【数学】2016学年山东省德州市乐陵市八年级下学期数学期末试卷带解析答案PDF

合集下载

2015-2016学年山东省德州市乐陵市八年级(下)期末数学试卷(解析版)

2015-2016学年山东省德州市乐陵市八年级(下)期末数学试卷(解析版)

第 2 页(共 13 页)
平均数 x(cm) 方差 S (cm )
2 2
175 3.5
173 3.5
175 12.5
174 15 .
根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择
15. (4 分)在一个广场上有两棵树,一棵高 6 米,另一棵高 2 米,两树相距 5 米.一只小 鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了 米.
(2)请写出 y 与 x 的函数关系式; (3)若某个家庭有 5 人,五月份的生活用水费共 76 元,则该家庭这个月用了多少吨生活用 水?
第 4 页(共 13 页)
23. (10 分)如图,E、F 分别是菱形 ABCD 的边 AB、AD 的中点,且 AB=5,AC=6. (1)求对角线 BD 的长; (2)求证:四边形 AEOF 为菱形.
6. (3 分)下列命题中的真命题是(
A.有一组对边平行的四边形是平行四边形 B.有一个角是直角的四边形是矩形 C.对角线互相垂直平分的四边形是正方形 D.有一组邻边相等的平行四边形是菱形 7. (3 分)某中学足球队 9 名队员的年龄情况如下: 年龄(单位:岁) 人数 14 1 15 4 16 2 17 2 ) C.15,17 D.16,15 )
22. (10 分)随着地球上的水资源日益枯竭,各级政府越来越重视倡导节约用水.某市民生 活用水按“阶梯水价”方式进行收费,人均月生活用水收费标准如图所示,图中 x 表示 人均月生活用水的吨数,y 表示收取的人均月生活用水费(元) .请根据图象信息,回答 下列问题: (1)该市人均月生活用水的收费标准是:不超过 5 吨,每吨按 部分,每吨按 元收取; 元收取;超过 5 吨的
16. (4 分)直线 l1:y=x+1 与直线 l2:y=mx+n 相交于点 P(a,2) ,则关于 x 的不等式 x+1 ≥mx+n 的解集为 .

山东省德州市八年级下学期数学期末考试试卷

山东省德州市八年级下学期数学期末考试试卷

山东省德州市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)某不等式组的解集在数轴上表示如图,则这个不等式组可能是()A .B .C .D .2. (2分)(2013·舟山) 下列图案中,属于轴对称图形的是()A .B .C .D .3. (2分) (2019八上·长兴期中) 已知a>b,则下列不等式不成立的是()A . 3a>3bB . b+3<a+3C . -a>-bD . 3-2a<3-2b4. (2分)正三角形的边心距、半径和高的比是()A . 1:2:3B . 1: :C . 1: :3D . 1:2:5. (2分) (2017八下·抚宁期末) 已知一次函数y=-2x+2,点A(-1,a),B(-2,b)在该函数图像上,则a与b 的大小关系是().A . a < bB . a>bC . a ≥ bD . a = b6. (2分)(2017·河北模拟) 已知,则的值是()A .B . ﹣C . 2D . ﹣27. (2分)如图所示,各边相等的五边形ABCDE中,若∠ABC=2∠DBE,则∠ABC等于()A . 60°B . 120°C . 90°D . 45°8. (2分)下列命题错误的是()A . 对角线互相垂直平分的四边形是菱形B . 平行四边形的对角线互相平分C . 矩形的对角线相等D . 对角线相等的四边形是矩形9. (2分)宁宁同学拿了一个天平,测量饼干与糖果的质量(每块饼干的质量都相同,每颗糖果的质量都相同).第一次:左盘放两块饼干,右盘放三颗糖果,结果天平平衡;第二次,左盘放10克砝码,右盘放一块饼干和一颗糖果,结果天平平衡;第三次:左盘放一颗糖果,右盘放一块饼干,下列哪一种方法可使天平再度平衡()A . 在糖果的称盘上加2克砝码B . 在饼干的称盘上加2克砝码C . 在糖果的称盘上加5克砝码D . 在饼干的称盘上加5克砝10. (2分)如图.若要使平行四边形ABCD成为菱形.则需要添加的条件是()A . AB=CDB . AD=BCC . AB=BCD . AC=BD二、填空题 (共6题;共6分)11. (1分)分解因式:x2﹣4x=________.12. (1分)(2014•丹东)若式子有意义,则实数x的取值范围是________.13. (1分) (2017七下·湖州月考) 如图,甲类纸片是边长为2的正方形,乙类纸片是边长为1的正方形,丙类纸片是长、宽边长分别为2和1的长方形.现有甲类纸片5张,乙类纸片9张,丙类纸片13张,从三类纸片中取若干张拼成一个正方形,则拼成的正方形的面积最大为________.14. (1分)(2010·希望杯竞赛) 如图,在3×3的正方形网格中标出了∠1和∠2。

2023-2024学年山东省德州市乐陵市八年级(下)期末数学试卷(含答案)

2023-2024学年山东省德州市乐陵市八年级(下)期末数学试卷(含答案)

2023-2024学年山东省德州市乐陵市八年级(下)期末数学试卷一、选择题:本题共12小题,每小题4分,共48分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.若式子2−x在实数范围内有意义,则x可以取的数为( )A. 2B. 3C. 4D. 52.如图,在Rt△ABC中,∠ACB=90°.若AB=13,则正方形ADEC与正方形BCFG的面积之和为( )A. 25B. 144C. 169D. 以上都不对3.下列函数中,正比例函数是( )A. y=4x B. y=x4C. y=x+4D. y=x24.“石阡苔茶”是贵州十大名茶之一,在我国传统节日清明节前后,某茶叶经销商对甲、乙、丙、丁四种包装的苔茶(售价、利润均相同)在一段时间内的销售情况统计如下表,最终决定增加乙种包装苔茶的进货数量,影响经销商决策的统计量是( )包装甲乙丙丁销售量(盒)15221810A. 中位数B. 平均数C. 众数D. 方差5.如图,在平行四边形ABCD中,CE⊥AB于点E,∠D=53°,则∠BCE的度数是( )A. 53°B. 43°C. 47°D. 37°6.当x>0时,y与x之间的函数解析式为y=2x,当x≤0时,y与x之间的函数解析式为y=−2x,则在同一直角坐标系中y与x之间的函数关系图象大致为图中的( )A. B. C. D.7.甲、乙、丙、丁四名射击运动员进行射击测试,每人10次射击成绩的平均数−x(单位:环)及方差S2(单位:环 2)如下表所示:甲乙丙丁−x9899S2 1.20.4 1.80.4根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( )A. 甲B. 乙C. 丙D. 丁8.如图,可判定四边形ABCD是平行四边形的依据是( )A. 两组对边分别平行的四边形是平行四边形B. 对角线互相平分的四边形是平行四边形C. 一组对边相等、另一组对边平行的四边形是平行四边形D. 一组对边平行且相等的四边形是平行四边形9.如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P点经过的路程为x,以点A、P、D为顶点的三角形的面积是y,则下列图象能大致反映y与x的函数关系的是( )A. B.C. D.10.已知直线y=(k−2)x+1经过点A(a,y1),点B(a+1,y2)且y1−y2>0,则k的取值范围是( )A. k>2B. k<2C. k>0D. k<011.如图,△OA1A2为等腰直角三角形,OA1=1,以斜边OA2为直角边作等腰直角三角形OA2A3,再以O A3为直角边作等腰直角三角形OA3A4,…,按此规律作下去,则OA n的长度为( )A. (12)nB. ( 2)n−1C. ( 22)nD. ( 22)n−112.给出下列说法:①直线y =−2x +4与直线y =x +1的交点坐标是(1,2);②一次函数y =kx +b ,若k >0,b <0,那么它的图象过第一、二、三象限;③函数y =−6x 是一次函数,且y 随x 增大而增大;④已知一次函数的图象与直线y =−x +1平行,且过点(8,2),那么此一次函数的解析式为y =−x +6;⑤直线y =kx +k−1必经过点(−1,−1).其中正确的有( )A. 2个B. 3个C. 4个D. 5个二、填空题:本题共6小题,每小题4分,共24分。

山东省德州市八年级下学期数学期末考试试卷

山东省德州市八年级下学期数学期末考试试卷

山东省德州市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共30分)1. (3分)在中,最简二次根式有()个.A . 1B . 2C . 3D . 42. (3分)下列各组数中,是勾股数的是()A . 12,8,5B . 3,4,5C . 9,13,15D . ,,3. (3分)设方程(x-a)(x-b)-x=0的两根是c、d,则方程(x-c)(x-d)+x=0的根是()A . a,bB . -a,-bC . c,dD . -c,-d4. (3分)如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为()A . 45°B . 50°C . 60°D . 75°5. (3分)(2017·新疆) 如果n边形每一个内角等于与它相邻外角的2倍,则n的值是()A . 4B . 5C . 6D . 76. (3分)估计的结果在().A . 6至7之间B . 7至8之间C . 8至9之间D . 9至10之间7. (3分)甲、乙两名同学在参加体育中考前各作了5次投掷实心球的测试,甲、乙所测得的成绩的平均数相同,且甲、乙成绩的方差分别为0.62、0.72,那么()A . 甲、乙成绩一样稳定B . 甲成绩更稳定C . 乙成绩更稳定D . 不能确定谁的成绩更稳定8. (3分)某工厂一种产品的年产量是20件,如果每一年都比上一年的产品增加x倍,两年后产品年产量y 与x的函数关系是()A . y=20(1﹣x)2B . y=20+2xC . y=20(1+x)2D . y=20+20x2+20x9. (3分)如图是小明利用等腰直角三角板测量旗杆高度的示意图.等腰直角三角板的斜边BD与地面AF平行,当小明的视线恰好沿BC经过旗杆顶部点E时,测量出此时他所在的位置点A与旗杆底部点F的距离为10米.如果小明的眼睛距离地面1.7米,那么旗杆EF的高度为()A . 10米B . 11.7米C . 10 米D . (5 +1.7)米10. (3分) (2018八下·东台期中) 已知四边形ABCD是平行四边形,下列结论中不正确的是()A . 当AB=BC时,它是菱形B . 当AC=BD时,它是正方形C . 当∠ABC=90°时,它是矩形D . 当AC⊥BD时,它是菱形二、填空题 (共6题;共18分)11. (3分) (2020八上·咸丰期末) 下面是一个三角形数阵根据该数阵的规律,猜想第十行所有数的和________.12. (3分) (2017八下·钦北期末) 托车生产是我市的支柱产业之一,不少品牌的摩托车畅销国内外,下表是摩托车厂今年1至5月份摩托车销售量的统计表:(单位:辆)月份12345销售量(辆)17002100125014001680则这5个月销售量的中位数是________辆。

2016-2017学年山东省德州市八年级(下)期末数学试卷-6.25

2016-2017学年山东省德州市八年级(下)期末数学试卷-6.25

2016-2017学年山东省德州市八年级(下)期末数学试卷一、选择题(每小题3分,共36分)1.若有意义,则m能取的最小整数值是()A.m=0B.m=1C.m=2D.m=32.下列各组数中,以它们为边长的线段不能构成直角三角形的是()A.1,, B.3,4,5 C.5,12,13 D.2,2,33.下列二次根式中属于最简二次根式的是()A.B.C.D.4.函数y=2x﹣5的图象经过()A.第一、三、四象限B.第一、二、四象限C.第二、三、四象限D.第一、二、三象限5.如图,矩形ABCD中,对角线AC,BD交于点O.若∠AOB=60°,BD=8,则AB的长为()A.4B. C.3 D.56.如图,正方形ABCD中,AE垂直于BE,且AE=3,BE=4,则阴影部分的面积是()A.16B.18C.19D.217.某市一周的日最高气温如图所示,则该市这周的日最高气温的众数是()A.25B.26C.27D.288.已知P1(﹣3,y1),P2(2,y2)是一次函数y=﹣x-1的图象上的两个点,则y1,y2的大小关系是()A.y1=y2B.y1<y2C.y1>y2 D.不能确定9. 2022年将在北京﹣张家口举办冬季奥运会,很多学校开设了相关的课程.如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差s2:(,应该选择()A.队员1B.队员2C.队员3D.队员410.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,若BF=12,AB=10,则AE的长为()A.13B.14C.15D.1611.如图,菱形ABCD的一边中点M到对角线交点O的距离为5cm,则菱形ABCD的周长为()A.5cmB.10cmC.20cmD.40cm12.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<3时,y1<y2中,正确的个数是()A.0B.1C.2D.3二、填空题(每小题4分,共20分)13.已知一组数据x1,x2,x3,x4,x5的平均数是2,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数是.14.函数中,自变量x的取值范围是.15.计算=.16.矩形纸片ABCD的边长AB=8,AD=4,将矩形纸片沿EF折叠,使点A与点C重合,折叠后在某一面着色(如图),则着色部分的面积为.17.如图,直线y=kx+b(k≠0)与x轴交于点(﹣4,0),则关于x的方程kx+b=0的解为x=.三、解答题(本大题共7个小题,写出必要解题步骤,共64分)18.当x=时,求x2﹣x+1的值.第5题图第7题图第6题图第10题图第12题图第11题图第17题图第16题图19.一艘轮船以16海里/时的速度离开港口(如图),向北偏东40°方向航行,另一艘轮船在同时以12海里/时的速度向北偏西一定的角度的航向行驶,已知它们离港口一个半小时后相距30海里(即BA=30),问另一艘轮船的航行的方向是北偏西多少度?20.已知:如图,点E,F 分别为口ABCD 的边BC,AD 上的点,且∠1=∠2. 求证:AE=CF.21.阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为“世界读书日”.某校本学年开展了读书活动,在这次活动中,八年级(1)班40名学生读书册数的情况如表:根据表中的数据,求:(1)该班学生读书册数的平均数; (2)该班学生读书册数的中位数.22.世界上大部分国家都使用摄氏温度(℃),但美国、英国等国家的天气预报使用华氏温度(℉).两种计量之间有如表对应: 已知华氏温度y(℉)是摄氏温度x(℃)的一次函数.(1)求该一次函数的表达式; (2)当华氏温度﹣4℉时,求其所对应的摄氏温度.23.如图,矩形ABCD 的对角线AC 、BD 交于点O,且DE ∥AC,CE ∥BD. (1)求证:四边形OCED 是菱形;(2)若∠BAC=30°,AC=4,求菱形OCED 的面积.24.已知:甲乙两车分别从相距300千米的A 、B 两地同时出发相向而行,其中甲到达B 地后立即返回,如图是它们离各自出发地的距离y(千米)与行驶时间x(小时)之间的函数图象. (1)求甲车离出发地的距离y 甲(千米)与行驶时间x(小时)之间 的函数关系式,并写出自变量的取值范围;(2)它们出发小时时,离各自出发地的距离相等,求乙车离 出发地的距离y 乙(千米)与行驶时间x(小时)之间的函数 关系式,并写出自变量的取值范围;(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.2016-2017学年山东省德州市八年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共36分)1.若有意义,则m能取的最小整数值是()A.m=0B.m=1C.m=2D.m=3【分析】根据二次根式的性质,被开方数大于等于0,即可求解.【解答】解:由有意义,则满足3m﹣1≥0,解得m≥,即m≥时,二次根式有意义.则m能取的最小整数值是m=1.故选B.【点评】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.2.下列各组数中,以它们为边长的线段不能构成直角三角形的是()A.1,, B.3,4,5 C.5,12,13 D.2,2,3【分析】欲求证是否为直角三角形,利用勾股定理的逆定理即可.这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、12+()2=3=()2,故是直角三角形,故错误;B、42+32=25=52,故是直角三角形,故错误;C、52+122=169=132,故是直角三角形,故错误;D、22+22=8≠32,故不是直角三角形,故正确.故选D.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.下列二次根式中属于最简二次根式的是()A.B.C.D.【分析】B、D选项的被开方数中含有未开尽方的因数或因式;C选项的被开方数中含有分母;因此这三个选项都不是最简二次根式.【解答】解:因为:B、=4;C、=;D、=2;所以这三项都不是最简二次根式.故选A.【点评】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式.4.函数y=2x﹣5的图象经过()A.第一、三、四象限B.第一、二、四象限C.第二、三、四象限D.第一、二、三象限【分析】根据一次函数的性质解答.【解答】解:在y=2x﹣5中,∵k=2>0,b=﹣5<0,∴函数过第一、三、四象限,故选A.【点评】本题考查了一次函数的性质,能根据k和b的值确定函数所过象限是解题的关键.5.如图,矩形ABCD中,对角线AC,BD交于点O.若∠AOB=60°,BD=8,则AB的长为()A.4B. C.3 D.5【分析】先由矩形的性质得出OA=OB,再证明△AOB是等边三角形,得出AB=OB=4即可.【解答】解:∵四边形ABCD是矩形,∴OA=AC,OB=BD=4,AC=BD,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OB=4;故选:A.【点评】本题考查了矩形的性质、等边三角形的判定与性质;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.6.如图,正方形ABCD中,AE垂直于BE,且AE=3,BE=4,则阴影部分的面积是()A.16B.18C.19D.21【分析】由已知得△ABE为直角三角形,用勾股定理求正方形的边长AB,用S阴影部分=S正方形ABCD﹣S△ABE求面积.【解答】解:∵AE垂直于BE,且AE=3,BE=4,∴在Rt△ABE中,AB2=AE2+BE2=25,∴S阴影部分=S正方形ABCD﹣S△ABE=AB2﹣×AE×BE=25﹣×3×4=19.故选C.【点评】本题考查了勾股定理的运用,正方形的性质.关键是判断△ABE为直角三角形,运用勾股定理及面积公式求解.7.某市一周的日最高气温如图所示,则该市这周的日最高气温的众数是()A.25B.26C.27D.28【分析】一组数据中出现次数最多的数据叫做众数,依此求解即可.【解答】解:由图形可知,25出现了3次,次数最多,所以众数是25.故选A.【点评】本题考查了众数的概念,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.8.已知P1(﹣3,y1),P2(2,y2)是一次函数y=﹣x﹣1的图象上的两个点,则y1,y2的大小关系是()A.y1=y2B.y1<y2C.y1>y2 D.不能确定【分析】根据P1(﹣3,y1),P2(2,y2)是一次函数y=﹣x﹣1的图象上的两个点,由﹣3<2,结合一次函数y=﹣x﹣1在定义域内是单调递减函数,判断出y1,y2的大小关系即可.【解答】解:∵P1(﹣3,y1),P2(2,y2)是一次函数y=﹣x﹣1的图象上的两个点,且﹣3<2,∴y1>y2.故选:C.【点评】此题主要考查了一次函数图象上点的坐标特征,要熟练掌握.9. 2022年将在北京﹣张家口举办冬季奥运会,很多学校开设了相关的课程.如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差s2:,应该选择()A.队员1B.队员2C.队员3D.队员4【分析】据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:因为队员1和2的方差最小,但队员2平均数最小,所以成绩好,所以队员2成绩好又发挥稳定.故选B.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.10.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,若BF=12,AB=10,则AE的长为()A.13B.14C.15D.16【分析】先证明四边形ABEF是平行四边形,再证明邻边相等即可得出四边形ABEF是菱形,得出AE⊥BF,OA=OE,OB=OF=BF=6,由勾股定理求出OA,即可得出AE的长.【解答】解:如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵∠BAD的平分线交BC于点E,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴AB=BE,同理可得AB=AF,∴AF=BE,∴四边形ABEF是平行四边形,∵AB=AF,∴四边形ABEF是菱形,∴AE⊥BF,OA=OE,OB=OF=BF=6,∴OA===8,∴AE=2OA=16;故选:D.【点评】本题考查平行四边形的性质与判定、等腰三角形的判定、菱形的判定和性质、勾股定理等知识;熟练掌握平行四边形的性质,证明四边形ABEF是菱形是解决问题的关键.11.如图,菱形ABCD的一边中点M到对角线交点O的距离为5cm,则菱形ABCD的周长为()A.5cmB.10cmC.20cmD.40cm【分析】根据菱形的性质得出AB=BC=CD=AD,AO=OC,根据三角形的中位线求出BC,即可得出答案.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,AO=OC,∵AM=BM,∴BC=2MO=2×5cm=10cm,即AB=BC=CD=AD=10cm,即菱形ABCD的周长为40cm,故选D.【点评】本题考查了菱形的性质和三角形的中位线定理,能根据菱形的性质得出AO=OC是解此题的关键.12.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<3时,y1<y2中,正确的个数是()A.0B.1C.2D.3【分析】根据y1=kx+b和y2=x+a的图象可知:k<0,a<0,所以当x<3时,相应的x的值,y1图象均高于y2的图象.【解答】解:∵y1=kx+b的函数值随x的增大而减小,∴k<0;故①正确∵y2=x+a的图象与y轴交于负半轴,∴a<0;当x<3时,相应的x的值,y1图象均高于y2的图象,∴y1>y2,故②③错误.故选:B.【点评】本题考查了两条直线相交问题,难点在于根据函数图象的走势和与y轴的交点来判断各个函数k,b的值.二、填空题(每小题4分,共20分)13.已知一组数据x1,x2,x3,x4,x5的平均数是2,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数是.【分析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数.先求数据x1,x2,x3,x4,x5的和,然后再用平均数的定义求新数据的平均数.【解答】解:一组数据x1,x2,x3,x4,x5的平均数是2,有(x1+x2+x3+x4+x5)=2,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数是(3x1﹣2+3x2﹣2+3x3﹣2+3x4﹣2+3x5﹣2)=4.故答案为4.【点评】本题考查的是样本平均数的求法及运用,即平均数公式:.14.函数中,自变量x的取值范围是x≥3.【分析】根据二次根式有意义的条件是a≥0,即可求解.【解答】解:根据题意得:x﹣3≥0,解得:x≥3.故答案是:x≥3.【点评】本题考查了函数自变量的取值范围的求法,求函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.15.计算=.【分析】根据二次根式的加减法运算法则,先将各个二次根式化简为最简二次根式,然后将被开方数相同的二次根式合并.【解答】解:原式==3.【点评】二次根式的加减法运算一般可以分三步进行:①将每一个二次根式化成最简二次根式;②找出其中的同类二次根式;③合并同类二次根式.16.矩形纸片ABCD的边长AB=8,AD=4,将矩形纸片沿EF折叠,使点A与点C重合,折叠后在某一面着色(如图),则着色部分的面积为22.【分析】根据折叠的性质得到CG=AD=4,GF=DF=CD﹣CF,∠G=90°,根据勾股定理求出FC,根据三角形的面积公式计算即可.【解答】解:由折叠的性质可得:CG=AD=4,GF=DF=CD﹣CF,∠G=90°,则△CFG为直角三角形,在Rt△CFG中,FC2=CG2+FG2,即FC2=42+(8﹣FC)2,解得:FC=5,∴△CEF的面积=×FC×BC=10,△BCE的面积=△CGF的面积=×FG×GC=6,则着色部分的面积为:10+6+6=22,故答案为:22.【点评】本题考查的是翻转变换的性质、勾股定理的应用,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.17.如图,直线y=kx+b(k≠0)与x轴交于点(﹣4,0),则关于x的方程kx+b=0的解为x=﹣4.【分析】方程kx+b=0的解其实就是当y=0时一次函数y=kx+b与x轴的交点横坐标.【解答】解:由图知:直线y=kx+b与x轴交于点(﹣4,0),即当x=﹣4时,y=kx+b=0;因此关于x的方程kx+b=0的解为:x=﹣4.故答案为:﹣4【点评】本题主要考查了一次函数与一次方程的关系,关键是根据方程kx+b=0的解其实就是当y=0时一次函数y=kx+b与x轴的交点横坐标解答.三、解答题(本大题共7个小题,写出必要解题步骤,共64分)18.(6分)当x=时,求x2﹣x+1的值.【分析】先根据x=,整理成x=+1,再把要求的式子进行配方,然后把x的值代入,即可得出答案.【解答】解:∵x=∴x=+1,∴x2﹣x+1=(x﹣)2+=(+1﹣)2+=3.【点评】本题考查的是二次根式的化简求值,在进行此类运算时,一般先把二次根式化为最简二次根式的形式后再运算.19.(8分)一艘轮船以16海里/时的速度离开港口(如图),向北偏东40°方向航行,另一艘轮船在同时以12海里/时的速度向北偏西一定的角度的航向行驶,已知它们离港口一个半小时后相距30海里(即BA=30),问另一艘轮船的航行的方向是北偏西多少度?【分析】先根据题意得出OA及OB的长,再根据勾股定理的逆定理判断出△OAB的形状,进而可得出结论.【解答】解:由题意可知,OA=16+16×=24(海里),OB=12+12×=18(海里),AB=30海里,∵242+182=302,即OA2+OB2=AB2,∴△OAB是直角三角形,∵∠AOD=40°,∴∠BOD=90°﹣40°=50°,即另一艘轮船的航行的方向是北偏西50度.【点评】本题考查的是勾股定理的应用,根据题意判断出△AOB是直角三角形是解答此题的关键.20.(10分)已知:如图,点E,F分别为▱ABCD的边BC,AD上的点,且∠1=∠2.求证:AE=CF.【分析】先由平行四边形的对边平行得出AD∥BC,再根据平行线的性质得到∠DAE=∠1,而∠1=∠2,于是∠DAE=∠2,根据平行线的判定得到AE∥CF,由两组对边分别平行的四边形是平行四边形得到四边形AECF是平行四边形,从而根据平行四边形的对边相等得到AE=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠1,∵∠1=∠2,∴∠DAE=∠2,∴AE∥CF,∵AF∥EC,∴四边形AECF是平行四边形,∴AE=CF.【点评】本题考查了平行四边形的判定与性质,平行线的判定与性质,难度适中.证明出AE∥CF是解题的关键.21.(10分)阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为“世界读书日”.某校本学年开展了读书活动,在这次活动中,八年级(1)班40名学生读书册数的情况如表:根据表中的数据,求:(1)该班学生读书册数的平均数; (2)该班学生读书册数的中位数. 【分析】(1)根据平均数=,求出该班同学读书册数的平均数;(2)将图表中的数据按照从小到大的顺序排列,再根据中位数的概念求解即可. 【解答】解:(1)该班学生读书册数的平均数为: =6.3(册),答:该班学生读书册数的平均数为6.3册. (2)将该班学生读书册数按照从小到大的顺序排列,由图表可知第20名和第21名学生的读书册数分别是6册和7册,故该班学生读书册数的中位数为:=6.5(册).答:该班学生读书册数的中位数为6.5册.【点评】本题考查了中位数和平均数的知识,解答本题的关键在于熟练掌握求解平均数的公式和中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.22.(10分)世界上大部分国家都使用摄氏温度(℃),但美国、英国等国家的天气预报使用华氏温度(℉).两种计量之间有如表对应:(1)求该一次函数的表达式;(2)当华氏温度﹣4℉时,求其所对应的摄氏温度.【分析】(1)设y=kx +b,利用图中的两个点,建立方程组,解之即可; (2)令y=﹣4,求出x 的值,再比较即可.【解答】解:(1)设一次函数表达式为y=kx +b(k ≠0). 由题意,得解得∴一次函数的表达式为y=1.8x +32.(2)当y=﹣4时,代入得﹣4=1.8x +32,解得x=﹣20.∴华氏温度﹣4℉所对应的摄氏温度是﹣20℃.【点评】本题考查一次函数的应用,只需仔细分析表中的数据,利用待定系数法即可解决问题.23.(10分)如图,矩形ABCD 的对角线AC 、BD 交于点O,且DE ∥AC,CE ∥BD. (1)求证:四边形OCED 是菱形;(2)若∠BAC=30°,AC=4,求菱形OCED 的面积.【分析】(1)根据平行四边形的判定得出四边形OCED 是平行四边形,根据矩形的性质求出OC=OD,根据菱形的判定得出即可. (2)解直角三角形求出BC=2.AB=DC=2,连接OE,交CD 于点F,根据菱形的性质得出F 为CD中点,求出OF=BC=1,求出OE=2OF=2,求出菱形的面积即可. 【解答】(1)证明:∵CE ∥OD,DE ∥OC, ∴四边形OCED 是平行四边形,∵矩形ABCD,∴AC=BD,OC=AC,OD=BD, ∴OC=OD,∴四边形OCED 是菱形;(2)解:在矩形ABCD 中,∠ABC=90°,∠BAC=30°,AC=4, ∴BC=2, ∴AB=DC=2,连接OE,交CD 于点F,∵四边形ABCD 为菱形, ∴F 为CD 中点,∵O为BD中点,∴OF=BC=1,∴OE=2OF=2,∴S菱形OCED=×OE×CD=×2×2=2.【点评】本题考查了矩形的性质和菱形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:菱形的面积等于对角线积的一半.24.(10分)已知:甲乙两车分别从相距300千米的A、B两地同时出发相向而行,其中甲到达B地后立即返回,如图是它们离各自出发地的距离y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车离出发地的距离y甲(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;(2)它们出发小时时,离各自出发地的距离相等,求乙车离出发地的距离y乙(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.【分析】(1)由图知,该函数关系在不同的时间里表现成不同的关系,需分段表达.当行驶时间小于3时是正比例函数;当行使时间大于3小时小于小时是一次函数.可根据待定系数法列方程,求函数关系式.(2)4.5小时大于3小时,代入一次函数关系式,计算出乙车在用了小时行使的距离.从图象可看出求乙车离出发地的距离y(千米)与行驶时间x(小时)之间是正比例函数关系,用待定系数法可求解.(3)两者相向而行,相遇时甲、乙两车行使的距离之和为300千米,列出方程解答,由题意有两次相遇.【解答】解:(1)当0≤x≤3时,是正比例函数,设为y=kx,x=3时,y=300,代入解得k=100,所以y=100x;当3<x≤时,是一次函数,设为y=kx+b,代入两点(3,300)、(,0),得解得,所以y=540﹣80x.综合以上得甲车离出发地的距离y与行驶时间x之间的函数关系式为:y=.(2)当x=时,y甲=540﹣80×=180;乙车过点(,180),y乙=40x.(0≤x≤)(3)由题意有两次相遇.①当0≤x≤3,100x+40x=300,解得x=;②当3<x≤时,(540﹣80x)+40x=300,解得x=6.综上所述,两车第一次相遇时间为第小时,第二次相遇时间为第6小时.【点评】本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题,具备在直角坐标系中的读图能力.此题中需注意的是相向而行时相遇的问题.。

山东省德州市八年级下学期数学期末试卷

山东省德州市八年级下学期数学期末试卷

山东省德州市八年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分) (2019九上·黄浦期末) 已知、、都是非零向量.下列条件中,不能判定∥ 的是()A . | |=| |B . =3C . ∥ ,∥D . =2 ,=-22. (2分)下列命题中错误的是()A . 对角线互相平分的四边形是平行四边形B . 对角线相等的平行四边形是矩形C . 一条对角线平分一组对角的四边形是菱形D . 对角线互相垂直的矩形是正方形3. (2分)用换元法解分式方程-+1=0时,如果设=y,将原方程化为关于y的整式方程,那么这个整式方程是()A . y2+y-3=0B . y2-3y+1=0C . 3y2-y+1=0D . 3y2-y-1=04. (2分)方程=+1的解为()A . 0B . -1C . 2D . ﹣1或25. (2分)下列事件中,是不确定事件的是()A . 某班数学的及格率达到100%,从试卷中抽出一张,一定是及格的B . 某班有48名学生,他们都是14岁,至少有4个人在同一个月出生C . 在水平的玻璃面上放一个玻璃球用力推,小球会滚动D . 李明的爸爸买了一张彩票,一定会中大奖6. (2分) (2019八下·乌拉特前旗开学考) 若一个多边形的每个内角都相等,且都为160度,则这个多边形的内角和是()度A . 2520B . 2880C . 3060D . 3240二、填空题 (共12题;共12分)7. (1分) (2019八下·乌兰浩特期末) 下列函数的图象(1),(2),(3),(4)不经过第一象限,且随的增大而减小的是________.(填序号)8. (1分) (2020七下·延平月考) 3是________的立方根;81的平方根是________; ________.9. (1分)已知不等式3(x﹣2)+5<4(x﹣1)+6的最小整数解为方程2x﹣ax=3的解,则代数式的值为________.10. (1分)直线与x轴的交点坐标是________.11. (1分) (2019八上·南昌期中) 如图,在平面直角坐标系中,点A(−2,4),B(4,2),在x轴上取一点P,使点P到点A和点B的距离之和最小,则点P的坐标是________.12. (1分)(2020·广陵模拟) 如图,将直线y=x向下平移b个单位长度后得到直线,与反比例函数(k>0,x>0)的图象相交于点A,与x轴相交于点B,且,则k的值是________.13. (1分) (2019九上·香坊期末) 如图,在平行四边形ABCD中,于点E ,于点F ,若,,,则平行四边形ABCD的面积为________.14. (1分)(2017·浦东模拟) 如图,梯形ABCD中,AD∥BC,对角线BD与中位线EF交于点G,若AD=2,EF=5,那么FG=________.15. (1分)(2020·滨州) 现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为________.16. (1分) (2019八上·惠来期中) 已知一个长方形的长为 5cm,宽为 xcm,周长为 ycm,则 y 与 x 之间的函数表达式为________.17. (1分) (2018八上·长春期末) 如图,在平行四边形ABCD中,EF∥AD,GH∥AB,EF、GH相交于点O,则图中共有________个平行四边形.18. (1分)(2012·朝阳) 如图,AB为⊙O的直径,CD为⊙O的一条弦,CD⊥AB,垂足为E,已知CD=6,AE=1,则⊙0的半径为________.三、解答题 (共9题;共62分)19. (5分) (2016八上·平谷期末) 解方程:20. (5分)(2018·福田模拟) 计算:21. (5分) (2019八下·长春期中) 阅读下面材料,解答问题:将4个数a、b、c、d排列成2行2列,记为:,叫做二阶行列式.意义是.例如:.(1)请你计算的值;(2)若,求的值.22. (5分)求方程的正整数解.23. (6分)(2020·谯城模拟) 如图,在平行四边形ABCD中,对角线AC、BD相交于点O.E为边AB上一点,且BE = 2AE.设,.(1)填空:向量 ________;(2)如果点F是线段OC的中点,那么向量 ________,并在图中画出向量在向量和方向上的分向量.注:本题结果用向量的式子表示.画图不要求写作法,但要指出所作图中表示结论的向量.24. (5分) (2019八上·昌平期中) 列方程或列方程组解应用题.老京张铁路是1909年由“中国铁路之父”詹天佑主持设计建造的中国第一条干线铁路,全长约210千米,用“人”字形铁轨铺筑的方式解决了火车上山的问题.京张高铁是2022年北京至张家口冬奥会的重点配套交通基础设施,全长约175千米,预计2019年底建成通车.京张高铁的预设平均速度将是老京张铁路的5倍,可以提前5个小时到达,求京张高铁的平均速度.25. (10分)如图,将▱ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC于点F.(1)求证:△BEF≌△CDF;(2)连接BD、CE,若∠BFD=2∠A,求证:四边形BECD是矩形.26. (10分) (2018七下·江都期中) 在正方形网格中,每个小正方形的边长都为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移后得△DEF,使点A的对应点为点D,点B的对应点为点E.(1)画出△DEF;(2)连接AD、BE,则线段AD与BE的关系是________(3)求△DEF的面积.27. (11分)(2017·德惠模拟) 如图,经过点A(0,6)的抛物线y= x2+bx+c与x轴相交于B(﹣2,0)、C两点.(1)求此抛物线的函数关系式和顶点D的坐标;(2)求直线AC所对应的函数关系式;(3)将(1)中求得的抛物线向左平移1个单位长度,再向上平移m(m>0)个单位长度得到新抛物线y1 ,若新抛物线y1的顶点P在△ABC内,求m的取值范围;(4)在(3)的结论下,新抛物线y1上是否存在点Q,使得△QAB是以AB为底边的等腰三角形,请分析所有可能出现的情况,并直接写出相对应的m的取值范围.参考答案一、单选题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共12题;共12分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共9题;共62分)19-1、20-1、21-1、21-2、22-1、23-1、23-2、24-1、25-1、25-2、26-1、26-2、26-3、27-1、27-2、27-3、27-4、。

德州市八年级下学期数学期末试卷

德州市八年级下学期数学期末试卷

德州市八年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2018·岳池模拟) 要使分式有意义,则的取值范围是()A .B .C . >D . <2. (2分) (2019八下·淮安月考) 下列电视台的台标,是中心对称图形的是()A .B .C .D .3. (2分)下列说法正确的是()A . x=1是不等式-2x<1的解集B . x=-3是不等式-x<1的解集C . x>-2是不等式-2x<1的解集D . 不等式-x<1的解集是x<-14. (2分) (2017八上·宜城期末) 把多项式x2+ax+b分解因式,得(x﹣1)(x+3),则a,b的值分别是()A . a=2,b=3B . a=2,b=﹣3C . a=﹣2,b=3D . a=﹣2,b=﹣35. (2分)已知四边形ABCD是平行四边形,下列结论中不正确的有()①当AB=BC时,它是菱形②当AC⊥B D时,它是菱形③当∠ABC=90o时,它是矩形④当AC=BD时,它是正方形A . 1个B . 2个C . 3个D . 4个6. (2分) (2016八上·阜康期中) 已知一个正多边形的一个外角为36°,则这个正多边形的边数是()A . 8B . 9C . 10D . 117. (2分)满足分式方程的x值是()A . 2B . ﹣2C . 1D . 08. (2分)(2017·安次模拟) 如图a,有两个全等的正三角形ABC和DEF,点D、C分别为△ABC、DEF的内心;固定点D,将△DEF顺时针旋转,使得DF经过点C,如图b,则图a中四边形CNDM与图b中△CDM面积的比为()A . 2:1B . 2:C . 4:3D . :9. (2分)如图,在菱形ABCD中,不一定成立的是().A . 四边形ABCD是平行四边形B . AC⊥BDC . ABD是等边三角形D . ∠CAB=∠CAD10. (2分) (2017八下·兴隆期末) 如图,函数y=2x和y=ax+4的图象相交于点A(,3),则不等式2x≥ax+4的解集为()A . x≥B . x≤3C . x≤D . x≥3二、填空题 (共9题;共11分)11. (1分) (2018八上·汽开区期末) 分解因式: ________.12. (1分) (2017七下·蒙阴期末) 不等式:的非正整数解个数有________个.13. (2分)若实数满足 ,则 =________.14. (1分) (2019八下·镇江月考) 如图,在□ABCD中,BE平分∠ABC,BC=6,DE=2,则□ABCD的周长等于________.15. (1分) (2012·茂名) 若分式的值为0,则a的值是________.16. (2分)已知,,则 =________17. (1分)有一根长24cm的小木棒,把它分成三段,组成一个直角三角形,且每段的长度都是偶数,则三段小木棒的长度分别是________ cm,________ cm,________ cm.18. (1分)(2016·广州) 分式方程的解是________.19. (1分)(2019·海州模拟) 如图,在正方形ABCD中,E是对角线BD上一点,DE=4BE,连接CE,过点E 作EF⊥CE交AB的延长线于点F,若AF=8,则正方形ABCD的边长为________.三、解答题 (共9题;共105分)20. (10分) (2018·宜昌) 解不等式组,并把它的解集在数轴上表示出来.21. (10分)(2017·抚州模拟) 计算与解分式方程(1) |1﹣2sin45°|﹣ +()﹣1(2) + =3.22. (5分)(2018·东营模拟) 计算题(1)计算:|﹣ |﹣+2sin60°+()﹣1+(2﹣)0(2)先化简,再求值:÷(1﹣),其中a= ﹣2.23. (15分)如图,在正方形网格中,△ABC的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)①将△ABC向右平移5个单位长度,画出平移后的△A1B1C1;②画出△ABC关于x轴对称的△A2B2C2;③将△ABC绕原点O旋转180°,画出旋转后的△A3B3C3;(2)在△A1B1C1、△A2B2C2、△A3B3C3中,△________与△________成轴对称;△________与△________成中心对称.24. (10分)(2018·盘锦) 东东玩具商店用500元购进一批悠悠球,很受中小学生欢迎,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元.(1)求第一批悠悠球每套的进价是多少元;(2)如果这两批悠悠球每套售价相同,且全部售完后总利润不低于25%,那么每套悠悠球的售价至少是多少元?25. (15分)(2019·平阳模拟) 已知四边形ABCD是边长为10的菱形,对角线AC、BD相交于点E,过点C 作CF∥DB交AB延长线于点F,联结EF交BC于点H.(1)如图1,当EF⊥BC时,求AE的长;(2)如图2,以EF为直径作⊙O,⊙O经过点C交边CD于点G(点C、G不重合),设AE的长为x,EH的长为y;①求y关于x的函数关系式,并写出定义域;②联结EG,当△DEG是以DG为腰的等腰三角形时,求AE的长.26. (10分)(2017·樊城模拟) 某商店试销一种新商品,该商品的进价为40元/件,经过一段时间的试销发现,每月的销售量会因售价在40~70元之间的调整而不同.当售价在40~50元时,每月销售量都为60件;当售价在50~70元时,每月销售量与售价的关系如图所示,令每月销售量为y件,售价为x元/件,每月的总利润为Q 元.(1)当售价在50~70元时,求每月销售量为y与x的函数关系式?(2)当该商品售价x是多少元时,该商店每月获利最大,最大利润是多少元?(3)若该商店每月采购这种新商品的进货款不低于1760元,则该商品每月最大利润为________元.27. (15分)(2017·虞城模拟) 如图①所示,已知在矩形ABCD中,AB=60cm,BC=90cm,点P从点A出发,以3cm/s的速度沿AB运动;同时,点Q从点B出发,以20cm/s的速度沿BC运动.当点Q到达点C时,P、Q两点同时停止运动.设点P、Q运动的时间为t(s).(1)当t=________s时,△BPQ为等腰三角形;(2)当BD平分PQ时,求t的值;(3)如图②,将△BPQ沿PQ折叠,点B的对应点为E,PE、QE分别与AD交于点F、G.探索:是否存在实数t,使得AF=EF?如果存在,求出t的值:如果不存在,说明理由.28. (15分) (2016九上·重庆期中) 如图1,矩形ABCD中,AB=6,∠DBC=30°,DM平分∠BDC交BC于M,△EFG中,∠F=90°,GF= ,∠E=30°,点F、G、B、C共线,且G、B重合,△EFG沿折线B﹣M﹣D方向以每秒个单位长度平移,得到△E1F1G1 ,平移过程中,点G1始终在折线B﹣M﹣D上,△E1F1G1与△DBM无重叠时,△E1F1G1停止运动,设△E1F1G1与△DBM重叠部分面积为S,平移时间为t,(1)当△E1F1G1的顶点G1恰好在BD上时,t=________秒;(2)直接写出S与t的函数关系式,及自变量t的取值范围;(3)如图2,△E1F1G1平移到G1与M重合时,将△E1F1G1绕点M旋转α°(0°<α<180°)得到△E2F2G1,点E1、F1分别对应E2、F2,设直线F2E2与直线DM交于P,与直线DC交于Q,是否存在这样的α,使△DPQ为直角三角形?若存在,求α的度数和DQ的长;若不存在,请说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共9题;共11分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、三、解答题 (共9题;共105分)20-1、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、25-1、26-1、26-2、26-3、27-1、27-2、27-3、28-1、28-2、28-3、。

2015-2016学年度八年级第二学期期末考试数学试题及参考答案

2015-2016学年度八年级第二学期期末考试数学试题及参考答案

2015-2016学年度第二学期期末考试八年级数学试题(时间:120分钟 满分:150分)请注意:所有试题的答案均填写在答题卡上,答案写在试卷上无效。

一、选择题:(本大题共6小题,每小题3分,计18分) 1.下列式子中,为最简二次根式的是 ( ▲ ) A .10B .8C .21D .212.下列图形中,既是轴对称图形又是中心对称图形的是( ▲ )A .B . C.D.3.与分式x--11的值相等的是( ▲ ) A .11--xB .x+-11 C .x+11D .11-x 4. 已知实数0<a ,则下列事件中是必然事件的是( ▲ ) A .03>aB .03<-aC .03>+aD .03>a5.矩形具有而平行四边形不一定具有的性质是( ▲ ) A .对角线互相平分 B .两组对角相等 C .对角线相等D .两组对边相等6.如图,△ABC 的三个顶点分别为A (1,2),B (1,3),C (3,1).若反比例函数xky =在第一象限内的图象与△ABC 有公共点,则k 的取值范围是( ▲ ) A .32≤≤k B .42≤≤k C .43≤≤kD .5.32≤≤k二、填空题:(本大题共10小题,每小题3分,计30分)7x 的取值范围是 ▲ .8.如图,将△ABC 绕点A 按顺时针方向旋转60°得△ADE ,则∠BAD= ▲ °.9.若分式392+-x x 的值为0,则x 的值为 ▲ .10.若b a <,则2)(b a -可化简为 ▲ .11.若一元二次方程020162=-+bx ax 有一根为1-=x ,则b a -的值为 ▲ .12.在菱形ABCD 中,对角线AC ,BD 的长分别是6和8,则菱形的周长是 ▲ . 13.如图,在Rt △ABC 中,∠ACB=90°,点D 、E 、F 分别是AB 、AC 、BC 的中点,若CD=5,则EF 的长为 ▲ .第8题图 第13题图 第16题图14.某药品2014年价格为每盒120元,经过两年连续降价后,2016价格为每盒76.8元,设这两年该药品价格平均降低率为x ,根据题意可列方程为 ▲ . 15.已知)2,(m A 与)3,1(-m B 是反比例函数xky =图像上的两个点,则m 的值为 ▲ . 16.如图,矩形ABCD 中,AB=7cm,BC=3cm,P 、Q 两点分别从A 、B 两点同时出发,沿矩形ABCD 的边逆时针运动,速度均为1cm/s ,当点P 到达B 点时两点同时停止运动,若PQ 长度为5cm 时,运动时间为 ▲ s . 三、解答题:(本大题共10小题,计102分) 17.(本题10分)计算:(1)0)21()12(8+-+(2))32)(32(-+18.(本题10分)解下列一元二次方程: (1)x x 3322=-(用公式法解) (2)93)3(2-=-x x19.(本题8分)先化简,再求值:121441222+-÷-+-+-a a a a a a ,其中12+=a20.(本题8分)一个不透明的口袋中有7个红球,5个黄球,4个绿球,这些球除颜色外没有其它区别,现从中任意摸出一球,如果要使摸到绿球的可能性最大,需要在这个口袋中至少再放入多少个绿球?请简要说明理由.21.(本题10分)2016年某校组织学生进行综合实践活动,准备从以下几个景点中选择一处进行参观。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年山东省德州市乐陵市八年级(下)期末数学试卷一、选择题(每题3分,共36分)1.(3分)下列二次根式中,是最简二次根式的是()A.B. C. D.2.(3分)函数y=2x﹣1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)下列计算正确的是()A.2+3=5B.=4 C.÷=3 D.4()2=44.(3分)如图,▱ABCD中,∠C=110°,BE平分∠ABC,则∠AEB等于()A.11°B.35°C.55°D.70°5.(3分)直角三角形中,两直角边分别是12和5,则斜边上的中线长是()A.34 B.26 C.8.5 D.6.56.(3分)下列命题中的真命题是()A.有一组对边平行的四边形是平行四边形B.有一个角是直角的四边形是矩形C.对角线互相垂直平分的四边形是正方形D.有一组邻边相等的平行四边形是菱形7.(3分)某中学足球队9名队员的年龄情况如下:则该队队员年龄的众数和中位数分别是()A.15,15 B.15,16 C.15,17 D.16,158.(3分)给定平面上不在同一直线上的三点,以这三点为顶点的平行四边形有()A.4个 B.3个 C.2个 D.1个9.(3分)一次函数y=﹣x+6的图象上有两点A(﹣1,y1)、B(2,y2),则y1与y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.y1≥y210.(3分)如图,在矩形ABCD中,有以下结论:=S△ADO;③AC=BD;④AC⊥BD;⑤当∠ABD=45°①△AOB是等腰三角形;②S△ABO时,矩形ABCD会变成正方形.正确结论的个数是()A.2 B.3 C.4 D.511.(3分)如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为()A.75°B.60°C.55°D.45°12.(3分)如图,将边长为12cm的正方形ABCD折叠,使得点A落在CD边上的点E处,折痕为MN.若CE的长为7cm,则MN的长为()A.10 B.13 C.15 D.无法求出二、填空题(每题4分,共20分,请直接将答案填写在答题卷中,不写过程)13.(4分)若二次根式有意义,则x的取值范围是.14.(4分)下表记录了甲、乙、丙、丁四名运动员参加男子跳高选拔赛成绩的平均数x与方差S2:根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择.15.(4分)在一个广场上有两棵树,一棵高6米,另一棵高2米,两树相距5米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了米.16.(4分)直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为.17.(4分)如图,菱形ABCD在平面直角坐标系中,若点D的坐标为(1,),则点C的坐标为.三、解答题(共7小题,64分,写出必要的解题步骤过程)18.(6分)化简:(1)(﹣)﹣(+)(2)x=﹣1,求代数式x2+3x﹣4的值.19.(8分)某校八年级全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况统计如图所示.(1)本次共抽查学生人,并将条形图补充完整;(2)捐款金额的众数是,平均数是;(3)在八年级600名学生中,捐款20元及以上(含20元)的学生估计有多少人?20.(8分)已知:y与x+2成正比例,且x=1时,y=﹣6.(1)求y与x之间的函数关系式;(2)若点M(m,4)在这个函数的图象上,求m的值.21.(10分)如图所示,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,∠A=90°,求四边形ABCD的面积.22.(10分)随着地球上的水资源日益枯竭,各级政府越来越重视倡导节约用水.某市民生活用水按“阶梯水价”方式进行收费,人均月生活用水收费标准如图所示,图中x表示人均月生活用水的吨数,y表示收取的人均月生活用水费(元).请根据图象信息,回答下列问题:(1)该市人均月生活用水的收费标准是:不超过5吨,每吨按元收取;超过5吨的部分,每吨按元收取;(2)请写出y与x的函数关系式;(3)若某个家庭有5人,五月份的生活用水费共76元,则该家庭这个月用了多少吨生活用水?23.(10分)如图,E、F分别是菱形ABCD的边AB、AD的中点,且AB=5,AC=6.(1)求对角线BD的长;(2)求证:四边形AEOF为菱形.24.(12分)已知:如图,已知直线AB的函数解析式为y=2x+10,与y轴交于点A,与x轴交于点B.(1)求A、B两点的坐标;(2)若点P(a,b)为线段AB上的一个动点,作PE⊥y轴于点E,PF⊥x轴于点F,连接EF,问:①若△PBO的面积为S,求S关于a的函数关系式;②是否存在点P,使EF的值最小?若存在,求出EF的最小值;若不存在,请说明理由.2015-2016学年山东省德州市乐陵市八年级(下)期末数学试卷参考答案与试题解析一、选择题(每题3分,共36分)1.(3分)下列二次根式中,是最简二次根式的是()A.B. C. D.【解答】解:A、被开方数含分母,故A错误;B、被开方数含能开得尽方的因数或因式,故B错误;C、被开方数含能开得尽方的因数或因式,故C错误;D、被开方数不含分母且被开方数不含能开得尽方的因数或因式,故D正确;故选:D.2.(3分)函数y=2x﹣1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵k=2>0,∴函数y=2x﹣1的图象经过第一,三象限;又∵b=﹣1<0,∴图象与y轴的交点在x轴的下方,即图象经过第四象限;所以函数y=﹣x﹣1的图象经过第一,三,四象限,即它不经过第二象限.故选B.3.(3分)下列计算正确的是()A.2+3=5B.=4 C.÷=3 D.4()2=4【解答】解:A、不是同类二次根式不能相加,故A错误;B、=2,故B错误;C、==3,故C正确;D、4()2=4×2=8,故D错误;故选:C.4.(3分)如图,▱ABCD中,∠C=110°,BE平分∠ABC,则∠AEB等于()A.11°B.35°C.55°D.70°【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∵∠C=110°,∴∠ABC=180°﹣∠C=70°,∵BE平分∠ABC,∴∠CBE=∠ABC=35°,∴∠AEB=∠CBE=35°.故选B.5.(3分)直角三角形中,两直角边分别是12和5,则斜边上的中线长是()A.34 B.26 C.8.5 D.6.5【解答】解:由勾股定理得,斜边==13,所以,斜边上的中线长=×13=6.5.故选D.6.(3分)下列命题中的真命题是()A.有一组对边平行的四边形是平行四边形B.有一个角是直角的四边形是矩形C.对角线互相垂直平分的四边形是正方形D.有一组邻边相等的平行四边形是菱形【解答】解:A、有两组对边平行的四边形是平行四边形,所以A选项错误;B、有一个角是直角的平行四边形是矩形,所以B选项错误;C、对角线互相垂直平分且相等的四边形是正方形,所以C选项错误;D、有一组邻边相等的平行四边形是菱形,所以D选项正确.故选D.7.(3分)某中学足球队9名队员的年龄情况如下:则该队队员年龄的众数和中位数分别是()A.15,15 B.15,16 C.15,17 D.16,15【解答】解:这组数据按照从小到大的顺序排列为:14,15,15,15,15,16,16,17,17,则众数为:15,中位数为:15.故选:A.8.(3分)给定平面上不在同一直线上的三点,以这三点为顶点的平行四边形有()A.4个 B.3个 C.2个 D.1个【解答】解:如图所示:以点A,B,C为顶点能做三个平行四边形:▱ABCD,▱ABFC,▱AEBC.故选:B.9.(3分)一次函数y=﹣x+6的图象上有两点A(﹣1,y1)、B(2,y2),则y1与y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.y1≥y2【解答】解:∵k=﹣1<0,y将随x的增大而减小,又∵﹣1<2,∴y1>y2.故选A.10.(3分)如图,在矩形ABCD中,有以下结论:=S△ADO;③AC=BD;④AC⊥BD;⑤当∠ABD=45°①△AOB是等腰三角形;②S△ABO时,矩形ABCD会变成正方形.正确结论的个数是()A.2 B.3 C.4 D.5【解答】解:∵四边形ABCD是矩形,∴AO=BO=DO=CO,AC=BD,故①③正确;∵BO=DO,=S△ADO,故②正确;∴S△ABO当∠ABD=45°时,则∠AOD=90°,∴AC⊥BD,∴矩形ABCD变成正方形,故⑤正确,而④不一定正确,矩形的对角线只是相等,∴正确结论的个数是4个.故选C.11.(3分)如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为()A.75°B.60°C.55°D.45°【解答】解:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∠BAF=45°,∵△ADE是等边三角形,∴∠DAE=60°,AD=AE,∴∠BAE=90°+60°=150°,AB=AE,∴∠ABE=∠AEB=(180°﹣150°)=15°,∴∠BFC=∠BAF+∠ABE=45°+15°=60°;故选:B.12.(3分)如图,将边长为12cm的正方形ABCD折叠,使得点A落在CD边上的点E处,折痕为MN.若CE的长为7cm,则MN的长为()A.10 B.13 C.15 D.无法求出【解答】解:作NF⊥AD,垂足为F,连接AE,NE,∵将正方形纸片ABCD折叠,使得点A落在边CD上的E点,折痕为MN,∴∠D=∠AHM=90°,∠DAE=∠DAE.∴△AHM∽△ADE.∴∠AMN=∠AED.在Rt△NFM和Rt△ADE中,,∴△NFM≌△ADE(AAS),∴FM=DE=CD﹣CE=5cm,又∵在Rt△MNF中,FN=AB=12cm,∴根据勾股定理得:MN==13.故选B.二、填空题(每题4分,共20分,请直接将答案填写在答题卷中,不写过程)13.(4分)若二次根式有意义,则x的取值范围是x≥﹣1.【解答】解:由题意得:x+1≥0,解得:x≥﹣1,故答案为:x≥﹣1.14.(4分)下表记录了甲、乙、丙、丁四名运动员参加男子跳高选拔赛成绩的平均数x与方差S2:根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择甲.【解答】解:∵=>>,∴从甲和丙中选择一人参加比赛,∵<,∴选择甲参赛,故答案为:甲.15.(4分)在一个广场上有两棵树,一棵高6米,另一棵高2米,两树相距5米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了米.【解答】解:两棵树的高度差为6﹣2=4m,间距为5m,根据勾股定理可得:小鸟至少飞行的距离==m.故答案为:.16.(4分)直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为x≥1.【解答】解:将点P(a,2)坐标代入直线y=x+1,得a=1,从图中直接看出,当x≥1时,x+1≥mx+n,故答案为:x≥1.17.(4分)如图,菱形ABCD在平面直角坐标系中,若点D的坐标为(1,),则点C的坐标为(3,).【解答】解:∵点D的坐标为(1,),∴AD==2,∵四边形ABCD为菱形,∴CD=AD=2,CD∥AB,∴C点坐标为(3,).故答案为(3,).三、解答题(共7小题,64分,写出必要的解题步骤过程)18.(6分)化简:(1)(﹣)﹣(+)(2)x=﹣1,求代数式x2+3x﹣4的值.【解答】解:(1)原式=2﹣﹣﹣=﹣;(2)x2+3x﹣4=(x+4)(x﹣1)=(+3)(﹣2)=2﹣2+3﹣6=﹣4+.19.(8分)某校八年级全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况统计如图所示.(1)本次共抽查学生50人,并将条形图补充完整;(2)捐款金额的众数是10,平均数是13.1;(3)在八年级600名学生中,捐款20元及以上(含20元)的学生估计有多少人?【解答】解:(1)本次抽查的学生有:14÷28%=50(人),则捐款10元的有50﹣9﹣14﹣7﹣4=16(人),补全条形统计图图形如下:(2)由条形图可知,捐款10元人数最多,故众数是10;这组数据的平均数为:=13.1;(3)捐款20元及以上(含20元)的学生有:(人);故答案为:(1)50,(2)10,13.1.20.(8分)已知:y与x+2成正比例,且x=1时,y=﹣6.(1)求y与x之间的函数关系式;(2)若点M(m,4)在这个函数的图象上,求m的值.【解答】解:(1)根据题意:设y=k(x+2),把x=1,y=﹣6代入得:﹣6=k(1+2),解得:k=﹣2.则y与x函数关系式为y=﹣2(x+2)=﹣2x﹣4;(2)把点M(m,4)代入y=﹣2x﹣4得:4=﹣2m﹣4解得m=﹣4.21.(10分)如图所示,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,∠A=90°,求四边形ABCD的面积.【解答】解:连接BD,∵AB=3cm,AD=4cm,∠A=90°=×3×4=6cm2∴BD=5cm,S△ABD又∵BD=5cm,BC=13cm,CD=12cm∴BD2+CD2=BC2∴∠BDC=90°=×5×12=30cm2∴S△BDC∴S=S△ABD+S△BDC=6+30=36cm2.四边形ABCD22.(10分)随着地球上的水资源日益枯竭,各级政府越来越重视倡导节约用水.某市民生活用水按“阶梯水价”方式进行收费,人均月生活用水收费标准如图所示,图中x表示人均月生活用水的吨数,y表示收取的人均月生活用水费(元).请根据图象信息,回答下列问题:(1)该市人均月生活用水的收费标准是:不超过5吨,每吨按 1.6元收取;超过5吨的部分,每吨按 2.4元收取;(2)请写出y与x的函数关系式;(3)若某个家庭有5人,五月份的生活用水费共76元,则该家庭这个月用了多少吨生活用水?【解答】解:(1)该市人均月生活用水的收费标准是:不超过5吨,每吨按1.6元收取;超过5吨的部分,每吨按2.4元收取;(2)当0≤x≤5时,设y=kx,代入(5,8)得8=5k,解得k=∴y=x;当x>5时,设y=kx+b,代入(5,8)、(10,20)得,解得k=,b=﹣4,∴y=x﹣4;综上所述,y=;(3)把y=代入y=x﹣4得x﹣4=,解得x=8,5×8=40(吨).答:该家庭这个月用了40吨生活用水.23.(10分)如图,E、F分别是菱形ABCD的边AB、AD的中点,且AB=5,AC=6.(1)求对角线BD的长;(2)求证:四边形AEOF为菱形.【解答】(1)解:∵四边形ABCD是菱形,∴AC⊥DB,AO=AC,BO=DB,∵AC=6,∴AO=3,∵AB=5,∴OB==4,∴DB=8;(2)证明:∵E,O分别是BA,BD中点,∴OE AD,同理可得:AF AD,∴四边形AEOF是平行四边形,又∵AB=AD,∴AE=AF,∴平行四边形AEOF是菱形.24.(12分)已知:如图,已知直线AB的函数解析式为y=2x+10,与y轴交于点A,与x轴交于点B.(1)求A、B两点的坐标;(2)若点P(a,b)为线段AB上的一个动点,作PE⊥y轴于点E,PF⊥x轴于点F,连接EF,问:①若△PBO的面积为S,求S关于a的函数关系式;②是否存在点P,使EF的值最小?若存在,求出EF的最小值;若不存在,请说明理由.【解答】解:(1)对于直线AB解析式y=2x+10,令x=0,得到y=10;令y=0,得到x=﹣5,则A(0,10),B(﹣5,0);(2)连接OP,如图所示,①∵P(a,b)在线段AB上,∴b=2a+10,由0≤2a+10≤10,得到﹣5≤a≤0,由(1)得:OB=5,=OB•(2a+10),∴S△PBO则S=(2a+10)=5a+25(﹣5≤a≤0);②存在,理由为:∵∠PFO=∠FOE=∠OEP=90°,∴四边形PFOE为矩形,∴EF=PO,∵O为定点,P在线段AB上运动,∴当OP⊥AB时,OP取得最小值,∵AB•OP=OB•OA,∴•OP=50,∴EF=OP=2,综上,存在点P使得EF的值最小,最小值为2.。

相关文档
最新文档