开关直流升压电源(BOOST)设计
boost电路工作原理

boost电路工作原理
Boost电路是一种用于升压的直流-直流转换器。
它主要由输入电源、开关管、电感、二极管和负载组成。
其工作原理如下:
1. 输入电源:Boost电路的输入电源通常是直流电源,如电池或稳定的直流电源。
2. 开关管:Boost电路中的开关管主要起到开关的作用,在周期性开关的控制下,将电能从输入电源传输到电感中。
3. 电感:电感是Boost电路中的核心元件,它通过储存能量来实现升压功能。
当开关管关闭时,电感中的电流不会突然变为零,而是通过电感中的磁场产生反向电动势,将能量传输到负载电路中。
4. 二极管:在Boost电路中,二极管主要起到导电和反向电流保护的作用。
当开关管断开时,电感中的储能电流无法直接流向负载电路,而是通过二极管的导通,形成一个回路,使得电感中的能量能够传输到负载电路中。
5. 负载:Boost电路中的负载是指输出端的电路或设备,它是通过Boost电路升压后得到的电压输出。
工作原理总结起来就是:当开关管导通时,输入电源的电能通过电感储存;当开关管断开时,电感中的储能电流经过二极管导通,将能量传输到负载电路中,从而实现电压的升高。
需要注意的是,由于Boost电路采用了周期性开关,因此需要一定的控制电路来实现开关管的开关控制。
这通常由微控制器或电子开关控制芯片来完成。
此外,Boost电路在升压过程中会产生一定的功率损耗,因此在设计时需要考虑选择合适的元件以提高效率和减少损耗。
boost电路分析

图一boost升压电路,开关直流升压电路(即所谓的boost或者step-up电路)原理2007-09-29 13:28the boost converter,或者叫step-up converter,是一种开关直流升压电路,它可以是输出电压比输入电压高。
基本电路图见图一。
假定那个开关(三极管或者mos管)已经断开了很长时间,所有的元件都处于理想状态,电容电压等于输入电压。
下面要分充电和放电两个部分来说明这个电路充电过程在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。
这时,输入电压流过电感。
二极管防止电容对地放电。
由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。
随着电感电流增加,电感里储存了一些能量。
放电过程图三如图三,这是当开关断开(三极管截止)时的等效电路。
当开关断开(三极管截止)时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。
而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。
升压完毕。
说起来升压过程就是一个电感的能量传递过程。
充电时,电感吸收能量,放电时电感放出能量。
如果电容量足够大,那么在输出端就可以在放电过程中保持一个持续的电流。
如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。
一些补充:AA电压低,反激升压电路制约功率和效率的瓶颈在开关管,整流管,及其他损耗(含电感上).1 电感不能用磁体太小的(无法存应有的能量),线径太细的(脉冲电流大,会有线损大).2 整流管大都用肖特基,大家一样,无特色,在输出3.3V时,整流损耗约百分之十.3 开关管,关键在这儿了,放大量要足够进饱和,导通压降一定要小,是成功的关键.总共才一伏,管子上耗多了就没电出来了,因些管压降应选最大电流时不超过0.2--0.3V,单只做不到就多只并联。
Boost电路的结构及工作原理_Boost的应用电路

Boost电路的结构及工作原理_Boost的应用电路Boost电路定义Boost升压电路的英文名称为theboostconverter,或者叫step-upconverter,是一种开关直流升压电路,它能够将直流电变为另一固定电压或可调电压的直流电,也称为直流直流变换器(DC/DCConverter)。
直流直流变换器通过对电力电子器件的通断控制,将直流电压断续地加到负载上,通过改变占空比改变输出电压平均值。
假定那个开关(三极管或者mos管)已经断开了很长时间,所有的元件都处于理想状态,那么电容电压等于输入电压。
开关管Q也为PWM控制方式,但最大占空比Dy必须限制,不允许Dy=1的状态下工作。
电感Lf在输入侧,成为升压电感。
Boost电路结构下面以UC3842的Boost电路为例介绍Boost电路的结构。
图中输入电压Vi=16~20V,既供给芯片,又供给升压变换。
开关管以UC3842设定的频率周期开闭,使电感L储存能量并释放能量。
当开关管导通时,电感以Vi/L的速度充电,把能量储存在L中。
当开关截止时,L产生反向感应电压,通过二极管D把储存的电能以(V o-Vi)/L的速度释放到输出电容器C2中。
输出电压由传递的能量多少来控制,而传递能量的多少通过电感电流的峰值来控制。
整个稳压过程由二个闭环来控制,即:闭环1输出电压通过取样后反馈给误差放大器,用于同放大器内部的2.5V基准电压比较后产生误差电压,误差放大器控制由于负载变化造成的输出电压的变化。
闭环2Rs为开关管源极到公共端间的电流检测电阻,开关管导通期间流经电感L的电流在Rs上产生的电压送至PwM比较器同相输入端,与误差电压进行比较后控制调制脉冲的脉宽,从而保持稳定的输出电压。
误差信号实际控制着峰值电感电流。
Boost电路的工作原理Boost电路的工作原理分为充电和放电两个部分来说明。
充电过程。
高压升压boost方案

高压升压boost方案引言高压升压(boost)方案是一种常见的电路设计方案,用于将低电压升至较高电压的电路。
在许多电子设备中,需要使用较高的电压来驱动特定的元件或执行特定的功能。
本文将介绍高压升压Boost方案的原理、应用、设计步骤以及常见问题和解决方案。
原理高压升压Boost方案使用一种称为升压转换器的电路来将低电压转换为高电压。
这种电路通常由以下几个关键部分组成:1.输入电源:提供低电压输入能量的电源,通常是电池或低压直流电源。
2.电感:通过电感储存能量,并在合适的时机释放能量。
3.开关管:控制电路的打开和关闭,以控制能量的传输。
4.整流器:将储存在电感中的能量转换为所需的高电压输出。
高压升压Boost方案的基本工作原理是:在时间t1,开关管打开,电感储存能量;在时间t2,开关管关闭,电感释放储存的能量;在时间t3,能量通过整流器转换为高电压输出。
这个过程不断循环,以提供稳定的高电压输出。
应用高压升压Boost方案广泛应用于许多电子设备中,包括但不限于以下领域:1.电池供电设备:在一些需要高电压驱动的设备中,使用高压升压方案可以提高设备的效率。
2.LED照明:在LED驱动电路中,使用高压升压方案可以提供足够的电压来驱动LED灯。
3.通信设备:在一些无线通信设备中,使用高压升压方案可以提供足够的电压来驱动射频模块。
4.物联网设备:在一些物联网设备中,例如传感器节点,使用高压升压方案可以提供所需的高电压。
设计步骤设计一个高压升压Boost方案需要经过以下几个步骤:1.确定输出电压:根据应用需求确定所需的高电压输出。
2.计算工作周期:根据输入电压和输出电压计算工作周期和占空比。
3.选择元器件:根据工作周期和电流要求选择合适的电感、开关管和整流器。
4.建立电路图:根据选定的元器件,绘制高压升压Boost方案的电路图。
5.进行模拟仿真:使用电路仿真工具验证电路的性能和稳定性。
6.调整参数和优化设计:根据仿真结果调整元器件参数并优化设计,以达到最佳的高压升压效果。
boost升压电路电感和占空比的设计

boost升压电路电感和占空比的设计Boost升压电路是一种常见的直流电压变换器,它可以将输入电压升高到高于输出电压的水平。
这种电路通常用于电源设计、电力电子设备和LED驱动等领域。
在设计和应用Boost升压电路时,电感和占空比是非常重要的参数,下面将对它们的设计进行详细介绍。
一、电感的设计在Boost升压电路中,电感的主要作用是储存能量,以便在开关关闭时提供电流。
电感的大小会影响到输出电压的稳定性和效率。
因此,在设计电感时需要考虑以下因素:1.电感值:电感值的选择取决于输入电压、输出电压、最大输出电流和开关频率等参数。
通常情况下,电感值越大,输出电压的稳定性越好,但同时也会增加电感的体积和成本。
因此,需要根据实际需求选择合适的电感值。
2.磁芯:电感的磁芯也是设计时需要考虑的因素。
常用的磁芯材料有铁氧体、坡莫合金、纳米晶等。
不同的磁芯材料具有不同的磁导率和饱和磁通密度等参数,因此需要根据实际需求选择合适的磁芯材料。
3.线圈:线圈是电感的重要组成部分,它的匝数和线径会影响到电感的性能。
匝数越多,电感值越大;线径越粗,电流容量越大。
因此,在设计线圈时需要考虑匝数和线径的匹配,以获得最佳的电感性能。
二、占空比的设计占空比是指在一个开关周期内,开关导通的时间与整个周期之比。
在Boost升压电路中,占空比是控制输出电压和电流的关键参数。
占空比的设计需要考虑以下因素:1.输出电压和电流:输出电压和电流的大小会影响到占空比的设计。
如果输出电压和电流较大,需要选择较大的占空比以获得较高的输出电压和电流;反之则选择较小的占空比。
2.开关频率:开关频率也会影响到占空比的设计。
开关频率越高,开关导通的时间越短,占空比越小;开关频率越低,开关导通的时间越长,占空比越大。
因此,在设计占空比时需要考虑开关频率的影响。
3.最大占空比:最大占空比是指在一个开关周期内,开关能够导通的最大时间与整个周期之比。
最大占空比受到多种因素的影响,如开关的耐压值、导通电阻、寄生电容等。
光伏电子线路分析与设计6.1 BOOST升压电路1

6.1 BOOST升压电路
三、案例分析 2.开关频率对输出电压波形的影响
通道2,输出波形
通道1,驱动波形 L=50mH,f=1000HZ,D=0.5
通道2,输出波形
L=50mH,f=1000HZ,D=0.5
通道1,驱动波形
取L=50mH,f2=100Hz,f1=1000Hz
开关频率越大,理论上来说输出电压的脉动就越小,但是此时开关器件的损耗 正大,同时在电感上的感抗增大。所以,在提高开关频率的时候应考虑开关损 耗对电路的影响。
在电路达到稳定时电感L1增加和 减小的能量(电动势)一样。
当Q1截至时:
Uo
Ud
L
d
I L
U d Ton L
Uo
Ud L
Toff
所以: Uo
Ton Toff Toff
Ud
Ud 1 D
其中,D为占空比。当D=0时,Uo=Ud,但D 不能为1,因此在0≤D<1变化范围内,输出电 压总是大于或等于输入电压。
6.1 直流升降压电路分析与制作
掌情握B景OOS7T升反压电馈路工电作路原理及其应用
能搭建、分析、设计BOOST升压电路
6.1 BOOST升压电路
【案例引导】 测试电路如下图6.2所示,测量输入与输出关系。
IL
L1
30mH XFG1
Ud 20 V
D1
R2 1Ω
Q1
驱动信号
+
C1
RL uo
1µF
10kΩ
6.1 BOOST升压电路
三、案例分析 1.电感对输出电压波形的影响
L=50mH,f=100HZ,D=0.5
通道2,输出波形 通道1,驱动波形
BOOST—直流升压电路

BOOST 电路-直流升压变换电路:
基本电路形式:
直流输出电压的平均值高于输出电压的平均值
1.电感电流连续
电感电流连续时,BOOST 变换器分为两个工作阶段:
T 导通,即on t 期间:
电源为只为电感提供能量,电感储能,电源不给负载提供能量,负载仅靠储于电容C 中的能量维持工作;
T 关断,即off t 期间:
电源跟电感共同向负载供电,同时还给电容C 充电,电源对BOOST 电路的输入电流就是升压电感L 电流
故输出电压能够大于输入电压。
维持电感电流临界连续时的电感值为: d OK S O U I DT L 2=
电感电流临界连续的负载电流平均值为: d O S OK U L DT I 2=
当实际负载电流
,O I 大于临界连续值OK I 时,电感电流连续,当实际负载电流等于临界连续值OK I 时,电感电流临界连续,当负载电流小于临界电流OK I 时,电感电流断续,
开关频率越高,电感L 越大,
OK I 越小,越容易实现电感电流连续工作的情况 <1>输出
输出电压 D U U d
O -=1,输出电流d O I D I )1(-=
<2>电感电流的峰-峰值
fL D
U I d L =∆
<3>输出电压纹波为(,O u ∆为纹波电压) ,S L O O T C R D U U =∆
τS
O O T D U U =∆
C R L =τ,为时间常数
注:实际中,选择电感电流的增量L I ∆时,应使电感的峰值电流L d I I ∆+不大于最大平均直流输入电流
d I 的0020,防止电感L 饱和失效。
Boost电路参数的设计(电感,电容)

2 系统设计2. 1 Boost 升压电感的设计要想设计出性能优良的PFC 电路,除了IC外围电路各元件值选择合理外,还需特别认真选择Boost 升压储能电感器。
它的磁性材料不同,对PFC 电路的性能影响很大,甚至该电感器的接法不同,且会明显地影响电流波形;另外,驱动电路的激励脉冲波形上升沿与下降沿的滞后或振荡,都会影响主功率开关管的最佳工作状态。
当增大输出功率到某个阶段时,还会出现输入电流波形发生畸变甚至出现死区等现象。
因此,在PFC 电路的设计中,合理选择Boost PFC 升压电感器的磁心与绕制电感量是非常重要的。
电感值的计算以低输入电压Uin(peak) 和对应的最大占空比Dmax时保证电感电流连续为依据,计算公式为:式中Uin(peak)———低输入交流电压对应的正弦峰值电压,VDmax———Uin(peak) 对应的最大占空比ΔI———纹波电流值,A; 计算时,假定为纹波电流的30%fs———开关频率,Hz占空比的计算公式为:若输入交流电压为220 V( 最低输入电压为85 V),输出直流电压为390 V,开关频率为fs =50 kHz,输出功率Po =350 W,则可计算得到Dmax =0. 78,纹波电流为1. 75 A,从而求得电感值L3 =713 μH,实际电感值取为1 mH。
由于升压电感工作于电流连续模式,需要能通过较大的直流电流而不饱和,并要有一定的电感量,即所选磁性材料应具有一定的直流安匝数。
设计中,升压电感器采用4 块EE55 铁氧体磁心复合而成,其中心柱截面气隙为1. 5 mm,Boost 储能电感器的绕组导线并不用常规的多股0. 47 mm漆包线卷绕,而是采用厚度为0. 2mm、宽度为33 mm 的薄红铜带叠合,压紧在可插4 块EE55 磁心的塑料骨架上,再接焊锡导线引出,用多层耐高压绝缘胶带扎紧包裹。
去消用薄铜带工艺绕制的Boost 储能电感,对减小高频集肤效应、改善Boost 变换器的开关调制波形、降低磁件温升均起重要作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电气与电子信息工程学院《电力电子装置设计与制作》课程设计报告名称:开关直流升压电源(BOOST)设计专业名称:电气工程及其自动化班级: 13级电气工程及其自动化(专升本)班学号:姓名:指导教师:南光群张智泉设计时间:2014年11月24日——12月5日设计地点:K2-306及K2-414实验室开关电源装置设计与制作报告成绩评定表姓名学号专业班级题目:开关直流升压电源11-16V (BOOST)设计答辩记录:1)升压电路为什么不应空载?答:电感电流断续时,总是有> /(1-D),且负载电流越小,越高。
输出空载时,→,故升压电路不应空载,否则会产生很高的电压造成电路中元器件的烧坏。
2)电感电流在断续工作模式- 时段的状态?答:电路处于开关状态3,电感电流减小到零,二极管VD截至,电感电流保持零值,并且电感两端的电压也为零,直到开关S再次开通,下个开关周期开始。
成绩评定及依据:1. 考勤情况(20%):2. 实物制作(30%):3. 设计答辩(20%):4. 设计报告(完成情况、报告规范性等情况30%):最终评定成绩(以分数和优、良、中、及格、不及格评定):指导教师签字:《电力电子装置设计与制作》课程设计任务书2014~2015学年第一学期学生姓名:专业班级:13级电气工程及其自动化(专升本)班指导教师:张智泉南光群工作部门:电气与电子信息工程学院一、课程设计题目:电力电子装置设计与制作二、课程设计内容根据题目选择合适的输入输出电压进行电路设计,在Protel或OrCAD软件上进行原理图绘制;满足设计要求后,再进行硬件制作和调试。
如实验结果不满足要求,则修改设计,直到满足要求为止。
设计题目选:题目二:开关直流升压电源(BOOST)设计主要技术指标:1)输入交流电压220V(可省略此环节)。
2)输入直流电压在8-18V之间。
3)输出直流电压10-25V,输出电压相对变化量小于2%。
4)输出电流1A。
5)采用脉宽调制PWM电路控制。
三、进度安排序号名称时间1 下发设计任务书,布置设计任务和设计要求、设计时间安排。
一天2 掌握锯齿波产生电路、电压反馈电路、控制电路的工作原理一天3 掌握稳压电源电路工作原理半天4 绘出原理框图以及各部分电路的详细连接图一天5 学会借用电子线路CAD正确绘制电路图;一天6 掌握焊接技术以及MOSFET、二极管、三极管等器件的检测半天方法7 掌握电路的安装与调试一天8 根据直流稳压电源电路的工作原理设计电路图一天9 了解电子电路板的制作过程半天10 学习电路原理图及印制电路板图的读图方法半天11 掌握稳压开关电源的检测与调试一天12 书写课程设计报告一天四、基本要求1、独立设计原理图各部分电路的设计;2、制作硬件实物,演示设计与调试的结果。
3、写出课程设计报告。
内容包括电路图、工作原理、实际测量波形、调试分析、测量精度、结论和体会。
4、写出设计报告:不少于3000字,统一复印封面并用A4纸写出报告。
○1封面、课程设计任务书○2摘要,关键词(中英文)○3方案选择,方案论证○4系统功能及原理。
(系统组成框图、电路原理图)○5各模块的功能,原理,器件选择○6实验结果以及分析○7设计小结○8附录---参考文献目录前言...................................................................... 错误!未定义书签。
1.系统方案设计 ................................................... 错误!未定义书签。
2.电路的工作原理 ............................................... 错误!未定义书签。
3.参数的计算 ....................................................... 错误!未定义书签。
3.1给定参数 (9)3.2计算L、C (9)3.3 二极管选型 (10)4.电路的分析 (11)5.matlab仿真分析 (13)6. 各模块功能及元器件选型 (14)6.1 TL494工作原理 (14)6.2 开关频率的计算 (16)7.系统总设计原理图 (17)8、设计结果与分析 (18)8.1 比较基准波形图 (18)8.2 TL494输出波形 (18)8.3输出纹波波形 (19)8.4 电感输出波形 (19)9实验小结 ........................................................... 错误!未定义书签。
参考文献 (21)摘要BOOST 电路,是一种DC-DC直流斩波电路,又称为升压型电路。
它可以是输出电压比输入电压高。
可以分为充电过程和放电过程。
本次采用matlab仿真分析方法, 可直观、详细的描述BOOST 电路由启动到达稳态的工作过程, 并对其中各种现象进行细致深入的分析, 便于我们真正掌握BOOST 电路的工作特性。
关键词:斩波电路、BOOST电路BOOST circuit is a DC-DC DC chopper circuit, also known as the boost circuit. It can be the output voltage is higher than the input voltage. Can be divided into a process of charging and discharging processes. The matlab simulation analysis methods can be intuitive and detailed description of the the BOOST circuit from the start to reach a steady-state process of working, and various phenomena in depth analysis for us to really grasp the operating characteristics of the BOOST circuit.Keywords: chopper circuit, BOOST circuit is turned on, the charging and discharging前言在非隔离型DC-DC电路即各种直流斩波电路,根据电路的形式不同,可以分为降压型电路、降压型电路、丘克电路、Sepic型电路和Zeta型电路。
BOOST电路存在电感电流连续和电感电流断续工作模式。
在充电过程中,IGBT导通,IGBT处用导线代替。
这时输入电压流过电感。
二极管防止电容对地放电。
在放电过程中,当IGBT截止时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。
而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。
BOOST电路有电路简单、电源侧电流波动小的优点,同时在开关电源领域内占有非常重要的地位, 长期以来广泛的应用于各种电源设备的设计中。
对它工作过程的理解掌握关系到对整个开关电源领域各种电路工作过程的理解。
1、系统方案设计本系统需要对一直流电源进行直流斩波,通过控制开关管的导通时间,来控制最终输出的电压。
整个系统包括BOOST主电路、闭环调节模块、电压反馈模块。
系统方框图如图1所示:Boost升压电路直流电源电压反馈闭环调节图1 系统方框图2、电路的工作原理Boost电路可称为升压斩波电路,假设电路中电感L值很大,电容C值也很大。
当V处于通态时,电源E向电感L充电,充电电流基本恒定为I1,同时C上的电压向负载R供电,因为C也很大,基本保持输出电压为恒值U0.设V通态时间为ton,此阶段L积蓄能量为 E I1ton。
当V处于断态时E和L共同向C充电,并向负载R提供能量。
设V处于断态时间为toff ,则这期间电感L释放能量为(U-E)I1toff.一周期T中,电感L积蓄的能量和释放的能量相等,即E I1 ton=(U-E)I1toff化简得: U0=T/ toffE输出电压高于电源电压。
电路结构如下图2图2 BOOST电路的结构3、参数的计算3.1给定参数1)输入交流电压220V (可省略此环节)。
2)输入直流电压在8-18V 之间。
3)输出直流电压10-25V ,输出电压相对变化量小于2%。
4)输出电流1A 。
5)采用脉宽调制PWM 电路控制。
3.2计算L 、C由Boost 的伏秒平衡,可得:)1(*)(*D V V D V in o in --=………………………………………………………………①⇒DV V ino -=1 ⇒oinV V D -=1 又根据能量守恒,可得:T I V T I V o o mid in ****= (mid I 为CCM Boost 电感的电流中心值) ………………②⇒DIV I V I o in o o mid -==1* 当输出最小负载min o I ,即mid I I 2=∆,也就是Boost 处于临界状态,可得:21min I D I I o mid ∆=-=………………………………………………………………………………③ ⇒DI L T D V o in -=12**min⇒min2**)1(*o in I TD D V L -=⇒fI DD V L o o *2*)1(*min 2-=⇒fI D D V L o o *2*)1(*min min2min -=………………………………………………………………④ 取=22V,D=0.45L=经实际测量L 取200uh,根据n==5.2, 选用绿色环形电感,绕N=6圈3.3 二极管选型根据系统最大电流1.5A ,可选取最大允许通过电流2A 的二极管,本系统主要选择FR207。
4、电路的分析BOOST 电路的工作模式分为电感电流连续工作模式和电感电流断续工作模式。
其中电流连续模式的电路工作状态如图4-1 所示,V 处于通态时,设电动机电枢电流为i 1,得下式m E Ri ti L =+11d d (1) 式中R 为电机电枢回路电阻与线路电阻之和。
设i 1的初值为I 10,解上式得⎪⎪⎭⎫ ⎝⎛-+=--ττt m te RE eI i 1101(2)当V 处于断态时,设电动机电枢电流为i 2,得下式:E E Ri ti L m -=+22d d (3) 设i 2的初值为I 20,解上式得:⎪⎪⎭⎫⎝⎛---=--ττt m te RE E eI i 1202 (4)图4-1电流断续升压斩波电路波形图 4-2电流连续升压斩波电路波形当电流连续时,从图4-2的电流波形可看出,t =t o n 时刻i 1=I 20,t =t o f f 时刻i 2=I 10,由此可得:R E e e m R E e e R E I Tt m off⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫⎝⎛---=----ρβρττ111110(5) R E e e e m R E e e e R E I TT t m on⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫⎝⎛---=------ρραρτττ1120(6)把上面两式用泰勒级数线性近似,得()REm I I β-==2010 (7)该式表示了L 为无穷大时电枢电流的平均值I o ,即()REE R E m I m o ββ-=-= (8)对电流断续工作状态的进一步分析可得出:电流连续的条件为ρβρ----<e e m 11 (9)根据此式可对电路的工作状态作出判断。