(考试范围)半导体物理学课后题答案

合集下载

《半导体物理学》试题与及答案

《半导体物理学》试题与及答案

练习1-课后习题7
第二章 半导体中杂质和缺陷能级
锑化铟的禁带宽度E g = 0.18 e V ,相对介电常数 εr = 17 ,电子的 有效质量mn∗ = 0.015 m0, m 0为电子的惯性质量,求 ⅰ)施主杂质的电离能, ⅱ)施主的弱束缚电子基态轨道半径。
解:
练习2
第二章 半导体中杂质和缺陷能级
所以样品的电导率为: q(n0 n p0 p )
代入数据得,电导率为2.62 ×1013S/cm 所以,电场强度 E J 1.996103 mA / cm

作业-课后习题2
第四章 半导体的导电性
试计算本征Si 在室温时的电导率,设电子和空穴迁移率分别为1450cm2/V·S 和500cm2/V·S。当掺入百万分之一的As 后,设杂质全部电离,试计算其电 导率。比本征Si 的电导率增大了多少倍?(ni=1.5×1010cm-3; Si原子浓度为 =5.0×1022cm-3,假定掺杂后电子迁移率为900cm2/V·S)
m0为电子惯性质量,k1=1/2a; a=0.314nm。试求: (1)禁带宽度; (2)导带底电子有效质量; (3)价带顶电子有效质量; (4)价带顶电子跃迁到导带底时准动量的变化。
练习2-课后习题2
第一章 半导体中的电子状态
2.晶格常数为0.25nm的一维晶格,当外加102V/m和107V/m 的电 场时,试分别计算电子自能带底运动到能带顶所需的时间。
所以,300k时,
nT 300

(1.05 1019

5.7
1018 )
exp(
0.67 1.61019 21.381023 300)
1.961013cm3
77k时,

半导体物理习题答案(1-3章)

半导体物理习题答案(1-3章)

第1章 半导体中的电子状态1. 设晶格常数为a 的一维晶格,导带极小值附近能量()c E k 和价带极大值附近能量()v E k 分别为2222100()()3c h k k h k E k m m -=+,22221003()6v h k h k E k m m =-0m 为电子惯性质量,112k a =, 0.314a =nm 。

试求:1) 禁带宽度;2) 导带底电子有效质量; 3) 价带顶电子有效质量;4) 价带顶电子跃迁到导带底时准动量的变化。

解:1) 禁带宽度g E ,根据22100()2()202c dE k h k k h k dk m m -=+=,可求出对应导带能量极小值min E 的k 值:m i n 134k k =, 由题目中()c E k 式可得:min 12min 3104()4c k k k h E E k k m ====; 根据20()60v dE k h k dk m =-=,可以看出,对应价带能量极大值max E 的k 值为:k max = 0;可得max 221max 00()6v k k h k E E k m ====,所以2221min max 2001248g h k h E E E m m a=-== 2) 导带底电子有效质量m n由于2222200022833c d E h h h dk m m m =+=,所以202238nc m h md E dk== 3) 价带顶电子有效质量vn m由于22206v d E h dk m =-,所以20226v nv m h m d E dk ==- 4) 准动量的改变量min max 133()48hh k h k k hk a∆=-==2. 晶格常数为0.25 nm 的一维晶格,当外加102V/m 、107V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:设电场强度为E ,电子受到的力f 为dkf hqE dt==(E 取绝对值),可得h dt dk qE =, 所以12012ta h h t dt dk qE qE a===⎰⎰,代入数据得: 34619106.62108.310()1.6102(2.510)t s E E----⨯⨯==⨯⨯⨯⨯⨯ 当E = 102V/m 时,88.310t s -=⨯;当E = 107V/m 时,138.310t s -=⨯。

半导体物理学(刘恩科)第七版-完整课后题答案)

半导体物理学(刘恩科)第七版-完整课后题答案)

半导体物理学(刘恩科)第七版-完整课后题答案)第⼀章习题1.设晶格常数为a 的⼀维晶格,导带极⼩值附近能量(k)和价带极⼤值附近能量(k)分别为:220122*********)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。

试求:为电⼦惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2)导带底电⼦有效质量; (3)价带顶电⼦有效质量;(4)价带顶电⼦跃迁到导带底时准动量的变化解:(1)eV m k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ηηηηηηηη因此:取极⼤值处,所以⼜因为得价带:取极⼩值处,所以:在⼜因为:得:由导带:043222*83)2(1m dk E d mk k C nC===η sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===?=-=-=?=-==ηηηηη所以:准动量的定义:2. 晶格常数为0.25的⼀维晶格,当外加102,107的电场时,试分别计算电⼦⾃能带底运动到能带顶所需的时间。

解:根据:t khqE f== 得qE k t -?=?ηsat sat 137192821911027.810106.1)0(1027.810106.1)0(----?=??--==--=ππηη补充题1分别计算(100),(110),(111)⾯每平⽅厘⽶内的原⼦个数,即原⼦⾯密度(提⽰:先画出各晶⾯内原⼦的位置和分布图)在(100),(110)和(111)⾯上的原⼦分布如图1所⽰:(a )(100)晶⾯(b )(110)晶⾯(c )(111)晶⾯补充题2214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cmatom a a a cm atom a a a cm atom a a ?==?+?+??==??+?+?=?==?+-):():():(⼀维晶体的电⼦能带可写为)2cos 81cos 87()22ka ka ma k E +-=η(,式中a 为晶格常数,试求(1)布⾥渊区边界;(2)能带宽度;(3)电⼦在波⽮k 状态时的速度;(4)能带底部电⼦的有效质量*n m ;(5)能带顶部空⽳的有效质量*p m 解:(1)由0)(=dk k dE 得 an k π=(0,1,2…)进⼀步分析an k π)12(+= ,E (k )有极⼤值,222)ma k E MAXη=(ank π2=时,E (k )有极⼩值所以布⾥渊区边界为an k π)12(+= (2)能带宽度为222)()ma k E k E MINMAXη=-((3)电⼦在波⽮k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -==ηη(4)电⼦的有效质量)2cos 21(cos 222*ka ka m dkEd m n-==η能带底部 an k π2=所以m m n 2*=(5)能带顶部 an k π)12(+=,且**n p m m -=,所以能带顶部空⽳的有效质量32*mm p=半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原⼦严格按周期性排列并静⽌在格点位置上,实际半导体中原⼦不是静⽌的,⽽是在其平衡位置附近振动。

《半导体物理学》刘恩科、朱秉生_课后答案

《半导体物理学》刘恩科、朱秉生_课后答案

cos θ =
1 2
对 [ 011] , ⎡ ⎣0 11⎤ ⎦,⎡ ⎣01 1 ⎤ ⎦,⎡ ⎣0 1 1 ⎤ ⎦ 方向上的旋转椭球得:
cos θ = 0
当 cos θ =
1 1 时, cos 2 θ = 2 2
2ml mt + ml
sin 2 θ =
1 2
* 得: mn = mt t
当 cos θ = 0 时: cos 2 θ = 0
故: Z=1000π 3L3
2 ⎛ h2 ⎞ 2 × × ⎜ 100 ∗ 2 ⎟ 3 ⎝ 8mn L ⎠
7. ①在室温下,锗的有效状态密度 Nc=1.05×1019cm-3,Nv=5.7×1018cm-3,试 求锗的载流子有效质量 mn*和 mp*。计算 77k 时的 Nc 和 Nv。已知 300k 时,Eg= 0.67eV。77k 时 Eg=0.76eV。求这两个温度时锗的本征载流子浓度。②77k,锗 17 -3 的电子浓度为 10 cm ,假定浓度为零,而 Ec-ED=0.01eV,求锗中施主浓度 ND
第三章
热平衡时半导体中载流子的统计分布
⎛ h2 ⎞ 1.计算能量 E = Ec 到 E = Ec + 100 ⎜ ∗ 2 ⎟ 之间单位体积中的量子态数。 ⎝ 8mn L ⎠
[解]导带底 Ec 附近单位能量间隔量子态数:
gc g c 即状态密度。
( 2mdn ) ( E ) = 4π V
h3
32
( E − Ec ) 2
3. 如果 n 型半导体导带峰值在[110]轴上及相应对称方向上,回旋共振实验结果应 如何? [解] 根据立方对称性,应有下列 12 个方向上的旋转椭球面:
[110] , [101] , [011] , ⎡ ⎣ 1 10 ⎤ ⎦,

半导体物理课后习题集解答

半导体物理课后习题集解答

半导体物理习题解答1-1.(P 32)设晶格常数为a 的一维晶格,导带极小值附近能量E c (k )和价带极大值附近能量E v (k )分别为:E c (k)=0223m k h +022)1(m k k h -和E v (k)= 0226m k h -0223m k h ;m 0为电子惯性质量,k 1=1/2a ;a =0.314nm 。

试求: ①禁带宽度;②导带底电子有效质量; ③价带顶电子有效质量;④价带顶电子跃迁到导带底时准动量的变化。

[解] ①禁带宽度Eg根据dk k dEc )(=0232m k h +012)(2m k k h -=0;可求出对应导带能量极小值E min 的k 值:k min =143k , 由题中E C 式可得:E min =E C (K)|k=k min =2104k m h ; 由题中E V 式可看出,对应价带能量极大值Emax 的k 值为:k max =0;并且E min =E V (k)|k=k max =02126m k h ;∴Eg =E min -E max =021212m k h =20248a m h =112828227106.1)1014.3(101.948)1062.6(----⨯⨯⨯⨯⨯⨯⨯=0.64eV ②导带底电子有效质量m n202022382322m h m h m h dk E d C =+=;∴ m n =022283/m dk E d h C= ③价带顶电子有效质量m ’02226m h dkE d V -=,∴0222'61/m dk E d h m Vn -==④准动量的改变量h △k =h (k min -k max )=ahk h 83431=[毕]1-2.(P 33)晶格常数为0.25nm 的一维晶格,当外加102V/m ,107V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

[解] 设电场强度为E ,∵F =hdtdk=q E (取绝对值) ∴dt =qE h dk∴t=⎰tdt 0=⎰a qE h 21dk =aqE h 21代入数据得: t =E⨯⨯⨯⨯⨯⨯--1019-34105.2106.121062.6=E 6103.8-⨯(s )当E =102 V/m 时,t =8.3×10-8(s );E =107V/m 时,t =8.3×10-13(s )。

半导体物理课后习题答案(精)

半导体物理课后习题答案(精)

半导体物理课后习题答案(精)第一章习题1.设晶格常数为a的一维晶格,导带极小值附近能量Ec(k)和价带极大值附近能量EV(k)分别为:h2k2h2(k-k1)2h2k213h2k2Ec= +,EV(k)=-3m0m06m0m0m0为电子惯性质量,k1=(1)禁带宽度;(2)导带底电子有效质量;(3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化解:(1)导带:2 2k22(k-k1)由+=03m0m03k14d2Ec2 22 28 22=+=>03m0m03m0dk得:k=所以:在k=价带:dEV6 2k=-=0得k=0dkm0d2EV6 2又因为=-<0,所以k=0处,EV取极大值2m0dk2k123=0.64eV 因此:Eg=EC(k1)-EV(0)=412m02=2dECdk23m0 8πa,a=0.314nm。

试求: 3k处,Ec取极小值4 (2)m*nC=3k=k14 (3)m*nV 2=2dEVdk2=-k=01m06(4)准动量的定义:p= k所以:∆p=( k)3k=k14 3-( k)k=0= k1-0=7.95⨯10-25N/s42. 晶格常数为0.25nm的一维晶格,当外加102V/m,107 V/m的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:f=qE=h(0-∆t1=-1.6⨯10∆k ∆k 得∆t= ∆t-qEπa)⨯10)=8.27⨯10-13s2-19=8.27⨯10-8s (0-∆t2=π-1.6⨯10-19⨯107第三章习题和答案100π 21. 计算能量在E=Ec到E=EC+ 之间单位体积中的量子态数。

*22mLn31*2V(2mng(E)=(E-EC)2解 232πdZ=g(E)dEdZ 单位体积内的量子态数Z0=V22100π 100h Ec+Ec+32mnl8mnl1*2(2mn1VZ0=g(E)dE=⎰(E-EC)2dE23⎰VEC2π EC 23100h*2 =V(2mn2(E-E)Ec+8m*L2 Cn32π2 3Ecπ =10003L32. 试证明实际硅、锗中导带底附近状态密度公式为式(3-6)。

(考试范围)半导体物理学课后题答案

(考试范围)半导体物理学课后题答案

第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E C (K )=0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。

试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2)导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eVm k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:t k hqE f ∆∆== 得qEk t -∆=∆ sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ半导体物理第2章习题5. 举例说明杂质补偿作用。

当半导体中同时存在施主和受主杂质时, 若(1) N D >>N A因为受主能级低于施主能级,所以施主杂质的电子首先跃迁到N A 个受主能级上,还有N D -N A 个电子在施主能级上,杂质全部电离时,跃迁到导带中的导电电子的浓度为n= N D -N A 。

半导体物理学 课后习题答案

半导体物理学 课后习题答案

EF
= Ei
= EC
− EV 2
3kT + ln
4
m
∗ p
mn∗
当T1
= 195K时,kT1
=
0.016eV ,
3kT 4
ln
0.59m0 1.08m0
= −0.0072eV
当T2
= 300K时,kT2
=
0.026eV , 3kT 4
ห้องสมุดไป่ตู้
ln
0.59 1.08
= −0.012eV
3kT 0.59 当T2 = 573K时,kT3 = 0.0497eV , 4 ln 1.08 = −0.022eV
E(k)
2ℏ 2 =
MAX ma 2
k = 2n π 时,E(k)有极小值 a
所以布里渊区边界为 k = (2n + 1) π a
(2)能带宽度为 E(k)
− E(k )
2ℏ 2 =
MAX
MIN ma2
(3)电子在波矢 k 状态的速度 v = 1 dE = ℏ (sin ka − 1 sin 2ka)
Ec + 8mn∗l 2
π m 4
(2
* n
EC
h2
3
)2 (E
1
− EC ) 2 dE
=
4π ( 2m*n ) 3 2 h2
2 (E 3
− EC
3
)2
Ec
+
100h 2 8mn∗ L2
Ec
1000π = 3L3
2. 试证明实际硅、锗中导带底附近状态密度公式为式(3-6)。
2.证明:si、Ge半导体的E(IC)~ K关系为
17 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E C (K )=0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。

试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2)导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eVm k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:tkhqE f ∆∆== 得qE k t -∆=∆sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ半导体物理第2章习题5. 举例说明杂质补偿作用。

当半导体中同时存在施主和受主杂质时, 若(1) N D >>N A因为受主能级低于施主能级,所以施主杂质的电子首先跃迁到N A 个受主能级上,还有N D -N A 个电子在施主能级上,杂质全部电离时,跃迁到导带中的导电电子的浓度为n= N D -N A 。

即则有效受主浓度为N Aeff ≈ N D -N A (2)N A >>N D施主能级上的全部电子跃迁到受主能级上,受主能级上还有N A -N D 个空穴,它们可接受价带上的N A -N D 个电子,在价带中形成的空穴浓度p= N A -N D . 即有效 受主浓度为N Aeff ≈ N A -N D (3)N A ≈N D 时,不能向导带和价带提供电子和空穴, 称为杂质的高度补偿 6. 说明类氢模型的优点和不足。

优点:基本上能够解释浅能级杂质电离能的小的差异,计算简单缺点:只有电子轨道半径较大时,该模型才较适用,如Ge.相反,对电子轨道半径较小的,如Si ,简单的库仑势场不能计入引入杂质中心带来的全部影响。

第三章习题和答案7. ①在室温下,锗的有效态密度N c =1.05⨯1019cm -3,N V =3.9⨯1018cm -3,试求锗的载流子有效质量m *n m *p 。

计算77K 时的N C 和N V 。

已知300K 时,E g =0.67eV 。

77k 时E g =0.76eV 。

求这两个温度时锗的本征载流子浓度。

②77K 时,锗的电子浓度为1017cm -3 ,假定受主浓度为零,而E c -E D =0.01eV ,求锗中施主浓度E D 为多少?3173183'3183193'3''/1008.530077109.330077/1037.1300771005.13007730077772cm N N cm N N T T K N K N N N K VV C C C C VC ⨯=⨯⨯=∙=⨯=⨯⨯=∙=∴=)()()()()()(、时的)(76.0313300267.0211819221/107.1)109.31005.1()()3(0cm en e N N n k i koT Egv c i ⨯=⨯⨯⨯==⨯--室温:kgm N T k m kg m N T k m Tm k N Tm k N vpc n p v n c 31031202310320223202320106.229.022101.556.022)2(2)2(21.7-*-***⨯==⎥⎦⎤⎢⎣⎡=⨯==⎥⎦⎤⎢⎣⎡===ππππ得)根据(8. 利用题 7所给的N c 和N V 数值及E g =0.67eV ,求温度为300K 和500K 时,含施主浓度N D =5⨯1015cm -3,受主浓度N A =2⨯109cm -3的锗中电子及空穴浓度为多少?14. 计算含有施主杂质浓度为N D =9⨯1015cm -3,及受主杂质浓度为1.1⨯1016cm 3,的硅在33K 时的电子和空穴浓度以及费米能级的位置。

eVn p T k E E eV N p T k E E cm p n n cm N N p cm n Si K T i i F v V F i D A i 336.0105.1102ln 026.0ln 224.0101.1102ln 026.0ln 10125.1102,105.1300101500191500350203150310-=⨯⨯-=-=-=⨯⨯-=-=-⨯==⨯=-=⨯==---或:饱和区流子浓度,处于强电离掺杂浓度远大于本征载的本征载流子浓度时,解:第四章习题及答案1. 300K 时,Ge 的本征电阻率为47Ωcm ,如电子和空穴迁移率分别为3900cm 2/( V.S)和1900cm 2/( V.S)。

试求Ge 的载流子浓度。

解:在本征情况下,i n p n ==,由)(/p n i p n u u q n pqu nqu +=+==111σρ知⎪⎩⎪⎨⎧⨯=⨯==⎪⎩⎪⎨⎧⨯=⨯≈=⎥⎦⎤⎢⎣⎡+-+-=⎥⎦⎤⎢⎣⎡+-+-=∴=---→⎩⎨⎧==+--⨯==⨯==--3150315031003150212202122020202000031521''313221/1084.4/1084.9500/108/105300)2(2)2(20)(0/109.6)(500/100.2)(300.8020cm p cmn K t cm p cmn K T n N N N N p n N N N N n n N N n n n p n N N p n cm eN N n K cm e N N n K i D A D A i A D A D i A D iA D VCi Tk E V c i T k g e g 时:时:根据电中性条件:时:时:3131910292190039001060214711--⨯=+⨯⨯⨯=+=cm u u q n p n i .)(.)(ρ 2. 试计算本征Si 在室温时的电导率,设电子和空穴迁移率分别为1350cm 2/( V.S)和500cm 2/( V.S)。

当掺入百万分之一的As 后,设杂质全部电离,试计算其电导率。

比本征Si 的电导率增大了多少倍?解:300K 时,)/(),/(S V cm u S V cm u p n ⋅=⋅=225001350,查表3-2或图3-7可知,室温下Si 的本征载流子浓度约为3101001-⨯=cm n i .。

本征情况下,cm S +.u u q n pqu nqu -p n i p n /.)()(6191010035001350106021101-⨯=⨯⨯⨯⨯=+=+=σ金钢石结构一个原胞内的等效原子个数为84216818=+⨯+⨯个,查看附录B 知Si 的晶格常数为0.543102nm ,则其原子密度为322371051054310208--⨯=⨯cm ).(。

掺入百万分之一的As,杂质的浓度为3162210510000001105-⨯=⨯⨯=cm N D ,杂质全部电离后,i D n N >>,这种情况下,查图4-14(a )可知其多子的迁移率为800 cm 2/( V.S)cm S .qu N -n D /.''468001060211051916=⨯⨯⨯⨯=≈σ比本征情况下增大了66101210346⨯=⨯=-..'σσ倍 17. ①证明当u n ≠u p 且电子浓度n=n i p n i n p u u n p u u =,时,材料的电导率最小,并求σmin 的表达式。

解:n p i n p nqu qu nnnqu pqu +=+=2σp i n p i u nn q dn d u u nn q dn d 3222222=+-=σσ),( 令p u i n p i n p i u u n p u u n n u u nn dn d /,/)(==⇒=+-⇒=0022σ0223222>===pp i n n p np n p i iu u n n u u n u u qu u u u u n n qdn d np i /)/(/σ因此,n p i u u n n /=为最小点的取值p u i n n p i p p u i u u qn u u u n u u u n q 2=+=)//(min σ②试求300K 时Ge 和Si 样品的最小电导率的数值,并和本征电导率相比较。

查表4-1,可知室温下硅和锗较纯样品的迁移率Si: cm S u u qn p u i /..min 7101910732500145010110602122--⨯=⨯⨯⨯⨯⨯⨯==σcm S u u qn n p i i /.)(.)(61019101235001450101106021--⨯=+⨯⨯⨯⨯=+=σGe: cm S u u qn p u i /..min 61019103881800380010110602122--⨯=⨯⨯⨯⨯⨯⨯==σcm S u u qn n p i i /.)(.)(610191097818003800101106021--⨯=+⨯⨯⨯⨯=+=σ第五章习题5. n 型硅中,掺杂浓度N D =1016cm -3, 光注入的非平衡载流子浓度∆n=∆p=1014cm -3。

计算无光照和有光照的电导率。

6. 画出p 型半导体在光照(小注入)前后的能带图,标出原来的的费米能级和光照时的准费米能级。

cms q n qu p q n pp p n n n cm p cm n cm p n cm n K T n p n i /16.21350106.110:,/1025.2,10/10.105.1,30019160000003403160314310=⨯⨯⨯=≈+=∆+=∆+=⨯===∆=∆⨯==---μμσ无光照则设半导体的迁移率)本征空穴的迁移率近似等于的半导体中电子、注:掺杂有光照131619140010(/19.20296.016.2)5001350(106.11016.2)(:--=+=+⨯⨯⨯+≈+∆++=+=cm cms nq q p q n pq nq p n p n pn μμμμμμσ7. 掺施主浓度N D =1015cm -3的n 型硅,由于光的照射产生了非平衡载流子∆n=∆p=1014cm -3。

相关文档
最新文档