数量关系中排列组合问题的七大解题策略

合集下载

解排列组合应用题的21种策略

解排列组合应用题的21种策略

解排列组合应用题的21种策略排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略.1.相邻问题绑定方法:标题规定将几个相邻元素绑定成一个组,作为一个大元素参与安排例1.a,b,c,d,e五人并排站成一排,如果a,b必须相邻且b在a的右边,那么不同的排法种数有a、 B类60种,C类48种,D类36种,D类24种2.不相邻问题插空法:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2七个人并排站成一排。

如果甲方和乙方不得相邻,则不同的安排类型为A、1440 B、3600 C、4820 D和48003.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例3 a.B、C、D和e并排站成一排。

如果B必须站在a的右边(a和B不能相邻),有多少种不同的安排a、24种b、60种c、90种d、120种4.标签排序问题的分步方法:将元素排列到指定位置,首先按照规定排列一个元素,然后在第二步排列另一个元素。

如果你继续这样做,你可以依次完成例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有a、6种b、9种c、11种d、23种5.有序分配问题:有序分配问题是指将元素分成若干组,可以逐步分成若干组例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是a、 1260种B,2025种C,2520种D,5040种(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同样的分配方案也是如此44c12c84c4a、ccc种b、3ccc种c、cca种d、种3a34124844412484441248336.全员分配的分组方法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?2)五本不同的书将分发给四名学生,每个学生至少一本。

排列组合常见题型及解题策略

排列组合常见题型及解题策略

排列组合常见题型及解题策略一..相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.【例1】,,,,A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,那么不同的排法种数有【解析】:把,A B视为一人,且B固定在A的右边,则本题相当于4人的全排列,4424A=种【例2】3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是()A. 360B. 188C. 216D. 96【解析】:间接法6位同学站成一排,3位女生中有且只有两位女生相邻的排法有,2222 3242C A A A=432种,其中男生甲站两端的有1222223232A C A A A=144,符合条件的排法故共有288二.相离问题插空法:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.【例1】七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是【解析】:除甲乙外,其余5个排列数为55A种,再用甲乙去插6个空位有26A种,不同的排法种数是52 563600A A=种【例2】高三(一)班学要安排毕业晚会的4各音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是【解析】:不同排法的种数为5256A A=3600【例3】停车场划出一排12个停车位置,今有8辆车需要停放.要求空车位置连在一起,不同的停车方法有多少种?【解析】:先排好8辆车有A 88种方法,要求空车位置连在一起,则在每2辆之间及其两端的9个空档中任选一个,将空车位置插入有C 19种方法,所以共有C19A88种方法.注:题中*表示元素,○表示空.三.元素分析法(位置分析法):某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。

【例1】2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有()A. 36种B. 12种C. 18种D. 48种【解析】:方法一:从后两项工作出发,采取位置分析法。

排列组合问题,常见解题策略

排列组合问题,常见解题策略

排列组合问题,常见解题策略曹永玉排列组合问题是高考的必考内容,也是高考题中正确率最低的题目之一。

究其原因,是因为其思维方式独特,解题思路新颖,如果对题意认识出现偏差的话,极易出现计数中的“重复”和“遗漏”。

教学中,提高学生解排列组合题的有效途径是将一些常见题型进行方法归类,构造模型解题,这样有利于学生认识模式,进而熟练应用。

本文列举了几种常见的排列组合问题的解题策略,以期对大家有所帮助。

一、排列问题1.某个(或某几个)元素要排在指定位置——特殊元素“优先法”。

例1. 乒乓球队的10 名队员中有3名主力队员,派5名参加比赛,3名主力要排在第一、三、五位置,其余7队员中选2名排在第二、四位置,那么不同的出场安排共有多少种?解析:3名主力的位置确定在第一、三、五位中选,将他们优先安排,有A72A33种可能,然后从其他队员中选2 人安排在第二、四位置,有A72种排法,因此结果有A33种。

点评:先排特殊(特殊元素或特殊位置)是解决排列问题的基本方法。

2.某个元素不排在指定位置——排除法。

例2. 5个人排队,其中甲不在排头的排法有多少?解析1:(排除法)5人的全排列数A55,其中甲在排头的排列数A44,故甲不在排头的排列数A55 --A44=96种解析2:(特殊元素优先法):先从余下的4个位置中选一位置排上,甲有A41种方法,然后其他4个元素排在余下的四个位置A44,所以总计A44A41种排法。

解析3:(特殊元素优先法):先从甲以外的4人中选出一人排在特殊位置——排头A41,然后其他四个元素排在余下的4个位置A44,所以总计A41A44种排法。

3. 相邻问题——捆绑法例3. 4名男生和4名女生排成一排照相,要求4名女生必须相邻,有多少种排法?解析:4名女生看作一个整体(捆绑),与4名男生共五个元素全排列A55,但这4名女生内部又有顺序A44,故A44A55种不同排法。

4. 小团体问题——捆绑法例4.5人站一排,其中甲、乙之间有且只有一人的站法有多少?解析:先从甲、乙之外的3人中选一人,然后将甲、乙排在他的两边有C31A22种方式,3人形成一个小团体,看作一个元素再与余下的2人排列有A33种。

排列组合问题的解答技巧和记忆方法

排列组合问题的解答技巧和记忆方法

排列组合问题的解题策略关键词:排列组合,解题策略①分堆问题;②解决排列、组合问题的一些常用方法:错位法、剪截法(隔板法)、捆绑法、剔除法、插孔法、消序法(留空法). 一、相临问题——捆绑法例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法?解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有种。

评注:一般地: 个人站成一排,其中某个人相邻,可用“捆绑”法解决,共有种排法。

二、不相临问题——选空插入法例2.7名学生站成一排,甲乙互不相邻有多少不同排法?解:甲、乙二人不相邻的排法一般应用“插空”法,所以甲、乙二人不相邻的排法总数应为:种 .评注:若个人站成一排,其中个人不相邻,可用“插空”法解决,共有种排法。

三、复杂问题——总体排除法在直接法考虑比较难,或分类不清或多种时,可考虑用“排除法”,解决几何问题必须注意几何图形本身对其构成元素的限制。

例3.(1996年全国高考题)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个.解:从7个点中取3个点的取法有种,但其中正六边形的对角线所含的中心和顶点三点共线不能组成三角形,有3条,所以满足条件的三角形共有-3=32个.四、特殊元素——优先考虑法对于含有限定条件的排列组合应用题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排。

例4.(1995年上海高考题) 1名老师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法种.解:先考虑特殊元素(老师)的排法,因老师不排在两端,故可在中间三个位置上任选一个位置,有种,而其余学生的排法有种,所以共有=72种不同的排法.例5.(2000年全国高考题)乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有种.解:由于第一、三、五位置特殊,只能安排主力队员,有种排法,而其余7名队员选出2名安排在第二、四位置,有种排法,所以不同的出场安排共有=252种.五、多元问题——分类讨论法对于元素多,选取情况多,可按要求进行分类讨论,最后总计。

排列组合解题方法和策略总结

排列组合解题方法和策略总结

排列组合解题方法和策略总结排列组合是数学中一个重要的概念,它涉及到从n个不同元素中取出m个元素(n>m)进行排列或组合的问题。

排列组合问题在日常生活和科学研究中有着广泛的应用,因此掌握排列组合的解题方法和策略非常重要。

以下是排列组合解题方法和策略的总结:1.明确问题要求:在解决排列组合问题时,首先要明确问题的要求,确定是排列问题还是组合问题,以及具体的限制条件。

2.确定元素范围:根据问题要求,确定所选取元素的范围,明确哪些元素可以选取,哪些元素不能选取。

3.列出所有可能的排列或组合:根据排列组合的公式,列出所有可能的排列或组合,确保不遗漏任何一种可能性。

4.分类讨论:对于一些复杂的问题,需要进行分类讨论。

根据问题的特点,将问题分成若干个子问题,分别求解子问题的排列组合情况。

5.排除法:在某些情况下,可以通过排除法求解问题。

根据问题的限制条件,排除一些不可能的情况,从而减少计算量。

6.递推关系:对于一些具有递推关系的问题,可以利用递推关系求解。

通过递推关系,逐步推导出最终的排列组合情况。

7.容斥原理:容斥原理是解决排列组合问题的一种重要方法。

通过容斥原理,可以将多个排列或组合的情况合并为一个,从而简化计算过程。

8.实际应用:排列组合问题在日常生活和科学研究中有着广泛的应用。

通过实际应用,可以加深对排列组合概念的理解,并掌握解题方法和策略。

解决排列组合问题需要掌握一定的方法和策略。

通过明确问题要求、确定元素范围、分类讨论、排除法、递推关系、容斥原理等方法和策略,可以有效地解决各种排列组合问题。

同时,通过实际应用,可以加深对排列组合概念的理解,提高解题能力。

排列组合在日常生活和科学研究中有着广泛的应用,以下是其中一些典型的应用场景:1.生日庆祝:在生日庆祝中,排列组合可以用来确定不同的庆祝活动安排。

例如,如果有5个朋友参加生日派对,可以使用排列组合确定他们坐在一张圆桌上的不同方式。

2.彩票购买:在购买彩票时,可以使用排列组合来计算不同号码的组合。

[数量关系] 排列组合与概率问题

[数量关系] 排列组合与概率问题

[数量关系] 排列组合与概率问题[数量关系]排列组合与概率问题排列组合与概率问题在国家公务员考试中出现频率较大,几乎每年都会考查该类题型。

公务员的日常工作更多涉及到统计相关知识,因此这部分题型会愈加被强调。

在现实生活中我们经常会遇到排座次、分配任务等问题,用到的都是排列组合原理,即便是最简单的概率问题也要利用排列组合原理计算。

与此同时,排列组合中还有很多经典问题模型,其结论可以帮助我们速解该部分题型。

一、基础原理二、基本解题策略面对排列组合问题常用以下三种策略解题:1.合理分类策略①类与类之间必须互斥(互不相容);②分类涵盖所有情况。

2.准确分步策略①步与步之间互相独立(不相互影响);②步与步之间保持连续性。

3.先组后排策略当排列问题和组合问题相混合时,应该先通过组合问题将需要排列的元素选择出来,然后再进行排列。

【例题1】班上从7名男生和5名女生中选出3男2女去参加五个竞赛,每个竞赛参加一人。

问有多少种选法?A.120B.600C.1440D.42000中公解析:此题答案为D。

此题既涉及排列问题(参加五个不同的竞赛),又涉及组合问题(从12名学生中选出5名),应该先组后排。

三、概率问题概率是一个介于0到1之间的数,是对随机事件发生可能性的测度。

概率问题经常与排列组合结合考查。

因此解决概率问题要先明确概率的定义,然后运用排列组合知识求解。

1.传统概率问题2.条件概率在事件B已经发生前提下事件A发生的概率称为条件概率,即A在B条件下的概率。

P(AB)为AB同时发生的概率,P(B)为事件B单独发生的概率。

【例题3】小孙的口袋里有四颗糖,一颗巧克力味的,一颗果味的,两颗牛奶味的。

小孙任意从口袋里取出两颗糖,他看了看后说,其中一颗是牛奶味的。

问小孙取出的另一颗糖也是牛奶味的可能性(概率)是多少?排列组合与概率问题在国家公务员考试中出现频率较大,几乎每年都会考查该类题型。

公务员的日常工作更多涉及到统计相关知识,因此这部分题型会愈加被强调。

排列组合问题的解题策略

排列组合问题的解题策略

排列组合问题的解题策略关键词:排列组合,解题策略一、相临问题——捆绑法例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法?解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有种。

评注:一般地: 个人站成一排,其中某个人相邻,可用“捆绑”法解决,共有种排法。

二、不相临问题——选空插入法例2.7名学生站成一排,甲乙互不相邻有多少不同排法?解:甲、乙二人不相邻的排法一般应用“插空”法,所以甲、乙二人不相邻的排法总数应为:种 .评注:若个人站成一排,其中个人不相邻,可用“插空”法解决,共有种排法。

三、复杂问题——总体排除法在直接法考虑比较难,或分类不清或多种时,可考虑用“排除法”,解决几何问题必须注意几何图形本身对其构成元素的限制。

例3.(1996年全国高考题)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个.解:从7个点中取3个点的取法有种,但其中正六边形的对角线所含的中心和顶点三点共线不能组成三角形,有3条,所以满足条件的三角形共有-3=32个.四、特殊元素——优先考虑法对于含有限定条件的排列组合应用题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排。

例4.(1995年上海高考题) 1名老师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法种.解:先考虑特殊元素(老师)的排法,因老师不排在两端,故可在中间三个位置上任选一个位置,有种,而其余学生的排法有种,所以共有=72种不同的排法.例5.(2000年全国高考题)乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有种.解:由于第一、三、五位置特殊,只能安排主力队员,有种排法,而其余7名队员选出2名安排在第二、四位置,有种排法,所以不同的出场安排共有=252种.五、多元问题——分类讨论法对于元素多,选取情况多,可按要求进行分类讨论,最后总计。

2024公务员联考行测数量关系解题技巧

2024公务员联考行测数量关系解题技巧

2024公务员联考行测解题技巧1、利用插空法解决排列组合题“排列组合问题”是行测数量关系中常考的题型,也是大家觉得较难的题型。

往往很多同学看到排列全颗就直接放弃不做,其实解排列组合题目也是讲究方法的,当我们找准方法时,解题就能事半功倍了。

一、要点梳理插空法:当排列组合题中,有元素要求不相邻,先将其它元素排好,再将指定的不相邻的元素指入到已排好的元素的间隙或两端位置。

二、例题解析【例1】某学习平台的学习内容由观看视频、阅读文章、收藏分享、论坛交流、考试答题五个部分组成。

某考生要先后学完这五个部分,若观看视频和阅读文章不能连续进行,该学员学习顺序的选择有()种。

A.24B.72C.96D.120答案:B【解析】题目要求观看视频和阅读文章不能连续进行,也就是说两者不相邻,那我们可以使用插空法解题。

即先将除观看视频和文章阅读外的三个学习内容排好,题目当中说考生需要先后完成五个部分的学习且五个部分的学习内容不同,那收藏分享、论坛交流、考试答题中部分内容的安排可列式为A33,而三个元素排好包含两端会产生4个位置,接下来在4个位置中选两个位置插入观看视频和阅读文章即可,又因为需要考虑观看视频和阅读文章的顺序,所以列式为A24。

第一步安排其他三个学习内容,第二步按排观看视频和阅读文章,分步运算用乘法,因此该学员学习顺序共有A33×A24=72种,故选B项。

【例2】某条道路一侧共有20盥路灯。

为了节约用电,计划只打开其中的10盏。

但为了不影响行路安全,要求相邻的两盏路灯中至少有一盏是打开的,则共有()种开灯方案。

A.2B.6C.11D.13答案:c【解析】题目要求说相邻的两盏路灯中至少有一盏是打开的,也就是找不到两盏相邻的不亮的路灯,即不亮的路灯不能相邻,选择插空法。

先将亮着的10盏路灯排好,因为路灯与路灯一样,没有顺序要求,所以10盏亮着的路灯就一种情况。

10盏路灯包括两端会形成11个位置C1011=11种,故选择c项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中公教育研究与辅导专家邹继阳
排列组合问题是历年公务员考试行测的必考题型,并且随着近年公务员考试越来越热门,国考中这部分题型的难度也在逐渐的加大,解题方法也趋于多样化。

解答排列组合问题,必须认真审题,明确是属于排列问题还是组合问题,或者属于排列与组合的混合问题;同时要抓住问题的本质特征,灵活运用基本原理和公式进行分析,还要注意讲究一些策略和方法技巧。

一、排列和组合的概念
排列:从n个不同元素中,任取m个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。

组合:从n个不同元素种取出m个元素拼成一组,称为从n个不同元素取出m个元素的一个组合。

二、七大解题策略
1.特殊优先法
特殊元素,优先处理;特殊位置,优先考虑。

对于有附加条件的排列组合问题,一般采用:先考虑满足特殊的元素和位置,再考虑其它元素和位置。

例:从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有()
(A) 280种(B)240种(C)180种(D)96种
正确答案:【B】
解析:由于甲、乙两名志愿者都不能从事翻译工作,所以翻译工作就是“特殊”位置,因此翻译工作从剩下的四名志愿者中任选一人有C(4,1)=4种不同的选法,再从其余的5人中任选3人从事导游、导购、保洁三项不同的工作有A(5,3)=10种不同的选法,所以不同的选派方案共有C(4,1)×A(5,3)=240种,所以选B。

2.科学分类法
问题中既有元素的限制,又有排列的问题,一般是先元素(即组合)后排列。

对于较复杂的排列组合问题,由于情况繁多,因此要对各种不同情况,进行科学分类,以便有条不紊地进行解答,避免重复或遗漏现象发生。

同时明确分类后的各种情况符合加法原理,要做相加运算。

例:某单位邀请10为教师中的6为参加一个会议,其中甲,乙两位不能同时参加,则邀请的不同方法有()种。

A.84
B.98
C.112
D.140
正确答案【D】
解析:按要求:甲、乙不能同时参加分成以下几类:
a.甲参加,乙不参加,那么从剩下的8位教师中选出5位,有C(8,5)=56种;
b.乙参加,甲不参加,同(a)有56种;
c.甲、乙都不参加,那么从剩下的8位教师中选出6位,有C(8,6)=28种。

故共有56+56+28=140种。

3.间接法
即部分符合条件排除法,采用正难则反,等价转换的策略。

为求完成某件事的方法种数,如果我们分步考虑时,会出现某一步的方法种数不确定或计数有重复,就要考虑用分类法,分类法是解决复杂问题的有效手段,而当正面分类情况种数较多时,则就考虑用间接法计数.
例:从6名男生,5名女生中任选4人参加竞赛,要求男女至少各1名,有多少种不同的选法?
A.240 B.310 C.720 D.1080
正确答案【B】
解析:此题从正面考虑的话情况比较多,如果采用间接法,男女至少各一人的反面就是分别只选男生或者女生,这样就可以变化成C(11,4)-C(6,4)-C(5,4)=310。

4.捆绑法
所谓捆绑法,指在解决对于某几个元素要求相邻的问题时,先整体考虑,将相邻元素视作一个整体参与排序,然后再单独考虑这个整体内部各元素间顺序。

注意:其首要特点是相邻,其次捆绑法一般都应用在不同物体的排序问题中。

例:5个男生和3个女生排成一排,3个女生必须排在一起,有多少种不同排法?
A.240 B.320 C.450 D.480
正确答案【B】
解析:采用捆绑法,把3个女生视为一个元素,与5个男生进行排列,共有 A(6,6)=6x5x4x3x2种,然后3个女生内部再进行排列,有A(3,3)=6种,两次是分步完成的,应采用乘法,所以排法共有:A(6,6)×A(3,3) =320(种)。

5.插空法
所谓插空法,指在解决对于某几个元素要求不相邻的问题时,先将其它元素排好,再将指定的不相邻的元素插入已排好元素的间隙或两端位置。

注意:a.首要特点是不邻,其次是插空法一般应用在排序问题中。

b.将要求不相邻元素插入排好元素时,要注释是否能够插入两端位置。

c.对于捆绑法和插空法的区别,可简单记为“相邻问题捆绑法,不邻问题插空法”。

例:若有甲、乙、丙、丁、戊五个人排队,要求甲和乙两个人必须不站在一起,且甲和乙不能站在两端,则有多少排队方法?
A.9 B.12 C.15 D.20
正确答案【B】
解析:先排好丙、丁、戊三个人,然后将甲、乙插到丙、丁、戊所形成的两个空中,因
为甲、乙不站两端,所以只有两个空可选,方法总数为A(3,3)×A(2,2)=12种。

6.插板法
所谓插板法,指在解决若干相同元素分组,要求每组至少一个元素时,采用将比所需分组数目少1的板插入元素之间形成分组的解题策略。

注意:其首要特点是元素相同,其次是每组至少含有一个元素,一般用于组合问题中。

例:将8个完全相同的球放到3个不同的盒子中,要求每个盒子至少放一个球,一共有多少种方法?
A.24 B.28 C.32 D.48
正确答案【B】
解析:解决这道问题只需要将8个球分成三组,然后依次将每一组分别放到一个盒子中即可。

因此问题只需要把8个球分成三组即可,于是可以将8个球排成一排,然后用两个板插到8个球所形成的空里,即可顺利的把8个球分成三组。

其中第一个板前面的球放到第一个盒子中,第一个板和第二个板之间的球放到第二个盒子中,第二个板后面的球放到第三个盒子中去。

因为每个盒子至少放一个球,因此两个板不能放在同一个空里且板不能放在两端,于是其放板的方法数是C(8,2)=28种。

(注:板也是无区别的)
7.选“一”法,类似除法
对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一同进行排列,然后用总的排列数除以这几个元素的全排列数。

这里的“选一”是说:和所求“相似”的排列方法有很多,我们只取其中的一种。

例:五人排队甲在乙前面的排法有几种?
A.60 B.120 C.150 D.180
正确答案【A】
解析:五个人的安排方式有5!=120种,其中包括甲在乙前面和甲在乙后面两种情形(这里没有提到甲乙相邻不相邻,可以不去考虑),题目要求之前甲在乙前面一种情况,所以答案是A(5,5)÷A(2,2)=60种。

以上方法是解决排列组合问题经常用的,注意理解掌握。

最后,行测中数量关系的题目部分难度比较大,答题耗时比较多,希望考试调整好答题的心态和答题顺序,在备考过程中掌握好技巧和方法,提高答题的效率。

相关文档
最新文档