直导线,其截面各处的电流密度相等,总电流为I .求:导线内部单位长度上所储存的磁能. 解:在R r <时 20π2RI B rμ=∴ 4222002π82Rr I B w m μμ== 取 r r V d π2d =(∵导线长1=l ) 则 ⎰⎰===RRm I Rrr I r r w W 0204320π16π4d d 2μμπ。

大学物理(第三版)北京邮电大学 教学PPT 第2章-质点动力学

大学物理(第三版)北京邮电大学  教学PPT  第2章-质点动力学
所以m对地的加速度为
am a' a M
建立如图坐标,则am在X、Y轴上的分量分别为
amX aM a cos
/
amY a' sin
9
m,M的受力图如下所示
Mg
由牛顿定律的坐标 分量式方程可得 N si n m a M a / cos N si n MaM / N cos mg ma si n R Mg N cos 0
例5图(b)
35
21
二、质点系的动量定理 1、内力与外力
i质点所受的内力
Fi外
f ji

j 1
n 1
f ji
f ij
j
i
i质点所受合力
n 1 Fi外 f ji j 1
2、i质点动量定理

t2
t1
t 2 n 1 Fi外 dt ( f ji )dt mi v i 2 mi v i 1
惯性参考系
一孤立质点将永远保持其原来静止或匀速直线运动状态。 1、惯性:任何物体都有保持其原有运动状态的特性,惯性是物 质固有的属性,质量是惯性的量度。 2、惯性运动:物体不受外力作用时所作的运动 3、惯性和第一定律的发现,使人们最终把运动和力分离开来。 4、惯性参考系: 孤立物体相对于某参照系为静止或作匀速直 线运动时,该参照系为惯性系。 问题的提出: 惯性定律是否在 任何参照系中都 成立?
m

v0
mg

11
将①式两边同乘d,并约去等式两边m可得
dv d g si nd d ( )dv dt dt

所以

d , v l, dt g si nd ld

大学物理学(第3版.修订版)北京邮电大学出版社[上册]第七章习题7答案解析

大学物理学(第3版.修订版)北京邮电大学出版社[上册]第七章习题7答案解析

习 题 77.1选择题(1) 容器中贮有一定量的理想气体,气体分子的质量为m ,当温度为T 时,根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值是:(A) 2x υ=.(B) 2x υ= [ ](C) 23x kT m υ= . (D) 2x kT mυ=. [答案:D 。

2222x y z υυυυ=++, 222213x y z υυυυ===,23kT mυ=。

](2) 一瓶氦气和一瓶氮气的密度相同,分子平均平动动能相同,而且都处于平衡状态,则它们 [ ] (A) 温度相同、压强相同. (B) 温度、压强都不相同. (C) 温度相同,但氦气的压强大于氮气的压强. (D) 温度相同,但氦气的压强小于氮气的压强.[答案:C 。

由32w kT =,w w =氦氮,得T 氦=T 氮 ; 由molpM RTρ=,ρρ=氦氮,T 氦=T 氮 ,而M M <mol 氦mol 氮,故p p >氦氮。

](3) 在标准状态下,氧气和氦气体积比为V 1 /V 2=1/2,都视为刚性分子理想气体,则其内能之比E 1 / E 2为: [ ] (A) 3 / 10. (B) 1 / 2. (C) 5 / 6. (D) 5 / 3.[答案:C 。

由2mol M i E RT M =2ipV =,得111112222256E i pV i V E i pV i V ==⋅=。

](4) 一定质量的理想气体的内能E 随体积V 的变化关系为一直线,其延长线过E ~V 图的原点,题7.1图所示,则此直线表示的过程为: [ ] (A) 等温过程. (B) 等压过程. (C) 等体过程. (D) 绝热过程.[答案:B 。

由图得E =kV , 而2i E pV =,i 不变,2ik p =为一常数。

](5) 在恒定不变的压强下,气体分子的平均碰撞频率Z 与气体的热力学温度T的关系为 [ ] (A) Z 与T 无关. (B).Z 与T 成正比 . (C) Z 与T 成反比. (D) Z 与T 成正比.[答案:C。

大学物理学(第3版.修订版)北京邮电大学出版社上册第三章知识题3答案解析

大学物理学(第3版.修订版)北京邮电大学出版社上册第三章知识题3答案解析

习题33.1选择题(1) 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 (A)2ωmR J J+ (B) 02)(ωR m J J + (C)02ωmR J(D) 0ω [答案: (A)](2) 如题3.1(2)图所示,一光滑的内表面半径为10cm 的半球形碗,以匀角速度ω绕其对称轴OC 旋转,已知放在碗内表面上的一个小球P 相对于碗静止,其位置高于碗底4cm ,则由此可推知碗旋转的角速度约为 (A)13rad/s (B)17rad/s (C)10rad/s (D)18rad/s(a) (b)题3.1(2)图[答案: (A)](3)如3.1(3)图所示,有一小块物体,置于光滑的水平桌面上,有一绳其一端连结此物体,;另一端穿过桌面的小孔,该物体原以角速度 在距孔为R的圆周上转动,今将绳从小孔缓慢往下拉,则物体(A)动能不变,动量改变。

(B)动量不变,动能改变。

(C)角动量不变,动量不变。

(D)角动量改变,动量改变。

(E)角动量不变,动能、动量都改变。

[答案:(E)]3.2填空题(1) 半径为30cm的飞轮,从静止开始以0.5rad·s-2的匀角加速转动,则飞轮边缘上一点在飞轮转过240˚时的切向加速度aτ= ,法向加速度a n= 。

[答案:0.15; 1.256](2) 如题3.2(2)图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O转动,今有一子弹沿着与水平面成一角度的方向击中木球而嵌于其中,则在此击中过程中,木球、子弹、细棒系统的守恒,原因是。

木球被击中后棒和球升高的过程中,对木球、子弹、细棒、地球系统的守恒。

题3.2(2)图[答案:对o轴的角动量守恒,因为在子弹击中木球过程中系统所受外力对o 轴的合外力矩为零,机械能守恒](3) 两个质量分布均匀的圆盘A和B的密度分别为ρA和ρB (ρA>ρB),且两圆盘的总质量和厚度均相同。

大学物理学_(第3版.修订版)_北京邮电大学出版社_下册__第九章_习题9_答案

大学物理学_(第3版.修订版)_北京邮电大学出版社_下册__第九章_习题9_答案

习题9之阳早格格创做(1)正圆形的二对付角线处各搁置电荷Q,另二对付角线各搁置电荷q,若Q所受到合力为整,则Q与q的关系为:()(A)Q=-23/2q (B) Q=23/2q (C) Q=-2q (D) Q=2q[问案:A](2)底下道法精确的是:()(A)若下斯里上的电场强度到处为整,则该里内肯定不电荷;(B)若下斯里内不电荷,则该里上的电场强度肯定到处为整;(C)若下斯里上的电场强度到处不为整,则该里内肯定有电荷;(D)若下斯里内有电荷,则该里上的电场强度肯定到处不为整.[问案:D](3)一半径为R的导体球表面的里面荷稀度为σ,则正在距球里R处的电场强度()(A)σ/ε0 (B)σ/2ε0 (C)σ/4ε0 (D)σ/8ε0 [问案:C](4)正在电场中的导体里里的()(A)电场战电势均为整;(B)电场不为整,电势均为整;(C)电势战表面电势相等;(D)电势矮于表面电势.[问案:C](1)正在静电场中,电势稳定的天区,场强肯定为 .[问案:相共](2)一个面电荷q搁正在坐圆体核心,则脱过某一致况的电通量为,若将面电荷由核心背中移动至无限近,则总通量将 .[问案:q/6ε0, 将为整](3)电介量正在电容器中效率(a)——(b)——.[问案:(a)普及电容器的容量;(b) 延少电容器的使用寿命](4)电量Q匀称分散正在半径为R的球体内,则球内球中的静电能之比 .[问案:5:6]9.3 电量皆是q的三个面电荷,分别搁正在正三角形的三个顶面.试问:(1)正在那三角形的核心搁一个什么样的电荷,便不妨使那四个电荷皆达到仄稳(即每个电荷受其余三个电荷的库仑力之战皆为整)?(2)那种仄稳与三角形的边少有无关系?(1) 以A处面电荷为钻研对付象,由力仄稳知:q 为背电荷解得 q q 33-=' (2)与三角形边少无关.9.4 二小球的品量皆是m ,皆用少为l 的细绳挂正在共一面,它们戴有相共电量,停止时二线夹角为2θ,如题9.4图所示.设小球的半径战线的品量皆不妨忽略不计,供每个小球所戴的电量.解:解得 θπεθtan 4sin 20mg l q = 9.5 根据面电荷场强公式204r q E πε=,当被观察的场面距源面电荷很近(r →0)时,则场强→∞,那是不物理意思的,对付此应怎么样明白?解: 020π4r r q Eε=仅对付面电荷创造,当0→r 时,戴电体不克不迭再视为面电荷,再用上式供场强是过失的,本量戴电体有一定形状大小,思量电荷正在戴电体上的分散供出的场强不会是无限大.9.6 正在真空中有A ,B 二仄止板,相对付距离为d ,板里积为S ,其戴电量分别为+q 战-q .则那二板之间有相互效率力f,有人道f =2024dq πε,又有人道,果为f =qE ,SqE 0ε=,所以f =Sq 02ε.试问那二种道法对付吗?为什么? f 到底应等于几?解: 题中的二种道法均分歧过失.第一种道法中把二戴电板视为面电荷是分歧过失的,第二种道法把合场强Sq E 0ε=瞅成是一个戴电板正在另一戴电板处的场强也是分歧过失的.精确解允许为一个板的电场为Sq E 02ε=,另一板受它的效率力Sq S qq f 02022εε==,那是二板间相互效率的电场力.9.7 少l =的曲导线AB 上匀称天分散着线稀度λx10-9C ·m -1的正电荷.试供:(1)正在导线的延少线上与导线B 端相距1a =处P 面的场强;(2)正在导线的笔曲仄分线上与导线中面相距2d = 处Q 面的场强.解:(1) 正在戴电曲线上与线元x d ,其上电量q d 正在P面爆收场强为20)(d π41d x a xE P-=λε用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代进得21074.6⨯=P E 1C N -⋅ 目标火仄背左(2)共理2220d d π41d +=x x E Qλε由于对付称性⎰=l Qx E 0d ,即Q E惟有y 分量,∵ 22222220dd d d π41d ++=x x x E Qyλε以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代进得21096.14⨯==Q y Q E E 1C N -⋅,目标沿y 轴正背一个半径为R 的匀称戴电半圆环,电荷线稀度为λ,供环心处O 面的场强.ϕλλd d d R l q ==,它正在O 面爆收场强盛小为20π4d d R R E εϕλ=目标沿半径背中则 ϕϕελϕd sin π4sin d d 0RE E x ==积分RR E x 000π2d sin π4ελϕϕελπ==⎰ ∴ RE E x0π2ελ==,目标沿x 轴正背.9.9 匀称戴电的细线直成正圆形,边少为l ,总电量为q .(1)供那正圆形轴线上离核心为r 处的场强E ;(2)道明:正在l r >>处,它相称于面电荷q 爆收的场强E .解: 如9.9图示,正圆形一条边上电荷4q 正在P 面爆收物强P Ed 目标如图,大小为∵ 22cos 221l r l +=θ∴ 24π4d 22220l r l l r E P++=ελP Ed 正在笔曲于仄里上的分量βcos d d P E E =⊥∴ 424π4d 2222220l r rl r l r lE +++=⊥ελ由于对付称性,P 面场强沿OP 目标,大小为 ∵ lq4=λ ∴ 2)4(π422220l r l r qrE P ++=ε 目标沿OP(1)面电荷q 位于一边少为a 的坐圆体核心,试供正在该面电荷电场中脱过坐圆体的一个里的电通量;(2)如果该场源面电荷移动到该坐圆体的一个顶面上,那时脱过坐圆体各里的电通量是几?解: (1)由下斯定理0d εqS E s⎰=⋅坐圆体六个里,当q 正在坐圆体核心时,每个里上电通量相等∴ 各里电通量06εq e =Φ.(2)电荷正在顶面时,将坐圆体蔓延为边少a 2的坐圆体,使q 处于边少a 2的坐圆体核心,则边少a 2的正圆形上电通量6εq e =Φ 对付于边少a 的正圆形,如果它不包罗q 天圆的顶面,则24εq e =Φ,如果它包罗q 天圆顶面则0=Φe .如题9.10图所示. 题9.10 图匀称戴电球壳内半径6cm ,中半径10cm ,电荷体稀度为2×510-C ·m -3供距球心5cm ,8cm ,12cm 各面的场强.解: 下斯定理0d ε∑⎰=⋅qS E s,02π4ε∑=qr E当5=r cm 时,0=∑q ,0=E8=r cm 时,∑q 3π4p=3(r )3内r - ∴ ()2023π43π4r r r E ερ内-=41048.3⨯≈1C N -⋅, 目标沿半径背中.12=r cm 时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=rr r E ερ内外 1C N -⋅ 沿半径背中. 半径为1R 战2R (2R >1R )的二无限少共轴圆柱里,单位少度上分别戴有电量λ战-λ,试供:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各面的场强.解: 下斯定理0d ε∑⎰=⋅qS E s与共轴圆柱形下斯里,正里积rl S π2=则 rl E S E Sπ2d =⋅⎰对付(1) 1R r < 0,0==∑E q (2) 21R r R << λl q =∑ ∴ rE 0π2ελ=沿径背背中(3) 2R r > 0=∑q∴ 0=E9.13 二个无限大的仄止仄里皆匀称戴电,电荷的里稀度分别为1σ战2σ,试供空间各处场强.解: 如题9.13图示,二戴电仄里匀称戴电,电荷里稀度分别为1σ与2σ, 二里间, n E)(21210σσε-=1σ里中, n E)(21210σσε+-=2σ里中, n E)(21210σσε+=n:笔曲于二仄里由1σ里指为2σ里.9.14 半径为R 的匀称戴电球体内的电荷体稀度为ρ,若正在球内掘去一齐半径为r <R 的小球体,如题图所示.试供:二球心O 与O '面的场强,并道明小球空腔内的电场是匀称的.解: 将此戴电体瞅做戴正电ρ的匀称球与戴电ρ-的匀称小球的拉拢,睹题9.14图(a).(1) ρ+球正在O 面爆收电场010=E,ρ-球正在O 面爆收电场'dπ4π3430320OO r E ερ=∴ O 面电场'd33030OO r E ερ= ;(2) ρ+正在O '爆收电场'dπ4d 3430301OO E ερπ='ρ-球正在O '爆收电场002='E∴ O ' 面电场 003ερ='E'OO 题9.14图(a) 题9.14图(b)(3)设空腔任一面P 相对付O '的位矢为r',相对付O 面位矢为r(如题8-13(b)图)则 03ερrE PO =,3ερr E O P '-=' , ∴ 0003'3)(3ερερερdOO r r E E E O P PO P=='-=+='∴腔内场强是匀称的. 9.15 一电奇极子由q ×10-6C的二个同号面电荷组成,二电荷距离d=,把那电奇极子搁正在×105N ·C -1的中电场中,供中电场效率于电奇极子上的最大举矩.解: ∵ 电奇极子p正在中场E 中受力矩∴ qlE pE M ==max 代进数字二面电荷1q ×10-8C ,2q ×10-8C ,相距1r =42cm ,要把它们之间的距离形成2r =25cm ,需做几功?解: ⎰⎰==⋅=22210212021π4π4d d r r r rq q r r q q r F A εε )11(21r r -中力需做的功 61055.6-⨯-=-='A A J9.17 如题图所示,正在A ,B 二面处搁有电量分别为+q ,-q 的面电荷,AB 间距离为2R ,现将另一正考查面电荷0q 从O 面通过半圆弧移到C 面,供移动历程中电场力做的功.解:∴ Rqq U U q A o C O 00π6)(ε=-=9.18 如题图所示的绝缘细线上匀称分散着线稀度为λ的正电荷,二曲导线的少度战半圆环的半径皆等于R .试供环核心O 面处的场强战电势.解: (1)由于电荷匀称分散与对付称性,AB 战CD 段电荷正在O 面爆收的场强互相对消,与θd d R l =则θλd d R q =爆收O 面Ed 如图,由于对付称性,O 面场强沿y 轴背目标R0π4ελ=[)2sin(π-2sin π-](2) AB 电荷正在O 面爆收电势,以0=∞U 共理CD 爆收 2ln π402ελ=U 半圆环爆收 0034π4πελελ==R R U ∴ 0032142ln π2ελελ+=++=U U U U O 9.19 一电子绕一戴匀称电荷的少曲导线以2×104m ·s -1的匀速率做圆周疏通.供戴电曲线上的线电荷稀度.(电子品量0m ×10-31kg ,电子电量e ×10-19C)解: 设匀称戴电曲线电荷稀度为λ,正在电子轨讲处场强 电子受力大小 re eE F e 0π2ελ== ∴ rv m r e 20π2=ελ得 1320105.12π2-⨯==emv ελ1m C -⋅ 气氛不妨启受的场强的最大值为E =30kV ·cm -1,超出那个数值时气氛要爆收火花搁电.今有一下压仄止板电容器,极板间距离为d =,供此电容器可启受的最下电压.解: 仄止板电容器里里近似为匀称电场9.21 道明:对付于二个无限大的仄止仄里戴电导体板(题图)去道,(1)相背的二里上,电荷的里稀度经常大小相等而标记差同;(2)相背的二里上,电荷的里稀度经常大小相等而标记相共.证: 如题9.21图所示,设二导体A 、B 的四个仄里匀称戴电的电荷里稀度依次为1σ,2σ,3σ,4σ(1)则与与仄里笔曲且底里分别正在A 、B 里里的关合柱里为下斯里时,有∴ +2σ03=σ道明相背二里上电荷里稀度大小相等、标记差同;(2)正在A 里里任与一面P ,则其场强为整,而且它是由四个匀称戴电仄里爆收的场强叠加而成的,即 又∵ +2σ03=σ ∴ 1σ4σ=道明相背二里上电荷里稀度经常大小相等,标记相共. 9.22 三个仄止金属板A ,B 战C 的里积皆是200cm 2,A 战B 相距4.0mm ,A 与C 相距2.0 mm .B ,C 皆接天,如题图所示.如果使A 板戴正电×10-7C ,略去边沿效力,问B 板战C 板上的感触电荷各是几?以天的电势为整,则A 板的电势是几? 解: 如题9.22图示,令A 板左正里电荷里稀度为1σ,左正里电荷里稀度为2σ(1)∵ AB AC U U =,即 ∴ AB AB AC AC E E d d = ∴ 2d d 21===ACABAB AC E E σσ 且 1σ+2σSq A =得 ,32Sq A =σ Sq A 321=σ而 7110232-⨯-=-=-=A Cq S q σCC 10172-⨯-=-=S q B σ (2)301103.2d d ⨯===AC AC AC A E U εσV 二个半径分别为1R 战2R (1R <2R )的共心薄金属球壳,现给内球壳戴电+q ,试估计:(1)中球壳上的电荷分散及电势大小;(2)先把中球壳接天,而后断启接天线沉新绝缘,此时中球壳的电荷分散及电势;*(3)再使内球壳接天,此时内球壳上的电荷以及中球壳上的电势的改变量.解: (1)内球戴电q +;球壳内表面戴电则为q -,中表面戴电为q +,且匀称分散,其电势⎰⎰∞∞==⋅=22020π4π4d d R R R qr r q r E U εε(2)中壳接天时,中表面电荷q +进天,中表面不戴电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -爆收: (3)设此时内球壳戴电量为q ';则中壳内表面戴电量为q '-,中壳中表面戴电量为+-q q ' (电荷守恒),此时内球壳电势为整,且得 q R R q 21=' 中球壳上电势半径为R 的金属球离大天很近,并用导线与天相联,正在与球心相距为R d 3=处有一面电荷+q ,试供:金属球上的感触电荷的电量.解: 如题9.24图所示,设金属球感触电荷为q ',则球接天时电势0=O U由电势叠加本理有: 得 -='q 3q 有三个大小相共的金属小球,小球1,2戴有等量共号电荷,相距甚近,其间的库仑力为0F .试供:(1)用戴绝缘柄的不戴电小球3先后分别交战1,2后移去,小球1,2之间的库仑力;(2)小球3依次接替交战小球1,2很多次后移去,小球1,2之间的库仑力.解: 由题意知 2020π4rq F ε=(1)小球3交战小球1后,小球3战小球1均戴电2q q =', 小球3再与小球2交战后,小球2与小球3均戴电 ∴ 此时小球1与小球2间相互效率力(2)小球3依次接替交战小球1、2很多次后,每个小球戴电量均为32q .∴ 小球1、2间的效率力00294π432322F r qq F ==ε正在半径为1R 的金属球除中包有一层中半径为2R 的匀称电介量球壳,介量相对付介电常数为r ε,金属球戴电Q .试供:(1)电介量内、中的场强; (2)电介量层内、中的电势; (3)金属球的电势.解: 利用有介量时的下斯定理∑⎰=⋅q S D Sd(1)介量内)(21R r R <<场强303π4,π4rrQ E r r Q D r εε ==内; 介量中)(2R r <场强 (2)介量中)(2R r >电势 介量内)(21R r R <<电势 (3)金属球的电势9.27 如题图所示,正在仄止板电容器的一半容积内充进相对付介电常数为r ε的电介量.试供:正在有电介量部分战无电介量部分极板上自由电荷里稀度的比值. 解: 如题9.27图所示,充谦电介量部分场强为2E,真空部分场强为1E,自由电荷里稀度分别为2σ与1σ 由∑⎰=⋅0d q S D得11σ=D ,22σ=D而 101E D ε=,202E D r εε= ∴ r r E E εεεεσσ==102012二个共轴的圆柱里,少度均为l ,半径分别为1R 战2R (2R >1R ),且l >>2R -1R ,二柱里之间充有介电常数εQ 战-Q 时,供:(1)正在半径r 处(1R <r <2R =,薄度为dr ,少为l 的圆柱薄壳中任一面的电场能量稀度战所有薄壳中的电场能量; (2)电介量中的总电场能量; (3)圆柱形电容器的电容. 解: 与半径为r 的共轴圆柱里)(S则 rlD S D S π2d )(=⋅⎰当)(21R r R <<时,Q q =∑ ∴ rlQD π2=(1)电场能量稀度 22222π82l r Q D w εε==薄壳中 rlrQ rl r l r Q w W εευπ4d d π2π8d d 22222===(2)电介量中总电场能量(3)电容:∵ CQ W 22=∴ )/ln(π22122R R lW Q C ε== 如题9.29 图所示,1C =μF ,2C =μF ,3C =μF .1C 上电压为50V .供:AB U . 解: 电容1C 上电量电容2C 与3C 并联3223C C C += 其上电荷123Q Q =∴ 355025231123232⨯===C U C C Q U 9.30 1C 战2C 二电容器分别标明“200 pF 、500 V”战“300 pF 、900 V”,把它们串联起去后等值电容是几?如果二端加上1000 V的电压,是可会打脱?解: (1) 1C 与2C 串联后电容 (2)串联后电压比231221==C C U U ,而100021=+U U ∴ 6001=U V ,4002=U V即电容1C 电压超出耐压值会打脱,而后2C 也打脱.半径为1R = 的导体球,中套有一共心的导体球壳,壳的内、中半径分别为2R =战3R =,当内球戴电荷Q ×10-8C 时,供:(1)所有电场储藏的能量;(2)如果将导体壳接天,估计储藏的能量; (3)此电容器的电容值.解: 如图,内球戴电Q ,中球壳内表面戴电Q -,中表面戴电Q(1)正在1R r <战32R r R <<天区正在21R r R <<时 301π4r rQ E ε=3R r >时 302π4rrQ E ε=∴正在21R r R <<天区正在3R r >天区∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε(2)导体壳接天时,惟奇尔21R r R <<30π4rrQ E ε=,02=W ∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J(3)电容器电容 )11/(π422102R R QW C -==ε。

大学物理学 (第3版.修订版) 北京邮电大学出版社 上册 第七章习题7 答案

大学物理学 (第3版.修订版) 北京邮电大学出版社 上册 第七章习题7 答案

习 题 77.1选择题(1) 容器中贮有一定量的理想气体,气体分子的质量为m ,当温度为T 时,根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值是:(A)2x υ=.(B) 2x υ= [ ](C) 23x kT m υ= . (D) 2x kT mυ=. [答案:D 。

2222x y z υυυυ=++, 222213x y z υυυυ===,23kT mυ=。

](2) 一瓶氦气和一瓶氮气的密度相同,分子平均平动动能相同,而且都处于平衡状态,则它们 [ ] (A) 温度相同、压强相同. (B) 温度、压强都不相同. (C) 温度相同,但氦气的压强大于氮气的压强. (D) 温度相同,但氦气的压强小于氮气的压强.[答案:C 。

由32w kT =,w w =氦氮,得T 氦=T 氮 ; 由molpM RTρ=,ρρ=氦氮,T 氦=T 氮 ,而M M <mol 氦mol 氮,故p p >氦氮。

](3) 在标准状态下,氧气和氦气体积比为V 1 /V 2=1/2,都视为刚性分子理想气体,则其内能之比E 1 / E 2为: [ ] (A) 3 / 10. (B) 1 / 2. (C) 5 / 6. (D) 5 / 3.[答案:C 。

由2mol M i E RT M =2ipV =,得111112222256E i pV i V E i pV i V ==⋅=。

](4) 一定质量的理想气体的内能E 随体积V 的变化关系为一直线,其延长线过E ~V 图的原点,题7.1图所示,则此直线表示的过程为: [ ] (A) 等温过程. (B) 等压过程. (C) 等体过程. (D) 绝热过程.题7.1图[答案:B 。

由图得E =kV , 而2i E pV =,i 不变,2ik p =为一常数。

] (5) 在恒定不变的压强下,气体分子的平均碰撞频率Z 与气体的热力学温度T的关系为 [ ] (A) Z 与T 无关. (B).Z 与T 成正比 . (C) Z 与T 成反比. (D) Z 与T 成正比.[答案:C。

大学物理学 (第3版.修订版) 北京邮电大学出版社 上册 第五章习题5 答案

大学物理学 (第3版.修订版)  北京邮电大学出版社 上册 第五章习题5 答案

习题 55.1选择题(1)一物体作简谐振动,振动方程为)2cos(πω+=t A x ,则该物体在0=t 时刻的动能与8/T t =(T 为振动周期)时刻的动能之比为: (A)1:4 (B )1:2 (C )1:1 (D) 2:1[答案:D](2)弹簧振子在光滑水平面上作简谐振动时,弹性力在半个周期内所作的功为(A)kA 2 (B) kA 2/2 (C) kA 2//4 (D)0[答案:D](3)谐振动过程中,动能和势能相等的位置的位移等于 (A)4A ±(B) 2A± (C) 23A±(D) 22A ± [答案:D]5.2 填空题(1)一质点在X 轴上作简谐振动,振幅A =4cm ,周期T =2s ,其平衡位置取作坐标原点。

若t =0时质点第一次通过x =-2cm 处且向X 轴负方向运动,则质点第二次通过x =-2cm 处的时刻为____s 。

[答案:23s ](2)一水平弹簧简谐振子的振动曲线如题 5.2(2)图所示。

振子在位移为零,速度为-?A 、加速度为零和弹性力为零的状态,对应于曲线上的____________点。

振子处在位移的绝对值为A 、速度为零、加速度为-?2A 和弹性力为-KA 的状态,则对应曲线上的____________点。

题5.2(2) 图[答案:b 、f ; a 、e](3)一质点沿x 轴作简谐振动,振动范围的中心点为x 轴的原点,已知周期为T ,振幅为A 。

(a)若t=0时质点过x=0处且朝x 轴正方向运动,则振动方程为x=___________________。

(b) 若t=0时质点过x=A/2处且朝x 轴负方向运动,则振动方程为x=_________________。

[答案:cos(2//2)x A t T ππ=-; cos(2//3)x A t T ππ=+]5.3 符合什么规律的运动才是谐振动?分别分析下列运动是不是谐振动: (1)拍皮球时球的运动;(2)如题5.3图所示,一小球在一个半径很大的光滑凹球面内滚动(设小球所经过的弧线很 短).题5.3图 题5.3图(b)解:要使一个系统作谐振动,必须同时满足以下三个条件:一 ,描述系统的各种参量,如质量、转动惯量、摆长……等等在运动中保持为常量;二,系统是在自己的稳定平衡位置附近作往复运动;三,在运动中系统只受到内部的线性回复力的作用. 或者说,若一个系统的运动微分方程能用描述时,其所作的运动就是谐振动.(1)拍皮球时球的运动不是谐振动.第一,球的运动轨道中并不存在一个稳定的平衡位置; 第二,球在运动中所受的三个力:重力,地面给予的弹力,击球者给予的拍击力,都不是线性回复力.(2)小球在题5.3图所示的情况中所作的小弧度的运动,是谐振动.显然,小球在运动过程中,各种参量均为常量;该系统(指小球凹槽、地球系统)的稳定平衡位置即凹槽最低点,即系统势能最小值位置点O ;而小球在运动中的回复力为θsin mg -,如题5.3图(b)中所示,因S ∆<<R ,故RS∆=θ→0,所以回复力为θmg -.式中负号,表示回复力的方向始终与角位移的方向相反.即小球在O 点附近的往复运动中所受回复力为线性的.若以小球为对象,则小球在以O '为圆心的竖直平面内作圆周运动,由牛顿第二定律,在凹槽切线方向上有令Rg=2ω,则有 5.4 弹簧振子的振幅增大到原振幅的两倍时,其振动周期、振动能量、最大速度和最大加速度等物理量将如何变化?解:弹簧振子的振动周期、振动能量、最大速度和最大加速度的表达式分别为所以当振幅增大到原振幅的两倍时,振动周期不变,振动能量增大为原来的4倍,最大速度增大为原来的2倍,最大加速度增大为原来的2倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 首 页 上 页 下 页退 出
研究对象包括宇观、宏观、介观、微观、生命观
空间:微观粒子10-15m(夸克)---宇宙尺寸1027m(哈勃半径)-大小跨越42个数量级 时间:微观粒子寿命10-24s ;宇宙年龄---1018s
从阶段划分,可分为经典、近代、现代物理。
4 首 页 上 页 下 页退 出
1 首 页 上 页 下 页退 出
一、物理学的研究对象
物理学是关于自然界最基本形态的科学。它研究物质的结构, 相互作用以及物质的运动。
1、研究物质的两种形态
实物和场是物质的两种基本形态 ▲关于实物物质结构 实物包括微观粒子(分子—原子—电子、原子核—中子、质 子—夸克及其它结构粒子)和宏观物体,它的范围是从基本粒 子的亚核世界到整个宇宙。 ▲关于场物质结构 例如:电磁场、引力场、各种介子场。
2 首 页 上 页 下 页退 出
2、研究物质最简单最基本最普遍的运动形式
物质的运动具有粒子和波动两种图象。 天体的、宏观的机械运动,及分子的热运动呈粒子性;
微观领域内,无论场和实物都呈波、粒二象性。
3、研究物质的相互作用
物质间有四种相互作用,引力作用、电磁作用、强作用、 弱作用。 传递引力相互作用 —引力子 传递电磁相互作用 —光子 传递强相互作用 —胶子 传递弱相互作用 —中间波色子 超铉理论:试图将四种相互作用力统一起来。
二、物理学和科学技术的关系
1、物理学是一切自然科学的基础。
2、物理学推动技术革命和社会文明:
物理学是工程师的灵魂, 也是工程师的最终目标。 三、大学物理课程的基本要求
1、成绩:平时+期末; 2、平时:点名、课堂独立作业、课后作业; 3、期末考试:教学大纲内容。
5 首 页 上 页 下 页退 出
第一篇 第二篇 第三篇 第四篇 第五篇

力学基础 热 学 电 磁 学 波动光学 量子物理
6 首 页 上 页 下 页退 出
相关文档
最新文档