2019年辽宁省朝阳市中考数学试卷-(解析版)

合集下载

2019年辽宁省朝阳市中考数学模拟试卷及答案

2019年辽宁省朝阳市中考数学模拟试卷及答案

2019年辽宁省朝阳市中考数学模拟试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,共30分)1.−12的倒数是()A. −2B. 2C. −12D. 122.如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A. B.C. D.3.下列运算中,正确的是()A. x2+x3=2x5B. (x2)3=x6C. (m−n)2=m2−n2D. m8÷m2=m44.下列事件是必然事件的是()A. 打开电视机,正在播放动画片B. 2008年奥运会刘翔一定能夺得110米跨栏冠军C. 某彩票中奖率是1%,买100张一定会中奖D. 在只装有5个红球的袋中摸出1球,是红球5.如图,把一块含有45∘的直角三角尺的两个锐角顶点放在直尺的对边上,若∠1=20∘,则∠2的大小为()A. 25∘B. 20∘C. 15∘D. 30∘6.某农户,养的鸡和兔一共70只,已知鸡和兔的腿数之和为196条,则鸡的只数比兔多多少只()A. 20只B. 14只C. 15只D. 137.某社区青年志愿者小分队年龄情况如表所示:年龄(岁)1819202122人数25221则这12名队员年龄的众数、中位数分别是()A. 2,20岁B. 2,19岁C. 19岁,20岁D. 19岁,19岁8.如图,矩形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE交AD于点F,则DF的长等于( )A. 35B. 53C. 73D. 549.二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:x…−5−4−3−2−10…y … 4 0 −2−2 0 4 …下列说法正确的是( )A. 抛物线的开口向下B. 当x >−52时,y 随x 的增大而增大 C. 二次函数的最小值是−2D. 抛物线的对称轴是x =110. 如图,在正方形ABCD 中,O 是对角线AC 与BD 的交点,M 是BC 边上的动点(点M 不与B ,C 重合),CN ⊥DM ,CN 与AB 交于点N ,连接OM ,ON ,MN.下列五个结论:①△CNB ≌△DMC ;②△CON ≌△DOM ;③△OMN ∽△OAD ;④AN 2+CM 2=MN 2;⑤若AB =2,则S △OMN 的最小值是12,其中正确结论的个数是( ) A. 2 B. 3 C. 4 D. 5 二、填空题(本大题共6小题,共18分)11. 地球与太阳之间的距离约为149 600 000千米,这个数据用科学记数法表示为______千米.12. 如图1,AB 是⊙O 的直径,E 是⊙O 上的一点,C 是弧AE 的中点,若∠A =50∘,则∠AOE 的度数为______。

辽宁省朝阳市2019-2020学年中考第一次质量检测数学试题含解析

辽宁省朝阳市2019-2020学年中考第一次质量检测数学试题含解析

辽宁省朝阳市2019-2020学年中考第一次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,已知正五边形 ABCDE 内接于O e ,连结BD ,则ABD ∠的度数是( )A .60︒B .70︒C .72︒D .144︒2.如图,在平面直角坐标系中,△ABC 位于第二象限,点B 的坐标是(﹣5,2),先把△ABC 向右平移4个单位长度得到△A 1B 1C 1,再作与△A 1B 1C 1关于于x 轴对称的△A 2B 2C 2,则点B 的对应点B 2的坐标是( )A .(﹣3,2)B .(2,﹣3)C .(1,2)D .(﹣1,﹣2)3.某市初中学业水平实验操作考试,要求每名学生从物理,化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是( )A .19B .14C .16D .134.如果实数a=11,且a 在数轴上对应点的位置如图所示,其中正确的是( )A .B .C .D .5.一个不透明的盒子里有n 个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n 为( )A.20 B.24 C.28 D.306.下列各数是不等式组32123xx+⎧⎨--⎩fp的解是()A.0 B.1-C.2 D.37.下列运算正确的是( )A.4x+5y=9xy B.(−m)3•m7=m10C.(x3y)5=x8y5D.a12÷a8=a48.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于()A.75°B.90°C.105°D.115°9.平面直角坐标系中的点P(2﹣m ,12m )在第一象限,则m的取值范围在数轴上可表示为()A .B.C.D.10.多项式ax2﹣4ax﹣12a因式分解正确的是()A.a(x﹣6)(x+2)B.a(x﹣3)(x+4)C.a(x2﹣4x﹣12)D.a(x+6)(x﹣2)11.某校为了了解七年级女同学的800米跑步情况,随机抽取部分女同学进行800米跑测试,按照成绩分为优秀、良好、合格、不合格四个等级,绘制了如图所示统计图. 该校七年级有400名女生,则估计800米跑不合格的约有( )A.2人B.16人C.20人D.40人12.如图是某几何体的三视图及相关数据,则该几何体的全面积是()A.15πB.24πC.20πD.10π二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知x+y=8,xy=2,则x2y+xy2=_____.14.对于任意非零实数a、b,定义运算“⊕”,使下列式子成立:3122⊕=-,3212⊕=,()212510-⊕=,()21525⊕-=-,…,则a⊕b=.15.下面是甲、乙两人10次射击成绩(环数)的条形统计图,通常新手的成绩不太确定,根据图中的信息,估计这两人中的新手是_____.16.如图,点A、B、C 在⊙O 上,⊙O 半径为1cm,∠ACB=30°,则»AB的长是________.17.在我国著名的数学书《九章算术》中曾记载这样一个数学问题:“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设羊价为x钱,则可列关于x的方程为______.18.一个多边形,除了一个内角外,其余各角的和为2750°,则这一内角为_____度.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)计算:(﹣1)2﹣2sin45°+(π﹣2018)0+|﹣|20.(6分)如图所示,某校九年级(3)班的一个学习小组进行测量小山高度的实践活动.部分同学在山脚A点处测得山腰上一点D的仰角为30°,并测得AD的长度为180米.另一部分同学在山顶B点处测得山脚A点的俯角为45°,山腰D点的俯角为60°,请你帮助他们计算出小山的高度BC.(计算过程和结果都不取近似值)21.(6分)在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a≠0)的图象经过A(0,4),B(2,0),C(-2,0)三点.(1)求二次函数的表达式;(2)在x轴上有一点D(-4,0),将二次函数的图象沿射线DA方向平移,使图象再次经过点B.①求平移后图象顶点E的坐标;②直接写出此二次函数的图象在A,B两点之间(含A,B两点)的曲线部分在平移过程中所扫过的面积.22.(8分)已知圆O的半径长为2,点A、B、C为圆O上三点,弦BC=AO,点D为BC的中点,(1)如图,连接AC、OD,设∠OAC=α,请用α表示∠AOD;(2)如图,当点B为AC n的中点时,求点A、D之间的距离:(3)如果AD的延长线与圆O交于点E,以O为圆心,AD为半径的圆与以BC为直径的圆相切,求弦AE 的长.23.(8分)随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了_____名学生,最喜欢用电话沟通的所对应扇形的圆心角是____°;(2)将条形统计图补充完整;(3)运用这次的调查结果估计1200名学生中最喜欢用QQ进行沟通的学生有多少名?(4)甲、乙两名同学从微信,QQ,电话三种沟通方式中随机选了一种方式与对方联系,请用列表或画树状图的方法求出甲乙两名同学恰好选中同一种沟通方式的概率.24.(10分)已知:关于x的方程x2﹣(2m+1)x+2m=0(1)求证:方程一定有两个实数根;(2)若方程的两根为x1,x2,且|x1|=|x2|,求m的值.25.(10分)如图,某人在山坡坡脚C处测得一座建筑物顶点A的仰角为63.4°,沿山坡向上走到P处再测得该建筑物顶点A的仰角为53°.已知BC=90米,且B、C、D在同一条直线上,山坡坡度i=5:1.(1)求此人所在位置点P的铅直高度.(结果精确到0.1米)(2)求此人从所在位置点P走到建筑物底部B点的路程(结果精确到0.1米)(测倾器的高度忽略不计,参考数据:tan53°≈43,tan63.4°≈2)26.(12分)小昆和小明玩摸牌游戏,游戏规则如下:有3张背面完全相同,牌面标有数字1、2、3的纸牌,将纸牌洗匀后背面朝上放在桌面上,随机抽出一张,记下牌面数字,放回后洗匀再随机抽出一张.请用画树形图或列表的方法(只选其中一种),表示出两次抽出的纸牌数字可能出现的所有结果;若规定:两次抽出的纸牌数字之和为奇数,则小昆获胜,两次抽出的纸牌数字之和为偶数,则小明获胜,这个游戏公平吗?为什么?27.(12分)孔明同学对本校学生会组织的“为贫困山区献爱心”自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据.如图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3:4:5:10:8,又知此次调查中捐款30元的学生一共16人.孔明同学调查的这组学生共有_______人;这组数据的众数是_____元,中位数是_____元;若该校有2000名学生,都进行了捐款,估计全校学生共捐款多少元?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据多边形内角和定理、正五边形的性质求出∠ABC 、CD=CB ,根据等腰三角形的性质求出∠CBD ,计算即可.【详解】∵五边形ABCDE 为正五边形 ∴()1552180108ABC C ∠=∠=-⨯︒=︒ ∵CD CB = ∴181(8326)010CBD ∠=︒-︒=︒ ∴72ABD ABC CBD ∠=∠-∠=︒故选:C .【点睛】本题考查的是正多边形和圆、多边形的内角和定理,掌握正多边形和圆的关系、多边形内角和等于(n-2)×180°是解题的关键.2.D【分析】首先利用平移的性质得到△A1B1C1中点B的对应点B1坐标,进而利用关于x轴对称点的性质得到△A2B2C2中B2的坐标,即可得出答案.【详解】解:把△ABC向右平移4个单位长度得到△A1B1C1,此时点B(-5,2)的对应点B1坐标为(-1,2),则与△A1B1C1关于于x轴对称的△A2B2C2中B2的坐标为(-1,-2),故选D.【点睛】此题主要考查了平移变换以及轴对称变换,正确掌握变换规律是解题关键.3.A【解析】【分析】作出树状图即可解题.【详解】解:如下图所示一共有9中可能,符合题意的有1种,故小华和小强都抽到物理学科的概率是1 9 ,故选A.【点睛】本题考查了用树状图求概率,属于简单题,会画树状图是解题关键.4.C【解析】11.详解:49 911,4 <<Q由被开方数越大算术平方根越大,49911,4<<即7 311,2 <<故选C.的大小.【分析】【详解】 试题解析:根据题意得9n=30%,解得n=30, 所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.故选D .考点:利用频率估计概率.6.D【解析】【分析】求出不等式组的解集,判断即可.【详解】32123x x ①②+>⎧⎨-<-⎩, 由①得:x >-1,由②得:x >2,则不等式组的解集为x >2,即3是不等式组的解,故选D .【点睛】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.7.D【解析】【分析】各式计算得到结果,即可作出判断.【详解】解:A 、4x+5y=4x+5y ,错误;B 、(-m )3•m 7=-m 10,错误;C 、(x 3y )5=x 15y 5,错误;D 、a 12÷a 8=a 4,正确;故选D .【点睛】分析:依据AB∥EF,即可得∠BDE=∠E=45°,再根据∠A=30°,可得∠B=60°,利用三角形外角性质,即可得到∠1=∠BDE+∠B=105°.详解:∵AB∥EF,∴∠BDE=∠E=45°,又∵∠A=30°,∴∠B=60°,∴∠1=∠BDE+∠B=45°+60°=105°,故选C.点睛:本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.9.B【解析】【分析】【详解】根据第二象限中点的特征可得:2-m0 1m0 2>⎧⎪⎨>⎪⎩,解得:m2 m0<⎧⎨>⎩.在数轴上表示为:故选B.考点:(1)、不等式组;(2)、第一象限中点的特征10.A【解析】试题分析:首先提取公因式a,进而利用十字相乘法分解因式得出即可.解:ax2﹣4ax﹣12a=a(x2﹣4x﹣12)=a(x﹣6)(x+2).故答案为a(x﹣6)(x+2).点评:此题主要考查了提取公因式法以及十字相乘法分解因式,正确利用十字相乘法分解因式是解题关键.11.C【分析】先求出800米跑不合格的百分率,再根据用样本估计总体求出估值.【详解】 400×2201216102=+++人. 故选C .【点睛】考查了频率分布直方图,以及用样本估计总体,关键是从上面可得到具体的值.12.B【解析】解:根据三视图得到该几何体为圆锥,其中圆锥的高为4,母线长为5,圆锥底面圆的直径为6,所以圆锥的底面圆的面积=π×(62)2=9π,圆锥的侧面积=12×5×π×6=15π,所以圆锥的全面积=9π+15π=24π.故选B .点睛:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥底面圆的周长.也考查了三视图.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【分析】将所求式子提取xy 分解因式后,把x+y 与xy 的值代入计算,即可得到所求式子的值.【详解】∵x+y=8,xy=2,∴x 2y+xy 2=xy (x+y )=2×8=1.故答案为:1.【点睛】本题考查的知识点是因式分解的应用,解题关键是将所求式子分解因式. 14.22a b ab- 【解析】试题分析:根据已知数字等式得出变化规律,即可得出答案: ∵2231212212-⊕=-=⨯,2232121221-⊕==⨯,()()()222521251025---⊕==-⨯,()()()22522152552--⊕-=-=⨯-,…, ∴22a b a b ab-⊕=。

2019年辽宁省朝阳市中考数学模拟试卷(3月份)解析版

2019年辽宁省朝阳市中考数学模拟试卷(3月份)解析版

2019年辽宁省朝阳市中考数学模拟试卷(3月份)一、选择题(本大题共10小题,共30.0分) 1. 下列各式中,不相等的是( )A. 和B. 和C. 和D. 和2. 如图,直线a ∥b ,AC ⊥AB ,AC 交直线b 于点C ,∠1=55°,则∠2的度数是( )A. B. C. D.3. 下列图形是轴对称图形的有( )A. 2个B. 3个C. 4个D. 5个4. 若 与是同类项,则m +n =( )A. B. 2 C. 1 D.5. 小宁同学根据全班同学的血型绘制了如图所示的扇形统计图,该班血型为A 型的有20人,那么该班血型为AB 型的人数为( ) A. 2人 B. 5人 C. 8人 D. 10人 6. 八年级(2)班学生积极参加献爱心活动,该班50名学生的捐款情况统计如表,则该班学生捐款金额的平均数和中位数分别是( )元和10元 元和20元 元和10元 元和20元7. 如图,⊙P 的半径为5,A 、B 是圆上任意两点,且AB =6,以AB 为边作正方形ABCD (点D 、P 在直线AB 两侧).若AB 边绕点P 旋转一周,则CD 边扫过的面积为( ) A. B. C. D.8. “凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x 名同学,那么依题意,可列出的方程是( )A. B. C.D.9. 若0<m <2,则关于x 的一元二次方程-(x +m )(x +3m )=3mx +37根的情况是( )A. 无实数根B. 有两个正根C. 有两个根,且都大于D. 有两个根,其中一根大于10. 矩形ABCD 中,AD =2AB =2 ,E 是AD 的中点,Rt ∠FEG 顶点与点E 重合,将∠FEG 绕点E 旋转,角的两边分别交AB ,BC (或它们的延长线)于点M ,N ,设∠AME =α(0°<α<90°),有下列结论:①BM =CN ;②AM +CN = ;③S △EMN =,其中正确的是( )A. ①B. ②③C. ①③D. ①②③二、填空题(本大题共6小题,共18.0分)11. 现在网购越来越多地成为人们的一种消费方式,刚刚过去的2015年的“双11”网上促销活动中,天猫和淘宝的支付交易额突破67000000000元,将67000000000元用科学记数法表示为______.12.一个不透明的袋子中装有4个红球、2个黑球,它们除颜色外其余都相同,从中任意搞出3个球,则事件“摸出的球至少有1个红球”是______事件(填“必然”、“随机”或“不可能”) 13. 不等式组的解集为______. 14. 如图是由一些大小相同的小正方体组成的简单几何体的左视图和俯视图,符合条件的几何体有______种.15. 菱形OBCD 在平面直角坐标系中的位置如图所示,顶点B (2,0),∠DOB =60°,点E 坐标为(0,- ),点P 是对角线OC 上一个动点,则EP +BP 最短的最短距离为______.16.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与正比例函数y=kx、y=x(k>1)的图象分别交于点A、B.若∠AOB=45°,则△AOB的面积是______.三、计算题(本大题共3小题,共20.0分)17.计算:(-π)0-6tan30°+()-2+|1-|18.解方程:-=1.19.某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?四、解答题(本大题共6小题,共52.0分)20.某校举行全体学生“汉字听写”比赛,每位学生听写汉字39个.随机抽取了部分学生的听写结果,绘制成如下的图表.(1)统计表中的m=______,n=______,并补全条形统计图;(2)扇形统计图中“C组”所对应的圆心角的度数是______;(3)已知该校共有900名学生,如果听写正确的字的个数少于24个定为不合格,请你估计该校本次听写比赛不合格的学生人数.21.某公园的人工湖边上有一座假山,假山顶上有一竖起的建筑物CD,高为10米,数学小组为了测量假山的高度DE,在公园找了一水平地面,在A处测得建筑物点D(即山顶)的仰角为35°,沿水平方向前进20米到达B点,测得建筑物顶部C点的仰角为45°,求假山的高度DE.(结果精确到1米,参考数据:si n35°≈,cos35°≈,tan35°≈)22.在一次数学活动中,黑板上画着如图所示的图形,活动前老师在准备的四张卡片(大小、颜色、形状相同)的正面上分别写有如下四个等式中的一个等式:①AB=CD;②AD∥BC;③AB∥CD;④∠A=∠C;小英同学闭上眼睛从四张卡片中随机抽出一张,再从剩下的卡片中随机抽出另一张,请结合图形回答下列问题:(1)当抽得②和④时,用②和④作条件能否判定四边形是平行四边形,请说明理由;(2)请你用树状图或表格表示抽取两张卡片上的条件的所有可能出现的结果(用序号表示)并求以已经抽取的两张卡片上的条件为已知,使四边形不能构成平行四边形的概率.23.如图,AB为⊙O直径,C是⊙O上一点,CO⊥AB于点O,弦CD与AB交于点F.过点D作⊙O的切线交AB的延长线于点E,过点A作⊙O的切线交ED的延长线于点G.(1)求证:△EFD为等腰三角形;(2)若OF:OB=1:3,⊙O的半径为3,求AG的长.24.在正方形ABCD中,AB=8,点P在边CD上,tan∠PBC=,点Q是在射线BP上的一个动点,过点Q作AB的平行线交射线AD于点M,点R在射线AD上,使RQ始终与直线BP垂直.(1)如图1,当点R与点D重合时,求PQ的长;(2)如图2,试探索:的比值是否随点Q的运动而发生变化?若有变化,请说明你的理由;若没有变化,请求出它的比值;(3)如图3,若点Q在线段BP上,设PQ=x,RM=y,求y关于x的函数关系式,并写出它的定义域.25.如图,直线AB和抛物线的交点是A(0,-3),B(5,9),已知抛物线的顶点D的横坐标是2.(1)求抛物线的解析式及顶点坐标;(2)在x轴上是否存在一点C,与A,B组成等腰三角形?若存在,求出点C的坐标,若不在,请说明理由;(3)在直线AB的下方抛物线上找一点P,连接PA,PB使得△PAB的面积最大,并求出这个最大值.答案和解析1.【答案】A【解析】解:A、(-3)2=9,-32=-9,故(-3)2≠-32;B、(-3)2=9,32=9,故(-3)2=32;C、(-2)3=-8,-23=-8,则(-2)3=-23;D、|-2|3=23=8,|-23|=|-8|=8,则|-2|3=|-23|.故选:A.根据有理数的乘方、绝对值和负整数指数幂的知识点进行解答,即可判断.此题确定底数是关键,要特别注意-32和(-3)2的区别.2.【答案】A【解析】解:∵直线a∥b,∴∠1=∠3=55°,∵AC⊥AB,∴∠BAC=90°,∴∠2=180°-∠BAC-∠3=35°,故选:A.根据平行线的性质求出∠3,再求出∠BAC=90°,即可求出答案.本题考查了平行线的性质的应用,注意:平行线的性质有①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.3.【答案】C【解析】解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选:C.根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.【答案】C【解析】解:由同类项的定义可知m+2=1且n-1=1,解得m=-1,n=2,所以m+n=1.故选:C.本题考查同类项的定义,所含字母相同,相同字母的指数也相同的项叫做同类项,由同类项的定义可先求得m和n的值,从而求出m+n的值.本题考查同类项的定义,关键要注意同类项定义中的两个“相同”:所含字母相同,相同字母的指数相同,是易混点,因此成了中考的常考点.5.【答案】B【解析】解:∵全班的人数是:20÷40%=50(人),AB型的所占的百分比是:1-20%-40%-30%=10%,∴AB型血的人数是:50×10%=5(人).故选:B.根据A型血的有20人,所占的百分比是40%即可求得班级总人数,用总人数乘以AB型血所对应的百分比即可求解.本题考查的是扇形统计图的运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.6.【答案】D【解析】解:平均数=(5×4+10×16+20×15+50×9+100×6)=30.6;∵共有50个数,∴中位数是第25、26个数的平均数,∴中位数是(20+20)÷2=20;故选:D.根据平均数和中位数的定义求解即可,平均数是所有数据的和除以数据的总个数;中位数是将一组数据从小到大重新排列后,找出最中间两个数的平均数.此题考查了中位数与平均数公式;熟记平均数公式,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).7.【答案】D【解析】解:连接PD,过点P作PE⊥CD与点E,PE交AB于点F,则CD边扫过的面积为以PD为外圆半径、PE为内圆半径的圆环面积,如图所示.∵PE⊥CD,AB∥CD,∴PF⊥AB.又∵AB为⊙P的弦,∴AF=BF,∴DE=CE=CD=AB=3,∴CD边扫过的面积为π(PD2-PE2)=π•DE2=9π.故选:D.连接PD,过点P作PE⊥CD与点E,PE交AB于点F,则CD边扫过的面积为以PD为外圆半径、PE为内圆半径的圆环面积,利用垂径定理即可得出AF=BF,进而可得出DE=CE=3,再根据圆环的面积公式结合勾股定理即可得出CD边扫过的面积.本题考查了垂径定理、勾股定理、平行线的性质以及圆环的面积公式,结合AB边的旋转,找出BD边旋转过程中扫过区域的形状是关键.8.【答案】B【解析】解:由题意得,x(x-1)=210,故选:B.根据题意列出一元二次方程即可.本题考查的是一元二次方程的应用,在解决实际问题时,要全面、系统地申清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系.9.【答案】A【解析】解:方程整理为x2+7mx+3m2+37=0,△=49m2-4(3m2+37)=37(m2-4),∵0<m<2,∴m2-4<0,∴△<0,∴方程没有实数根.故选:A.先把方程化为一般式,再计算判别式的值得到△=37(m2-4),然后根据m的范围得到△<0,从而根据判别式的意义可得到正确选项.本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了判别式的意义.10.【答案】C【解析】解:在矩形ABCD中,AD=2AB,E是AD的中点,作EF⊥BC于点F,则有AB=AE=EF=FC,∵∠AEM+∠DEN=90°,∠FEN+∠DEN=90°,∴∠AEM=∠FEN,在Rt△AME和Rt△FNE 中,,∴Rt△AME≌Rt△FNE,∴AM=FN,∴MB=CN,故①正确;∴CF=AM+CN=BC=,当点M在AB的延长线上时,AM-CN=,故②错误;∵Rt△AME≌Rt△FNE,∴EM=EN,∴△EMN是等腰直角三角形,∵∠AME=α,∴sinα=,∴EM=,∴S△EMN=EM2=,故③正确,故选:C.在矩形ABCD中,AD=2AB,E是AD的中点,作EF⊥BC于点F,则有AB=AE=EF=FC,根据全等三角形的性质得到AM=FN,MB=CN,故①正确;于是得到CF=AM+CN=BC=,故②正确;根据全等三角形的性质得到EM=EN,推出△EMN是等腰直角三角形,根据三角函数的定义得到sinα=,于是得到结论.本题主要考查了全等三角形的判定,本题的关键是证明Rt△AME≌Rt△FNE,利用全等的性质和等量代换求解.11.【答案】6.7×1010【解析】解:67 000 000000=6.7×1010,故答案为:6.7×1010.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.【答案】必然【解析】解:一个不透明的袋子中装有4个红球、2个黑球,它们除颜色外其余都相同,从中任意搞出3个球,则事件“摸出的球至少有1个红球”是必然事件.故答案为:必然.根据必然事件、不可能事件、随机事件的概念进行判断即可.本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.13.【答案】6<x<9【解析】解:解不等式8x>48,得:x>6,解不等式2(x+8)<34,得:x<9,则不等式组的解集为6<x<9,故答案为:6<x<9.首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.本题考查了不等式组的解法,求不等式组中每个不等式的解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.14.【答案】7【解析】解:该几何体中小正方体的分布情况有如下7种可能结果,故答案为:7.从俯视图中可以看出最底层小正方体的个数及形状,从左视图可以看出每一层小正方体的层数和个数,从而得出答案.本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.15.【答案】【解析】解:连接ED,如图,∵点B的对称点是点D,∴DP=BP,∴ED即为EP+BP最短,∵四边形ABCD是菱形,顶点B(2,0),∠DOB=60°,∴点D的坐标为(1,),∵点E的坐标为(0,-),直线ED==,故答案为:.点B的对称点是点D,连接ED,交OC于点P,再得出ED即为EP+BP最短,解答即可.此题考查菱形的性质,关键是根据一次函数与方程组的关系,得出两直线的解析式,求出其交点坐标.16.【答案】2【解析】解:如图,过B作BD⊥x轴于点D,过A作AC⊥y轴于点C设点A横坐标为a,则A(a,)∵A在正比例函数y=kx图象上∴=ka∴k=同理,设点B横坐标为b,则B(b,)∴=∴∴∴ab=2当点A坐标为(a,)时,点B坐标为(,a)∴OC=OD将△AOC绕点O顺时针旋转90°,得到△ODA′∵BD⊥x轴∴B、D、A′共线∵∠AOB=45°,∠AOA′=90°∴∠BOA′=45°∵OA=OA′,OB=OB∴△AOB≌△A′OB∵S△BOD=S△AOC =2×=1∴S△AOB=2故答案为:2根据AB两点分别在反比例函数和正比例函数图象上,且存在相同k值,可先证明点A横坐标和B纵坐标相等,利用旋转知识证明△AOB面积为△A′OB的面积,再利用反比例函数k的几何意义.本题为代数几何综合题,考查了三角形全等、旋转和反比例函数中k的几何意义.解答的切入点,是设出相应坐标,找出相关数量构造方程.17.【答案】解:原式=1-2+4+-1=4-.【解析】原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及绝对值的代数意义化简即可得到结果.此题考查了实数的运算,零指数幂、负整数指数幂,熟练掌握运算法则是解本题的关键.18.【答案】解:去分母得:x2-2x+2=x2-x,解得:x=2,检验:当x=2时,方程左右两边相等,所以x=2是原方程的解.【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.19.【答案】解:(1)根据题意得y=(70-x-50)(300+20x)=-20x2+100x+6000,∵70-x-50>0,且x≥0,∴0≤x<20;(2)∵y=-20x2+100x+6000=-20(x-)2+6125,∴当x=时,y取得最大值,最大值为6125,答:当降价2.5元时,每星期的利润最大,最大利润是6125元.【解析】(1)根据“总利润=单件利润×销售量”列出函数解析式,由“确保盈利”可得x的取值范围.(2)将所得函数解析式配方成顶点式可得最大值.本题主要考查二次函数的应用,解题的关键是根据题意确定相等关系,并据此列出函数解析式.20.【答案】30 20 90°【解析】解:(1)从条形图可知,B组有15人,从扇形图可知,B组所占的百分比是15%,D组所占的百分比是30%,E组所占的百分比是20%,15÷15%=100,100×30%=30,100×20%=20,∴m=30,n=20;(2)“C组”所对应的圆心角的度数是25÷100×360°=90°;(3)估计这所学校本次听写比赛不合格的学生人数为:900×(10%+15%+25%)=450人.(1)根据条形图和扇形图确定B组的人数环绕所占的百分比求出样本容量,求出m、n的值;(2)求出C组”所占的百分比,得到所对应的圆心角的度数;(3)求出不合格人数所占的百分比,求出该校本次听写比赛不合格的学生人数.本题考查的是频数分布表、条形图和扇形图的知识,利用统计图获取正确信息是解题的关键.注意频数、频率和样本容量之间的关系的应用.21.【答案】解:过点D作水平线的垂线,即(DE⊥AB),垂足为E,则C、D、E在一条直线上,设DE的长为x米,在Rt△BCE中,∠CBE=45°,∴CE=BE=CD+DE=(10+x)米,在Rt△ADE中,∠A=35°,AE=AB+BE=20+10+x=30+x,tan A=,∴tan35°=≈,解得:x≈70,答:假山的高度DE约为70米.【解析】过点D作水平线的垂线,利用直角三角形中的三角函数解答即可.此题是解直角三角形的应用---仰角和俯角,解本题的关键是利用三角函数解答.22.【答案】解:(1)用②AD∥BC和④∠A=∠C作条件,能判定四边形是平行四边形理由:∵AD∥BC,∴∠A+∠B=180°,∵∠A=∠C,∴∠B+∠C=180°,∴AB∥CD,∴四边形ABCD是平行四边形;(3)抽取两张卡片上的等式的所有可能出现的结果为:其中,含①③,②③,②④,③④的组合都能构成平行四边形,∴使四边形不能构成平行四边形的概率==.【解析】(1)根据平行线的性质得出∠A+∠B=180°,再根据∠A=∠C,得到∠B+∠C=180°,进而得到AB∥CD,即可得出结论;(2)先画树状图,再根据所得的结果,判断使四边形不能构成平行四边形的概率.本题主要考查了平行四边形的判定以及概率的计算,解题时注意:两组对边平行的四边形是平行四边形.当有两个元素时,可用树形图列举,也可以列表列举.23.【答案】(1)证明:连接OD,∵OC=OD,∴∠C=∠ODC,∵OC⊥AB,∴∠COF=90°,∴∠OCD+∠CFO=90°,∵GE为⊙O的切线,∴∠ODC+∠EDF=90°,∵∠EFD=∠CFO,∴∠EFD=∠EDF,∴EF=ED.(2)解:∵OF:OB=1:3,⊙O的半径为3,∴OF=1,∵∠EFD=∠EDF,∴EF=ED,在Rt△ODE中,OD=3,DE=x,则EF=x,OE=1+x,∵OD2+DE2=OE2,∴32+x2=(x+1)2,解得x=4,∴DE=4,OE=5,∵AG为⊙O的切线,∴AG⊥AE,∴∠GAE=90°,而∠OED=∠GEA,∴Rt△EOD∽Rt△EGA,∴=,即=,∴AG=6.【解析】(1)连接OD,只要证明∠EFD=∠EDF即可解决问题.(2)先求得EF=1,设DE=EF=x,则OF=x+1,在Rt△ODE中,根据勾股定理求得DE=4,OE=5,根据切线的性质由AG为⊙O的切线得∠GAE=90°,再证明Rt△EOD∽Rt△EGA,根据相似三角形对应边成比例即可求得.本题考查了切线的判定和性质、勾股定理的应用、相似三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,学会用方程的思想思考问题,属于中考常考题型.24.【答案】解:(1)由题意,得AB=BC=CD=AD=8,∠C=∠A=90°,在Rt△BCP中,∠C=90°,∴,∵,∴PC=6,∴RP=2,∴,∵RQ⊥BQ,∴∠RQP=90°,∴∠C=∠RQP,∵∠BPC=∠RPQ,∴△PBC∽△PRQ,∴,∴,∴;(2)的比值随点Q的运动没有变化,如图1,∵MQ∥AB,∴∠1=∠ABP,∠QMR=∠A,∵∠C=∠A=90°,∴∠QMR=∠C=90°,∵RQ⊥BQ,∴∠1+∠RQM=90°、∠ABC=∠ABP+∠PBC=90°,∴∠RQM=∠PBC,∴△RMQ∽△PCB,∴,∵PC=6,BC=8,∴,∴的比值随点Q的运动没有变化,比值为;(3)如图2,延长BP交AD的延长线于点N,∵PD∥AB,∴,∵NA=ND+AD=8+ND,∴,∴,∴,∵PD∥AB,MQ∥AB,∴PD∥MQ,∴,∵,RM=y,∴又PD=2,,∴,∴,如图3,当点R与点A重合时,PQ取得最大值,∵∠ABQ=∠NBA、∠AQB=∠NAB=90°,∴△ABQ∽△NAB,∴=,即=,解得x=,则它的定义域是.【解析】(1)先求出PC=6、PB=10、RP=2,再证△PBC∽△PRQ 得,据此可得;(2)证△RMQ∽△PCB 得,根据PC=6、BC=8知,据此可得答案;(3)由PD∥AB知,据此可得、PN=,由、RM=y 知,根据PD∥MQ 得,即,整理可得函数解析式,当点R与点A重合时,PQ取得最大值,根据△ABQ∽△NAB知=,求得x=,从而得出x的取值范围.本题主要考查相似三角形的综合题,解题的关键是熟练掌握正方形的性质、勾股定理及相似三角形的判定与性质.25.【答案】解:(1)抛物线的顶点D的横坐标是2,则x=-=2…①,抛物线过是A(0,-3),则:函数的表达式为:y=ax2+bx-3,把B点坐标代入上式得:9=25a+5b-3…②,联立①、②解得:a=,b=-,c=-3,∴抛物线的解析式为:y=x2-x-3,当x=2时,y=-,即顶点D的坐标为(2,-);(2)A(0,-3),B(5,9),则AB=13,①当AB=AC时,设点C坐标(m,0),则:(m)2+(-3)2=132,解得:m=±4,即点C坐标为:(4,0)或(-4,0);②当AB=BC时,设点C坐标(m,0),则:(5-m)2+92=132,解得:m=5,即:点C坐标为(5,0)或(5-2,0),③当AC=BC时,设点C坐标(m,0),则:点C为AB的垂直平分线于x轴的交点,则点C坐标为(,0),故:存在,点C的坐标为:(4,0)或(-4,0)或(5,0)或(5-2,0)或(,0);(3)过点P作y轴的平行线交AB于点H,设:AB所在的直线过点A(0,-3),则设直线AB的表达式为y=kx-3,把点B坐标代入上式,9=5k-3,则k=,故函数的表达式为:y=x-3,设:点P坐标为(m,m2-m-3),则点H坐标为(m,m-3),S△PAB=•PH•x B=(-m2+12m),当m=2.5时,S△PAB取得最大值为:,答:△PAB的面积最大值为.【解析】(1)抛物线的顶点D的横坐标是2,则x=-=2,抛物线过是A(0,-3),则:函数的表达式为:y=ax2+bx-3,把B点坐标代入函数表达式,即可求解;(2)分AB=AC、AB=BC、AC=BC,三种情况求解即可;(3)由S△PAB =•PH•x B,即可求解.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.第11页,共11页。

2019年辽宁朝阳中考数学试卷及答案

2019年辽宁朝阳中考数学试卷及答案

【导语】⽆忧考中考频道⼩编提醒参加2019中考的所有考⽣,辽宁朝阳2019年中考将于6⽉中旬陆续开始举⾏,辽宁朝阳中考时间具体安排考⽣可点击进⼊“”栏⽬查询,请⼴⼤考⽣提前准备好准考证及考试需要的⽤品,然后顺顺利利参加本届初中学业⽔平考试,具体如下:为⽅便考⽣及时估分,⽆忧考中考频道将在本次中考结束后陆续公布2019年辽宁朝阳中考数学试卷及答案信息。

考⽣可点击进⼊辽宁朝阳中考频道《、》栏⽬查看辽宁朝阳中考数学试卷及答案信息。

中考科⽬语⽂、数学、英语、物理、化学、政治、历史、地理、⽣物、体育(各地区有所不同,具体以地区教育考试院公布为准。

)考试必读可以在中考前⼀天下午去考场看看,熟悉⼀下考场环境。

确定去考场的⽅式,是坐公共汽车、出租车还是骑⾃⾏车等;确定去考场的⾏车路线。

在校内去考场的路上,⼀旦发⽣意外,要及时求助于监考⽼师或警察。

中考所⽤的2B铅笔、0.5mm⿊⾊墨⽔签字笔、橡⽪、垫板、圆规、尺⼦以及准考证等,都应归纳在⼀起,在前⼀天晚上就准备好,放⼊⼀个透明的塑料袋或⽂件袋中。

涂答题卡的2B铅笔要提前削好(如果是⾃动笔,要防⽌买到假冒产品)。

不要⾃⼰夹带草稿纸,不要把⼿机、⼩灵通等通讯⼯具带⼊考场,如果带了的话⼀定要关机(以免对⾃⼰造成影响)。

有些地区禁⽌携带⼿机等通讯⼯具进⼊考场,否则将以作弊论处。

中考数学⽆忧考为了能让⼴⼤考⽣及时⽅便获取辽宁朝阳中考数学试卷答案信息,特别整理了《2019辽宁朝阳中考数学试卷及答案》发布⼊⼝供⼴⼤考⽣查阅。

数学真题/答案[解析]专题推荐参加2019中考的考⽣可直接查阅各科2019年辽宁朝阳中考试题及答案信息!考试须知⼀、考⽣凭《准考证》(社会⼈员须持准考证及⾝份证)提前15分钟进⼊指定试室(英语科提前20分钟)对号⼊座,并将《准考证》放在桌⼦左上⾓,以便查对。

考⽣除带必要的⽂具,如2B铅笔、⿊⾊字迹的钢笔或签字笔、直尺、圆规、三⾓板、橡⽪外,禁⽌携带任何书籍、笔记、资料、报刊、草稿纸以及各种⽆线通讯⼯具(如寻呼机、移动电话)、电⼦笔记本等与考试⽆关的物品(数学科考试可带指定型号的计算器)。

2019年辽宁省各市中考数学试卷真题汇编(11套真题试卷)

2019年辽宁省各市中考数学试卷真题汇编(11套真题试卷)

2019年辽宁省各市中考数学试卷真题汇编(11套真题试卷)
2019年辽宁省各市中考数学试卷真题汇编
(11套真题试卷)
2019年辽宁省⼤连市中考数学试卷 (1)
2019年辽宁省鞍⼭市中考数学试卷 (10)
2019年辽宁省朝阳市中考数学试卷 (18)
2019年辽宁省丹东市中考数学试卷 (25)
2019年辽宁省抚顺市中考数学试卷 (32)
2019年辽宁省葫芦岛市中考数学试卷 (40)
2019年辽宁省锦州市中考数学试卷 (47)
2019年辽宁省辽阳市中考数学试卷 (54)
2019年辽宁省盘锦市中考数学试卷 (63)
2019年辽宁省铁岭市中考数学试卷 (70)
2019年辽宁省营⼝市中考数学试卷 (77)
- 1 -
上⼀页下⼀页。

2019年辽宁省朝阳市中考数学试卷-学生版+解析版(无水印)

2019年辽宁省朝阳市中考数学试卷-学生版+解析版(无水印)

2019年辽宁省朝阳市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2019•朝阳)3的相反数是( ) A .3B .3-C .13D .13-2.(3分)(2019•朝阳)如图是由5个相同的小立方块搭成的几何体,这个几何体的左视图是( )A .B .C .D .3.(3分)(2019•朝阳)一元二次方程210x x --=的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根D .无法判断4.(3分)(2019•朝阳)下列调查中,调查方式最适合普查(全面调查)的是( ) A .对全国初中学生视力情况的调查 B .对2019年央视春节联欢晚会收视率的调查 C .对一批飞机零部件的合格情况的调查 D .对我市居民节水意识的调查5.(3分)(2019•朝阳)若点1(1,)A y -,2(2,)B y -,3(3,)C y 在反比例函数8y x=-的图象上,则1y ,2y ,3y 的大小关系是( ) A .123y y y <<B .213y y y <<C .132y y y <<D .321y y y <<6.(3分)(2019•朝阳)关于x ,y 的二元一次方程组2mx y n x ny m +=⎧⎨-=⎩的解是02x y =⎧⎨=⎩,则m n+的值为( ) A .4B .2C .1D .07.(3分)(2019•朝阳)把Rt ABC ∆与Rt CDE ∆放在同一水平桌面上,摆放成如图所示形状,使两个直角顶点重合,两条斜边平行,若25B ∠=︒,58D ∠=︒,则BCE ∠的度数是()A .83︒B .57︒C .54︒D .33︒8.(3分)(2019•朝阳)李老师为了了解本班学生每周课外阅读文章的数量,抽取了7名同学进行调查,调查结果如下(单位:篇/周):,其中有一个数据不小心被墨迹污损.已知这组数据的平均数为4,那么这组数据的众数与中位数分别为( ) A .5,4B .3,5C .4,4D .4,59.(3分)(2019•朝阳)如图,在矩形ABCD 中对角线AC 与BD 相交于点O ,CE BD ⊥,垂足为点E ,5CE =,且2EO DE =,则AD 的长为( )A .B .C .10D .10.(3分)(2019•朝阳)已知二次函数2(0)y ax bx c a =++≠的图象如图所示,现给出下列结论:①0abc >;②930a b c ++=;③248b ac a -<;④50a b c ++>. 其中正确结论的个数是( )A .1B .2C .3D .4二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)(2019•朝阳)2019年5月20日,第15届中国国际文化产业博览交易会落下帷幕.短短5天时间,有7800000人次参观数据7800000用科学记数法表示为 . 12.(3分)(2019•朝阳)因式分解:2122x -+= .13.(3分)(2019•朝阳)从点(1,6)M -,1(2N ,12),(2,3)E -,(3,2)F --中任取一点,所取的点恰好在反比例函数6y x=的图象上的概率为 . 14.(3分)(2019•朝阳)不等式组620240x x -⎧⎨+>⎩…的解集是 .15.(3分)(2019•朝阳)如图,把三角形纸片折叠,使点A 、点C 都与点B 重合,折痕分别为EF ,DG ,得到60BDE ∠=︒,90BED ∠=︒,若2DE =,则FG 的长为 .16.(3分)(2019•朝阳)如图,直线113y x =+与x 轴交于点M ,与y 轴交于点A ,过点A作AB AM ⊥,交x 轴于点B ,以AB 为边在AB 的右侧作正方形1ABCA ,延长1A C 交x 轴于点1B ,以11A B 为边在11A B 的右侧作正方形1112A B C A ⋯按照此规律继续作下去,再将每个正方形分割成四个全等的直角三角形和一个小正方形,每个小正方形的每条边都与其中的一条坐标轴平行,正方形1ABCA ,1112A B C A ,⋯,111n n n n A B C A ---中的阴影部分的面积分别为1S ,2S ,⋯,n S ,则n S 可表示为 .三、解答题(本大题共9小题,共72分,解答应写出必要的文字说明、证明过程或演算步骤) 17.(5分)(2019•朝阳)先化简,再求值:2232624288a a a a a a a ++-÷+--+,其中11|6|()2a -=--.18.(6分)(2019•朝阳)佳佳文具店购进A,B两种款式的笔袋,其中A种笔袋的单价比B种袋的单价低10%.已知店主购进A种笔袋用了810元,购进B种笔袋用了600元,且所购进的A种笔袋的数量比B种笔袋多20个.请问:文具店购进A,B两种款式的笔袋各多少个?19.(7分)(2019•朝阳)某校组织学生开展为贫困山区孩子捐书活动,要求捐赠的书籍类别为科普类、文学类、漫画类、哲学故事类、环保类,学校图书管理员对所捐赠的书籍随机抽查了部分进行统计,并对获取的数据进行了整理,根据整理结果,绘制了如图所示的两幅不完整的统计图.已知所统计的数据中,捐赠的哲学故事类书籍和文学类书籍的数量相同.请根据以上信息,解答下列问题:(1)本次被抽查的书籍有册.(2)补全条形统计图.(3)若此次捐赠的书籍共1200册,请你估计所捐赠的科普类书籍有多少册.20.(7分)(2019•朝阳)有5张不透明的卡片,除正面上的图案不同外,其他均相同.将这5张卡片背面向上洗匀后放在桌面上.(1)从中随机抽取1张卡片,卡片上的图案是中心对称图形的概率为.(2)若从中随机抽取1张卡片后不放回,再随机抽取1张,请用画树状图或列表的方法,求两次所抽取的卡片恰好都是轴对称图形的概率.21.(7分)(2019•朝阳)小明同学在综合实践活动中对本地的一座古塔进行了测量.如图,他在山坡坡脚P处测得古塔顶端M的仰角为60︒,沿山坡向上走25m到达D处,测得古塔顶端M的仰角为30︒.已知山坡坡度3:4i=,即3tan4θ=,请你帮助小明计算古塔的高度ME.(结果精确到0.1m 1.732)≈22.(8分)(2019•朝阳)如图,四边形ABCD为菱形,以AD为直径作O交AB于点F,连接DB交O于点H,E是BC上的一点,且BE BF=,连接DE.(1)求证:DE 是O 的切线.(2)若2BF =,DH =O 的半径.23.(10分)(2019•朝阳)网络销售是一种重要的销售方式.某乡镇农贸公司新开设了一家网店,销售当地农产品.其中一种当地特产在网上试销售,其成本为每千克10元.公司在试销售期间,调查发现,每天销售量()y kg 与销售单价x (元)满足如图所示的函数关系(其中1030)x <….(1)直接写出y 与x 之间的函数关系式及自变量的取值范围.(2)若农贸公司每天销售该特产的利润要达到3100元,则销售单价x 应定为多少元? (3)设每天销售该特产的利润为W 元,若1430x <…,求:销售单价x 为多少元时,每天的销售利润最大?最大利润是多少元?24.(10分)(2019•朝阳)如图,四边形ABCD 是正方形,连接AC ,将ABC ∆绕点A 逆时针旋转α得AEF ∆,连接CF ,O 为CF 的中点,连接OE ,OD .(1)如图1,当45α=︒时,请直接写出OE 与OD 的关系(不用证明). (2)如图2,当4590α︒<<︒时,(1)中的结论是否成立?请说明理由.(3)当360α=︒时,若AB =O 经过的路径长.25.(12分)(2019•朝阳)如图,在平面直角坐标系中,直线26y x =+与x 轴交于点A ,与y 轴交点C ,抛物线22y x bx c =-++过A ,C 两点,与x 轴交于另一点B . (1)求抛物线的解析式.(2)在直线AC 上方的抛物线上有一动点E ,连接BE ,与直线AC 相交于点F ,当12E F B F=时,求sin EBA ∠的值.(3)点N 是抛物线对称轴上一点,在(2)的条件下,若点E 位于对称轴左侧,在抛物线上是否存在一点M ,使以M ,N ,E ,B 为顶点的四边形是平行四边形?若存在,直接写出点M 的坐标;若不存在,请说明理由.2019年辽宁省朝阳市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2019•朝阳)3的相反数是( ) A .3B .3-C .13D .13-【解答】解:根据相反数的概念及意义可知:3的相反数是3-. 故选:B .2.(3分)(2019•朝阳)如图是由5个相同的小立方块搭成的几何体,这个几何体的左视图是( )A .B .C .D .【解答】解:从左边看,从左往右小正方形的个数依次为:2,1.左视图如下:故选:C .3.(3分)(2019•朝阳)一元二次方程210x x --=的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根D .无法判断【解答】解:△2(1)4(1)50=--⨯-=>,∴方程有两个不相等的两个实数根.故选:A .4.(3分)(2019•朝阳)下列调查中,调查方式最适合普查(全面调查)的是( )A .对全国初中学生视力情况的调查B .对2019年央视春节联欢晚会收视率的调查C .对一批飞机零部件的合格情况的调查D .对我市居民节水意识的调查【解答】解:A 、对全国初中学生视力情况的调查,适合用抽样调查,A 不合题意;B 、对2019年央视春节联欢晚会收视率的调查,适合用抽样调查,B 不合题意;C 、对一批飞机零部件的合格情况的调查,适合全面调查,C 符合题意;D 、对我市居民节水意识的调查,适合用抽样调查,D 不合题意;故选:C .5.(3分)(2019•朝阳)若点1(1,)A y -,2(2,)B y -,3(3,)C y 在反比例函数8y x=-的图象上,则1y ,2y ,3y 的大小关系是( ) A .123y y y <<B .213y y y <<C .132y y y <<D .321y y y <<【解答】解:点1(1,)A y -、2(2,)B y -、3(3,)C y 在反比例函数8y x =-的图象上,1881y ∴=-=-,2842y =-=-,383y =-, 又8483-<<,321y y y ∴<<.故选:D .6.(3分)(2019•朝阳)关于x ,y 的二元一次方程组2mx y n x ny m +=⎧⎨-=⎩的解是02x y =⎧⎨=⎩,则m n+的值为( ) A .4B .2C .1D .0【解答】解:把02x y =⎧⎨=⎩代入得:222n n m =⎧⎨-=⎩,解得:22m n =-⎧⎨=⎩,则0m n +=, 故选:D .。

辽宁省朝阳市2019-2020学年中考第四次质量检测数学试题含解析

辽宁省朝阳市2019-2020学年中考第四次质量检测数学试题含解析

辽宁省朝阳市2019-2020学年中考第四次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.方程x 2﹣3x+2=0的解是( )A .x 1=1,x 2=2B .x 1=﹣1,x 2=﹣2C .x 1=1,x 2=﹣2D .x 1=﹣1,x 2=22.如果2(2)2a a -=-,那么( )A .2x <B .2x ≤C .2x >D .2x ≥ 3.函数y=x 2+bx+c 与y=x 的图象如图所示,有以下结论:①b 2﹣4c >1;②b+c+1=1;③3b+c+6=1;④当1<x <3时,x 2+(b ﹣1)x+c <1.其中正确的个数为A .1B .2C .3D .4 4.等式33=11x x x x --++成立的x 的取值范围在数轴上可表示为( ) A .B .C .D . 5.如图所示的几何体的主视图是( )A .B .C .D .6.如图,△ABC 中,AB=2,AC=3,1<BC <5,分别以AB 、BC 、AC 为边向外作正方形ABIH 、BCDE 和正方形ACFG ,则图中阴影部分的最大面积为( )A.6 B.9 C.11 D.无法计算7.方程2131xx+=-的解是()A.2-B.1-C.2D.48.在△ABC中,∠C=90°,sinA=45,则tanB等于()A.43B.34C.35D.459.如图,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是()A.右转80°B.左转80°C.右转100°D.左转100°10.如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为()A.B.C.D.11.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法:①2a+b=0,②当﹣1≤x≤3时,y<0;③3a+c=0;④若(x1,y1)(x2、y2)在函数图象上,当0<x1<x2时,y1<y2,其中正确的是()A.①②④B.①③C.①②③D.①③④12.如图1,在△ABC中,AB=BC,AC=m,D,E分别是AB,BC边的中点,点P为AC边上的一个动点,连接PD,PB,PE.设AP=x,图1中某条线段长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是()A.PD B.PB C.PE D.PC二、填空题:(本大题共6个小题,每小题4分,共24分.)13.A.如果一个正多边形的一个外角是45°,那么这个正多边形对角线的条数一共有_____条.B.用计算器计算:7•tan63°27′≈_____(精确到0.01).14.如图,点A、B、C是⊙O上的三点,且△AOB是正三角形,则∠ACB的度数是。

辽宁省朝阳市2019-2020学年中考数学教学质量调研试卷含解析

辽宁省朝阳市2019-2020学年中考数学教学质量调研试卷含解析

辽宁省朝阳市2019-2020学年中考数学教学质量调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.cos45°的值是( )A .12B .32C .22D .1 2.下列说法正确的是( )A .对角线相等且互相垂直的四边形是菱形B .对角线互相平分的四边形是正方形C .对角线互相垂直的四边形是平行四边形D .对角线相等且互相平分的四边形是矩形3.整数a 、b 在数轴上对应点的位置如图,实数c 在数轴上且满足a c b ≤≤,如果数轴上有一实数d ,始终满足0c d +≥,则实数d 应满足( ).A .d a ≤B .a d b ≤≤C .d b ≤D .d b ≥4.某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线图,则符合这一结果的实验最有可能的是( )A .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B .掷一枚质地均匀的正六面体骰子,向上一面的点数是4C .一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌,抽中红桃D .抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面仍朝上5.如图,等腰直角三角形纸片ABC 中,∠C=90°,把纸片沿EF 对折后,点A 恰好落在BC 上的点D 处,点CE=1,AC=4,则下列结论一定正确的个数是( )①∠CDE=∠DFB ;②BD >CE ;③2CD ;④△DCE 与△BDF 的周长相等.A.1个B.2个C.3个D.4个6.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是( )A.左、右两个几何体的主视图相同B.左、右两个几何体的左视图相同C.左、右两个几何体的俯视图不相同D.左、右两个几何体的三视图不相同7.如图所示是由相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,那么该几何体的主视图是( )A.B.C.D.8.如图1,在△ABC中,AB=BC,AC=m,D,E分别是AB,BC边的中点,点P为AC边上的一个动点,连接PD,PB,PE.设AP=x,图1中某条线段长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是()A.PD B.PB C.PE D.PC9.-2的绝对值是()A.2 B.-2 C.±2 D.1 210.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为( )A .8×1012B .8×1013C .8×1014D .0.8×101311.如图,在Rt ABC ∆中,90ACB ∠=︒,3tan 3CAB ∠=,3AB =,点D 在以斜边AB 为直径的半圆上,点M 是CD 的三等分点,当点D 沿着半圆,从点A 运动到点B 时,点M 运动的路径长为( )A .π或2πB .2π或3πC .3π或πD .4π或3π 12.已知抛物线y=x 2-2mx-4(m >0)的顶点M 关于坐标原点O 的对称点为M′,若点M′在这条抛物线上,则点M 的坐标为( )A .(1,-5)B .(3,-13)C .(2,-8)D .(4,-20)二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,线段 AB 是⊙O 的直径,弦 CD ⊥AB ,AB=8,∠CAB=22.5°,则 CD 的长等于___________________________.14.一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是_____.15.如图,在△ABC 中,AD 、BE 分别是边BC 、AC 上的中线,AB=AC=5,cos ∠C=45,那么GE=_______.16.已知n >1,M =1n n -,N =1n n-,P =1n n +,则M 、N 、P 的大小关系为 . 17.如图,矩形ABCD 中,AB=2AD ,点A(0,1),点C 、D 在反比例函数y=k x (k >0)的图象上,AB 与x 轴的正半轴相交于点E ,若E 为AB 的中点,则k 的值为_____.18.如图,已知圆O的半径为2,A是圆上一定点,B是OA的中点,E是圆上一动点,以BE为边作正方形BEFG(B、E、F、G四点按逆时针顺序排列),当点E绕⊙O圆周旋转时,点F的运动轨迹是_________图形三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图1,在平面直角坐标系中,一次函数y=﹣1x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB=,BC=,AC=;(1)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图1.请从下列A、B两题中任选一题作答,我选择题.A:①求线段AD的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.B:①求线段DE的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.20.(6分)在平面直角坐标系xOy中,点A在x轴的正半轴上,点B的坐标为(0,4),BC平分∠ABO 交x轴于点C(2,0).点P是线段AB上一个动点(点P不与点A,B重合),过点P作AB的垂线分别与x轴交于点D,与y轴交于点E,DF平分∠PDO交y轴于点F.设点D的横坐标为t.(1)如图1,当0<t<2时,求证:DF∥CB;(2)当t<0时,在图2中补全图形,判断直线DF与CB的位置关系,并证明你的结论;(3)若点M的坐标为(4,-1),在点P运动的过程中,当△MCE的面积等于△BCO面积的58倍时,直接写出此时点E的坐标.21.(6分)在“双十二”期间,,A B两个超市开展促销活动,活动方式如下:A超市:购物金额打9折后,若超过2000元再优惠300元;B超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在,A B两个超市的标价相同,根据商场的活动方式:(1)若一次性付款4200元购买这种篮球,则在B商场购买的数量比在A商场购买的数量多5个,请求出这种篮球的标价;(2)学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少.(直接写出方案)22.(8分)我市某学校在“行读石鼓阁”研学活动中,参观了我市中华石鼓园,石鼓阁是宝鸡城市新地标.建筑面积7200平方米,为我国西北第一高阁.秦汉高台门阙的建筑风格,追求稳定之中的飞扬灵动,深厚之中的巧妙组合,使景观功能和标志功能融为一体.小亮想知道石鼓阁的高是多少,他和同学李梅对石鼓阁进行测量.测量方案如下:如图,李梅在小亮和“石鼓阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,李梅看着镜面上的标记,她来回走动,走到点D时,看到“石鼓阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得李梅眼睛与地面的高度ED=1.6米,CD=2.2米,然后,在阳光下,小亮从D点沿DM方向走了29.4米,此时“石鼓阁”影子与小亮的影子顶端恰好重合,测得小亮身高1.7米,影长FH=3.4米.已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“石鼓阁”的高AB的长度.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年辽宁省朝阳市中考数学试卷一、选择题(每小题3分,共30分) 1.3的相反数是( )A .3B .﹣3C .D .﹣2.如图是由5个相同的小立方块搭成的几何体,这个几何体的左视图是( )A .B .C .D .3.一元二次方程x 2﹣x ﹣1=0的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根D .无法判断4.下列调查中,调查方式最适合普查(全面调查)的是( ) A .对全国初中学生视力情况的调查 B .对2019年央视春节联欢晚会收视率的调查 C .对一批飞机零部件的合格情况的调查 D .对我市居民节水意识的调查5.若点A (﹣1,y 1),B (﹣2,y 2),C (3,y 3)在反比例函数y =﹣的图象上,则y 1,y 2,y 3的大小关系是( ) A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 1<y 3<y 2D .y 3<y 2<y 16.关于x ,y 的二元一次方程组的解是,则m +n 的值为( )A .4B .2C .1D .07.把Rt △ABC 与Rt △CDE 放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,若∠B =25°,∠D =58°,则∠BCE 的度数是( )A .83°B .57°C .54°D .33°8.李老师为了了解本班学生每周课外阅读文章的数量,抽取了7名同学进行调查,调查结果如下(单位:篇/周):,其中有一个数据不小心被墨迹污损.已知这组数据的平均数为4,那么这组数据的众数与中位数分别为()A.5,4 B.3,5 C.4,4 D.4,59.如图,在矩形ABCD中对角线AC与BD相交于点O,CE⊥BD,垂足为点E,CE=5,且EO=2DE,则AD的长为()A.5B.6C.10 D.610.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给出下列结论:①abc>0;②9a+3b+c=0;③b2﹣4ac<8a;④5a+b+c>0.其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题(每小题3分,共18分)11.2019年5月20日,第15届中国国际文化产业博览交易会落下帷幕.短短5天时间,有7800000人次参观数据7800000用科学记数法表示为.12.因式分解:﹣x2+2=.13.从点M(﹣1,6),N(, 12),E(2,﹣3),F(﹣3,﹣2)中任取一点,所取的点恰好在反比例函数y=的图象上的概率为.14.不等式组的解集是.15.如图,把三角形纸片折叠,使点A、点C都与点B重合,折痕分别为EF,DG,得到∠BDE=60°,∠BED=90°,若DE=2,则FG的长为.16.如图,直线y =x +1与x 轴交于点M ,与y 轴交于点A ,过点A 作AB ⊥AM ,交x 轴于点B ,以AB 为边在AB 的右侧作正方形ABCA 1,延长A 1C 交x 轴于点B 1,以A 1B 1为边在A 1B 1的右侧作正方形A 1B 1C 1A 2…按照此规律继续作下去,再将每个正方形分割成四个全等的直角三角形和一个小正方形,每个小正方形的每条边都与其中的一条坐标轴平行,正方形ABCA 1,A 1B 1C 1A 2,…,A n ﹣1B n ﹣1C n ﹣1A n 中的阴影部分的面积分别为S 1,S 2,…,S n ,则S n 可表示为 .三、解答题17.(5分)先化简,再求值:﹣÷,其中a =|﹣6|﹣()﹣1.18.(6分)佳佳文具店购进A ,B 两种款式的笔袋,其中A 种笔袋的单价比B 种袋的单价低10%.已知店主购进A 种笔袋用了810元,购进B 种笔袋用了600元,且所购进的A 种笔袋的数量比B 种笔袋多20个.请问:文具店购进A ,B 两种款式的笔袋各多少个?19.(7分)某校组织学生开展为贫困山区孩子捐书活动,要求捐赠的书籍类别为科普类、文学类、漫画类、哲学故事类、环保类,学校图书管理员对所捐赠的书籍随机抽查了部分进行统计,并对获取的数据进行了整理,根据整理结果,绘制了如图所示的两幅不完整的统计图.已知所统计的数据中,捐赠的哲学故事类书籍和文学类书籍的数量相同.请根据以上信息,解答下列问题:(1)本次被抽查的书籍有 册. (2)补全条形统计图.(3)若此次捐赠的书籍共1200册,请你估计所捐赠的科普类书籍有多少册.20.(7分)有5张不透明的卡片,除正面上的图案不同外,其他均相同.将这5张卡片背面向上洗匀后放在桌面上.(1)从中随机抽取1张卡片,卡片上的图案是中心对称图形的概率为.(2)若从中随机抽取1张卡片后不放回,再随机抽取1张,请用画树状图或列表的方法,求两次所抽取的卡片恰好都是轴对称图形的概率.21.(7分)小明同学在综合实践活动中对本地的一座古塔进行了测量.如图,他在山坡坡脚P处测得古塔顶端M的仰角为60°,沿山坡向上走25m到达D处,测得古塔顶端M的仰角为30°.已知山坡坡度i=3:4,即tanθ=,请你帮助小明计算古塔的高度ME.(结果精确到0.1m,参考数据:≈1.732)22.(8分)如图,四边形ABCD为菱形,以AD为直径作⊙O交AB于点F,连接DB交⊙O于点H,E是BC 上的一点,且BE=BF,连接DE.(1)求证:DE是⊙O的切线.(2)若BF=2,DH=,求⊙O的半径.23.(10分)网络销售是一种重要的销售方式.某乡镇农贸公司新开设了一家网店,销售当地农产品.其中一种当地特产在网上试销售,其成本为每千克10元.公司在试销售期间,调查发现,每天销售量y (kg)与销售单价x(元)满足如图所示的函数关系(其中10<x≤30).(1)直接写出y与x之间的函数关系式及自变量的取值范围.(2)若农贸公司每天销售该特产的利润要达到3100元,则销售单价x应定为多少元?(3)设每天销售该特产的利润为W元,若14<x≤30,求:销售单价x为多少元时,每天的销售利润最大?最大利润是多少元?24.(10分)如图,四边形ABCD是正方形,连接AC,将△ABC绕点A逆时针旋转α得△AEF,连接CF,O 为CF的中点,连接OE,OD.(1)如图1,当α=45°时,请直接写出OE与OD的关系(不用证明).(2)如图2,当45°<α<90°时,(1)中的结论是否成立?请说明理由.(3)当α=360°时,若AB=4,请直接写出点O经过的路径长.25.(12分)如图,在平面直角坐标系中,直线y=2x+6与x轴交于点A,与y轴交点C,抛物线y=﹣2x2+bx+c 过A,C两点,与x轴交于另一点B.(1)求抛物线的解析式.(2)在直线AC上方的抛物线上有一动点E,连接BE,与直线AC相交于点F,当EF=BF时,求sin ∠EBA的值.(3)点N是抛物线对称轴上一点,在(2)的条件下,若点E位于对称轴左侧,在抛物线上是否存在一点M,使以M,N,E,B为顶点的四边形是平行四边形?若存在,直接写出点M的坐标;若不存在,请说明理由.2019年辽宁省朝阳市中考数学试卷解析一、选择题1.解:根据相反数的概念及意义可知:3的相反数是﹣3. 故选:B .2.解:从左边看,从左往右小正方形的个数依次为:2,1.左视图如下:故选:C .3.解:∵△=(﹣1)2﹣4×(﹣1)=5>0, ∴方程有两个不相等的两个实数根. 故选:A .4.解:A 、对全国初中学生视力情况的调查,适合用抽样调查,A 不合题意;B 、对2019年央视春节联欢晚会收视率的调查,适合用抽样调查,B 不合题意;C 、对一批飞机零部件的合格情况的调查,适合全面调查,C 符合题意;D 、对我市居民节水意识的调查,适合用抽样调查,D 不合题意;故选:C .5.解:∵点A (﹣1,y 1)、B (﹣2,y 2)、C (3,y 3)在反比例函数y =﹣的图象上,∴y 1=﹣=8,y 2=﹣=4,y 3=﹣,又∵﹣<4<8, ∴y 3<y 2<y 1. 故选:D .6.解:把代入得:,解得:,则m +n =0, 故选:D .7.解:过点C 作CF ∥AB , ∴∠BCF =∠B =25°. 又AB ∥DE , ∴CF ∥DE .∴∠FCE=∠E=90°﹣∠D=90°﹣58°=32°.∴∠BCE=∠BCF+∠FCE=25°+32°=57°.故选:B.8.解:设被污损的数据为x,则4+x+2+5+5+4+3=4×7,解得x=5,∴这组数据中出现次数最多的是5,即众数为5篇,将这7个数据从小到大排列为2、3、4、4、5、5、5,∴这组数据的中位数为4篇,故选:A.9.解:∵四边形ABCD是矩形,∴∠ADC=90°,BD=AC,OD=BD,OC=AC,∴OC=OD,∵EO=2DE,∴设DE=x,OE=2x,∴OD=OC=3x,AC=6x,∵CE⊥BD,∴∠DEC=∠OEC=90°,在Rt△OCE中,∵OE2+CE2=OC2,∴(2x)2+52=(3x)2,∵x>0,∴DE=,AC=6,∴CD===,∴AD===5,故选:A.10.解:①由图象可知:a>0,c<0,∴由于对称轴>0,∴b<0,∴abc>0,故①正确;②抛物线过(3,0),∴x=3,y=9a+3b+c=0,故②正确;③顶点坐标为:(,)由图象可知:<﹣2,∵a>0,∴4ac﹣b2<﹣8a,即b2﹣4ac>8a,故③错误;④由图象可知:>1,a>0,∴2a+b<0,∵9a+3b+c=0,∴c=﹣9a﹣3b,∴5a+b+c=5a+b﹣9a﹣3b=﹣4a﹣2b=﹣2(2a+b)>0,故④正确;故选:C.二、填空题(本大题共6小题,每小题3分,共18分)11.解:数据7800000用科学记数法表示为7.8×106.故答案为:7.8×106.12.解:﹣x2+2=(x2﹣4)=(x+2)(x﹣2)故答案为:(x+2)(x﹣2).13.解:∵k=6,﹣1×6=﹣6≠6,×12=6,2×(﹣3)=﹣6≠6,﹣3×(﹣2)=6,∴N、F两个点在反比例函数y=的图象上,故该点在反比例函数y=的图象上的概率是=.故答案为.14.解:,由不等式①,得x≤3,由不等式②,得x>﹣2,故原不等式组的解集是﹣2<x≤3,故答案为:﹣2<x≤3.15.解:∵把三角形纸片折叠,使点A、点C都与点B重合,∴AF=BF,AE=BE,BG=CG,DC=DB,∴FG=AC,∵∠BDE=60°,∠BED=90°,∴∠EBD=30°,∴DB=2DE=4,∴BE===2,∴AE=BE=2,DC=DB=4,∴AC=AE+DE+DC=2+2+4=6+2,∴FG=AC=3+,故答案为:3+.16.解:在直线y=x+1中,当x=0时,y=1;当y=0时,x=﹣3;∴OA=1,OM=3,∴tan∠AMO=,∵∠OAB+∠OAM=90°,∠AMO+∠OAM=90°,∴∠OAB=∠AMO,∴tan∠OAB=,∴OB=.∵,∴,易得tan,∴,∴,∴,同理可得,,…,=.故答案为:.三、解答题(本大题共9小题,共72分,解答应写出必要的文字说明、证明过程或演算步骤)17.解:原式=﹣÷=﹣•=﹣=,当a =|﹣6|﹣()﹣1=6﹣2=4时,原式==.18.解:设文具店购进B 种款式的笔袋x 个,则购进A 种款式的笔袋(x +20)个,依题意,得:=(1﹣10%),解得:x =40,经检验,x =40是所列分式方程的解,且符合题意,∴x +20=60.答:文具店购进A 种款式的笔袋60个,B 种款式的笔袋40个.19.解:(1)∵捐赠的哲学故事类书籍和文学类书籍的数量相同,∴本次被抽查的书籍有:(3+9+12)÷(1﹣30%﹣30%)=60(册),故答案为:60;(2)文学类有60×30%=18(册),则哲学故事类18册,补全的条形统计如右图所示;(3)1200×=180(册), 答:所捐赠的科普类书籍有180册.20.解:(1)从中随机抽取1张卡片,卡片上的图案是中心对称图形的概率为,故答案为:;(2)画树状图如下:由树状图知,共有20种等可能结果,其中两次所抽取的卡片恰好都是轴对称图形的有6种结果,∴两次所抽取的卡片恰好都是轴对称图形的概率为.21.解:作DC⊥EP交EP的延长线于C,作DF⊥ME于F,作PH⊥DF于H,则DC=PH=FE,DH=CP,HF=PE,设DC=3x,∵tanθ=,∴CP=4x,由勾股定理得,PD2=DC2+CP2,即252=(3x)2+(4x)2,解得,x=5,则DC=3x=15,CP=4x=20,∴DH=CP=20,PH=FE=DC=15,设MF=ym,则ME=(y+15)m,在Rt△MDF中,tan∠MDF=,则DF==y,在Rt△MPE中,tan∠MPE=,则PE==(y+15),∵DH=DF﹣HF,∴y﹣(y+15)=20,解得,y=7.5+10,∴ME=MF+FE=7.5+10+15≈39.8,答:古塔的高度ME约为39.8m.22.(1)证明:如图1,连接DF,∵四边形ABCD为菱形,∴AB=BC=CD=DA,AD∥BC,∠DAB=∠C,∵BF=BE,∴AB﹣BF=BC﹣BE,即AF=CE,∴△DAF≌△DCE(SAS),∴∠DFA=∠DEC,∵AD是⊙O的直径,∴∠DFA=90°,∴∠DEC=90°∵AD∥BC,∴∠ADE=∠DEC=90°,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)解:如图2,连接AH,∵AD是⊙O的直径,∴∠AHD=∠DFA=90°,∴∠DFB=90°,∵AD=AB,DH=,∴DB=2DH=2,在Rt△ADF和Rt△BDF中,∵DF2=AD2﹣AF2,DF2=BD2﹣BF2,∴AD2﹣AF2=DB2﹣BF2,∴AD2﹣(AD﹣BF)2=DB2﹣BF2,∴,∴AD=5.∴⊙O的半径为.23.解:(1)由图象知,当10<≤14时,y=640;当14<x≤30时,设y=kx+b,将(14,640),(30,320)代入得,解得,∴y与x之间的函数关系式为y=﹣20x+920;综上所述,y=;(2)(14﹣10)×640=2560,∵2560<3100,∴x>14,∴(x﹣10)(﹣20x+920)=3100,解得:x1=41(不合题意舍去),x2=15,答:销售单价x应定为15元;(3)当14<x≤30时,W=(x﹣10)(﹣20x+920)=﹣20(x﹣28)2+6480,∵﹣20<0,14<x≤30,∴当x=28时,每天的销售利润最大,最大利润是6480元.24.解:(1)OE=OD,OE⊥OD;理由如下:由旋转的性质得:AF=AC,∠AFE=∠ACB,∵四边形ABCD是正方形,∴∠ACB=∠ACD=∠FAC=45°,∴∠ACF=∠AFC=(180°﹣45°)=67.5°,∴∠DCF═∠EFC=22.5°,∵∠FEC=90°,O为CF的中点,∴OE=CF=OC=OF,同理:OD=CF,∴OE=OD=OC=OF,∴∠EOC=2∠EFO=45°,∠DOF=2∠DCO=45°,∴∠DOE=180°﹣45°﹣45°=90°,∴OE⊥OD;(2)当45°<α<90°时,(1)中的结论成立,理由如下:延长EO到点M,使OM=EO,连接DM、CM、DE,如图2所示:∵O为CF的中点,∴OC=OF,在△COM和△FOE中,,∴△COM≌△FOE(SAS),∴∠MCF=∠EFC,CM=EF,∵四边形ABCD是正方形,∴AB=BC=CD,∠BAC=∠BCA=45°,∵△ABC绕点A逆时针旋转α得△AEF,∴AB=AE=EF=CD,AC=AF,∴CD=CM,∠ACF=∠AFC,∵∠ACF=∠ACD+∠FCD,∠AFC=∠AFE+∠CFE,∠ACD=∠AFE=45°,∴∠FCD=∠CFE=∠MCF,∵∠EAC+∠DAE=45°,∠F AD+∠DAE=45°,∴∠EAC=∠FAD,在△ACF中,∵∠ACF+∠AFC+∠CAF=180°,∴∠DAE+2∠FAD+∠DCM+90°=180°,∵∠FAD+∠DAE=45°,∴∠FAD+∠DCM=45°,∴∠DAE=∠DCM,在△ADE和△CDM中,,∴△ADE≌△CDM(SAS),∴DE=DM,∵OE=OM,∴OE⊥OD,在△COM和△COD中,,∴△COM≌△COD(SAS),∴OM=OD,∴OE=OD,∴OE=OD,OE⊥OD;(3)连接AO,如图3所示:∵AC=AF,CO=OF,∴AO⊥CF,∴∠AOC=90°,∴点O在以AC为直径的圆上运动,∵α=360°,∴点O经过的路径长等于以AC为直径的圆的周长,∵AC=AB=×4=8,∴点O经过的路径长为:πd=8π.25.解:(1)在y =2x +6中,当x =0时y =6,当y =0时x =﹣3, ∴C (0,6)、A (﹣3,0),∵抛物线y =﹣2x 2+bx +c 的图象经过A 、C 两点,∴,解得, ∴抛物线的解析式为y =﹣2x 2﹣4x +6;(2)令﹣2x 2﹣4x +6=0,解得x 1=﹣3,x 2=1,∴B (1,0),∵点E 的横坐标为t ,∴E (t ,﹣2t 2﹣4t +6),如图,过点E 作EH ⊥x 轴于点H ,过点F 作FG ⊥x 轴于点G ,则EH ∥FG ,∵EF =BF ,∴===,∵BH =1﹣t ,∴BG =BH =﹣t ,∴点F 的横坐标为+t ,∴F (+t , +t ),∴﹣2t 2﹣4t +6=(+t ), ∴t 2+3t +2=0,解得t 1=﹣2,t 2=﹣1,当t =﹣2时,﹣2t 2﹣4t +6=6,当t =﹣1时,﹣2t 2﹣4t +6=8,∴E 1(﹣2,6),E 2(﹣1,8),当点E 的坐标为(﹣2,6)时,在Rt △EBH 中,EH =6,BH =3,∴BE ===3,∴sin ∠EBA ===;同理,当点E 的坐标为(﹣1,8)时,sin ∠EBA ==,∴sin ∠EBA 的值为或;(3)∵点N 在对称轴上,∴x N ==﹣1,①当EB为平行四边形的边时,分两种情况:(Ⅰ)点M在对称轴右侧时,BN为对角线,∵E(﹣2,6),x N=﹣1,﹣1﹣(﹣2)=1,B(1,0),∴x M=1+1=2,当x=2时,y=﹣2×22﹣4×2+6=﹣10,∴M(2,﹣10);(Ⅱ)点M在对称轴左侧时,BM为对角线,∵x N=﹣1,B(1,0),1﹣(﹣1)=2,E(﹣2,6),∴x M=﹣2﹣2=﹣4,当x=﹣4时,y=﹣2×(﹣4)2﹣4×(﹣4)+6=﹣10,∴M(﹣4,﹣10);②当EB为平行四边形的对角线时,∵B(1,0),E(﹣2,6),x N=﹣1,∴1+(﹣2)=﹣1+x M,∴x M=0,当x=0时,y=6,∴M(0,6);综上所述,M的坐标为(2,﹣10)或(﹣4,﹣10)或(0,6).。

相关文档
最新文档